JPH04154953A - Production of functional device - Google Patents

Production of functional device

Info

Publication number
JPH04154953A
JPH04154953A JP27381290A JP27381290A JPH04154953A JP H04154953 A JPH04154953 A JP H04154953A JP 27381290 A JP27381290 A JP 27381290A JP 27381290 A JP27381290 A JP 27381290A JP H04154953 A JPH04154953 A JP H04154953A
Authority
JP
Japan
Prior art keywords
functional
base material
gas
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27381290A
Other languages
Japanese (ja)
Inventor
Masaya Kobayashi
雅也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP27381290A priority Critical patent/JPH04154953A/en
Publication of JPH04154953A publication Critical patent/JPH04154953A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To inexpensively produce a functional device, where a thin functional film excellent in adhesive strength is formed on a base material, by previously deaerating a base material by holding this base material in a dry gas other than air, at the time of producing a functional device having a functional deposited film on a base material. CONSTITUTION:For example, at the time of producing a functional device having a functional deposited film, such as information recording medium and semiconductor device, a gas which is composed of a gas other than air, such as O2, N2, and Ar, and in which concentration of contained moisture is regulated to <=300ppm on the basis of volume is introduced into a pretreatment chamber 1, where a base material 2 for device is placed on a supporting stand 6, through a gas introducing valve 4, allowed to reflux by means of a fan 3, and discharged through a gas discharge valve 5, by which the base material 2 is subjected to deaerating treatment. By using this deaerated base material, the thin functional film excellent in adhesive strength can be formed on the base material and the functional device excellent in stability can inexpensively be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は基体上に機能性堆積膜を有する機能性素子例え
ば情報記録媒体、半導体デバイス、電子写真用感光デバ
イス、画像入力用ラインセンサー、撮像デバイス、光起
電力素子等の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a functional element having a functional deposited film on a substrate, such as an information recording medium, a semiconductor device, a photosensitive device for electrophotography, a line sensor for image input, and an imaging device. The present invention relates to a method for manufacturing devices, photovoltaic elements, etc.

〔従来の技術〕[Conventional technology]

従来、情報記録媒体、半導体デバイス、電子写真用感光
デバイス、画像入力用ラインセンサー、撮像デバイス、
光起電力素子等の基体上に機能性堆積膜が形成された機
能性素子が提案され、また実用化されている。これらの
機能性素子は機能性堆積膜の基体への密着性を向上させ
又機能性堆積膜の腐食を防止するために基体に含まれて
いる水分やガス分を除去する即ち脱気目的で膜を形成す
る前に基体を真空中で所定の時間保持する必要があった
Conventionally, information recording media, semiconductor devices, photosensitive devices for electrophotography, line sensors for image input, imaging devices,
Functional elements, such as photovoltaic elements, in which a functional deposited film is formed on a substrate have been proposed and put into practical use. These functional elements are used to improve the adhesion of the functional deposited film to the substrate and to prevent corrosion of the functional deposited film by removing moisture and gas contained in the substrate. It was necessary to hold the substrate in vacuum for a predetermined period of time before forming.

しかしながら従来の脱気方法では基体を真空中で処理す
る為の設備投資が高く又真空にする際に基体に付着した
ゴミなどの問題点があった。
However, the conventional degassing method requires a high investment in equipment for processing the substrate in a vacuum, and has problems such as dust adhering to the substrate when vacuuming.

〔発明が解決しようとしている問題点〕即ち本発明は上
記問題点に鑑みなされたものであり機能性薄膜の基体へ
の密着性に優れ且つ安定性に優れた機能性素子をより安
価に製造することができる機能性素子の製造方法を提供
することを目的とするものである。
[Problems to be solved by the invention] That is, the present invention has been made in view of the above-mentioned problems, and aims to produce a functional element having excellent adhesion of a functional thin film to a substrate and excellent stability at a lower cost. The object of the present invention is to provide a method for manufacturing a functional element that can perform the following steps.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の機能性素子の製造方法は、基体上に機能性堆積
膜を有する機能性素子の製造方法に於て基体を空気以外
の乾燥した気体の雰囲気中で保持した後機能性堆積膜を
形成することを特徴とするものである。
The method for manufacturing a functional device of the present invention is a method for manufacturing a functional device having a functional deposited film on a substrate, in which the substrate is held in an atmosphere of dry gas other than air, and then the functional deposited film is formed. It is characterized by:

次に図を用いて本発明の詳細な説明す名。The following is a detailed explanation of the invention using figures.

第1図は本発明に係る機能性素子の基体の脱気を行なう
脱気装置の1実施態様を示すものである。
FIG. 1 shows one embodiment of a degassing device for degassing a substrate of a functional element according to the present invention.

第1図に於て基体6は基体支持台6上に配置し気体導入
バルブ4より空気以外の気体を導入し脱気装置1内を気
体で置換し、ファン3により脱気装置1内の気体の分布
を均一化する。そしてガス排出バルブ5より気体を排出
し、脱気装置1内の圧力を調整する。
In FIG. 1, the base 6 is placed on a base support 6, gas other than air is introduced from the gas introduction valve 4, the inside of the deaerator 1 is replaced with gas, and the gas inside the deaerator 1 is replaced by the fan 3. equalize the distribution of Then, the gas is discharged from the gas discharge valve 5, and the pressure inside the deaerator 1 is adjusted.

本発明に於て用いられる気体としては空気以外の気体が
好ましく特に酸素、窒素及びアルゴンガスから選ばれる
少なくとも1種を含有する気体が好ましい。
The gas used in the present invention is preferably a gas other than air, particularly a gas containing at least one selected from oxygen, nitrogen, and argon gas.

更に基体の脱気時間としては機能性堆積膜の基体への密
着性が向上するという点で1時間以上特に5時間〜9時
間が好ましい。
Further, the time for degassing the substrate is preferably 1 hour or more, particularly 5 to 9 hours, from the viewpoint of improving the adhesion of the functional deposited film to the substrate.

気体の水分の含有量としては300ppm (容量基準
)以下とした場合基体の脱気をより完全に行なうことが
できる。
When the moisture content of the gas is 300 ppm (based on volume) or less, the substrate can be more completely degassed.

この様にして脱気を行なった基体に機能性堆積膜を形成
して機能性素子を得ることができる。
A functional device can be obtained by forming a functional deposited film on the substrate that has been degassed in this manner.

第2図は基体上に光磁気記録層を形成するインライン式
光磁気記録媒体の成膜装置の概略図である。
FIG. 2 is a schematic diagram of a film forming apparatus for an in-line magneto-optical recording medium that forms a magneto-optical recording layer on a substrate.

第2図において、21は基体の投入炉、22は保護誘電
体膜の成膜用スパッタ類、23は金属非晶質膜の成膜用
スパッタ類、24は22と同様の保護誘電体膜の成膜用
スパッタ類である。
In FIG. 2, 21 is a furnace for charging the substrate, 22 is a sputtering type for forming a protective dielectric film, 23 is a sputtering type for forming a metal amorphous film, and 24 is a sputtering type for forming a protective dielectric film similar to 22. These are sputters for film formation.

上記の脱気を行なった基体を投入炉21に入れた後排気
され成膜用スパッタ類22に搬送されて基体上に保護誘
電体膜が形成され次いでスパッタ類23に搬送されて光
磁気記録膜となる金属非晶質膜が形成され更にスパッタ
類24に搬送され金属非晶質膜上に再び保護膜が形成さ
れ排出炉25で排出され基体上に機能性堆積膜を有する
光磁気記録媒体が得られる。
The degassed substrate is placed in a charging furnace 21, then evacuated and transported to a film forming sputtering unit 22 to form a protective dielectric film on the substrate, and then transported to a sputtering unit 23 to form a magneto-optical recording film. A metal amorphous film is formed, which is further conveyed to a sputtering unit 24, a protective film is again formed on the metal amorphous film, and is discharged in an ejection furnace 25 to form a magneto-optical recording medium having a functional deposited film on the substrate. can get.

本発明に於て用いられる基体としては、製造する機能性
素子によっても異なるが例えば情報記録媒体の場合、ポ
リカーボネート、ポリメチルメタクリレート等の樹脂基
体が挙げられる。
Although the substrate used in the present invention varies depending on the functional element to be manufactured, for example, in the case of an information recording medium, resin substrates such as polycarbonate and polymethyl methacrylate can be mentioned.

〔実施例〕〔Example〕

以下実施例を用いて本発明を更に詳細に説明する。 The present invention will be explained in more detail below using Examples.

実施例1 厚さ1.2mmのポリカーボネート樹脂からなる光磁気
ディスクの基体を第1図に示す脱気装置に配置して窒素
ガス(水分300ppm・・・容量基準)をガス導入バ
ルブ4より2f/minで導入し脱気装置内を窒素ガス
で充填し次いでガス排出バルブを調整した。
Example 1 A magneto-optical disk substrate made of polycarbonate resin with a thickness of 1.2 mm was placed in the degassing device shown in FIG. The inside of the deaerator was filled with nitrogen gas, and then the gas discharge valve was adjusted.

この状態で基体を1時間、3時間、5時間、7時間、9
時間処理した後各々の基体に第2図に示す光磁気記録媒
体成膜装置を用いて成膜し5枚の光磁気ディスクを得た
In this state, the substrate was heated for 1 hour, 3 hours, 5 hours, 7 hours, and 9 hours.
After the time treatment, a film was formed on each substrate using the magneto-optical recording medium film forming apparatus shown in FIG. 2 to obtain five magneto-optical disks.

この様にして得た光磁気ディスクの基体及び機能性堆積
膜の密着力を測定する為にクロスハツチテストを行なっ
た。
A crosshatch test was conducted to measure the adhesion between the substrate of the magneto-optical disk obtained in this manner and the functional deposited film.

参考例1 ポリカーボネート基板2を直接第2図の光磁気記録媒体
成膜装置にセットして投入炉■で各々1,3゜5、7.
9時間真空脱気をした後実施例1と同様にして成膜し5
枚の光磁気ディスクを製造した。
Reference Example 1 A polycarbonate substrate 2 was directly set in the magneto-optical recording medium film forming apparatus shown in FIG.
After vacuum degassing for 9 hours, a film was formed in the same manner as in Example 1.
A number of magneto-optical disks were manufactured.

上記実施例1及び参考例1で作成した各々の光磁気ディ
スクについてそのキューリー温度を測定したところ第3
図に示す様なキューリー温度曲線を得た。
The Curie temperature of each of the magneto-optical disks prepared in Example 1 and Reference Example 1 was measured.
A Curie temperature curve as shown in the figure was obtained.

次に基体と機能性堆積膜の密着力を測定する為に成膜後
の基体に鋭利な刃物で1mm間隔でたて、よこ各6本直
交して線を引き1辺1mmの正方形のますを25コ形成
しその上に粘着テープを貼りつけて十分に密着させた後
にその粘着テープを剥してテープに付着した正方形のま
すの数により基体への膜の密着度を測定した。(クロス
ハツチテスト)即ちます25コのうちテープにっていき
たものがOコ(0/’25)の場合膜の密着は良好であ
り、基体の水分、ガス分は十分除去されていると判断し
た。その結果を表1に示す。
Next, in order to measure the adhesion between the substrate and the functional deposited film, we used a sharp knife to make square boxes of 1 mm on each side by drawing 6 lines perpendicularly on each side at 1 mm intervals on the substrate after the film was formed. After 25 coats were formed and an adhesive tape was pasted on it to ensure sufficient adhesion, the adhesive tape was peeled off and the degree of adhesion of the film to the substrate was measured by the number of square squares adhered to the tape. (Cross hatch test) In other words, if out of 25 pieces that went to the tape is O piece (0/'25), it is judged that the adhesion of the membrane is good and that moisture and gas from the substrate have been sufficiently removed. did. The results are shown in Table 1.

表−1 第3図及び表−1より実施例1の光磁気ディスクは真空
中で基体の処理を行なった光磁気ディスクとほぼ同等の
性能を有することが分かる。
Table 1 From FIG. 3 and Table 1, it can be seen that the magneto-optical disk of Example 1 has almost the same performance as the magneto-optical disk whose substrate was processed in vacuum.

実施例2〜4 水分含有量を表2に示すようにした以外は実施例1と同
様にして光磁気記録媒体を作製した。
Examples 2 to 4 Magneto-optical recording media were produced in the same manner as in Example 1, except that the water content was as shown in Table 2.

これら記録媒体につき、実施例1と同様の方法でキュー
リー温度を測定し、クロスハツチテストを行なった。
The Curie temperatures of these recording media were measured in the same manner as in Example 1, and a crosshatch test was conducted.

その結果を表2に示す。The results are shown in Table 2.

表−2 実施例5〜8 使用する気体の種類を表3に示すようにした以外は実施
例1と同様にして光磁気記録媒体を作製した。
Table 2 Examples 5 to 8 Magneto-optical recording media were produced in the same manner as in Example 1, except that the types of gases used were as shown in Table 3.

これら記録媒体につき実施例2と同様の方法でキューリ
ー温度を測定しクロスハツチテストを行なった。
The Curie temperatures of these recording media were measured in the same manner as in Example 2, and a crosshatch test was conducted.

その結果を表3に示す。The results are shown in Table 3.

表−3 〔発明の効果〕 以上説明した様に本発明によれば簡便且つ低コストで基
体の水分、ガス分等を除去でき高性能な機能性素子を得
ることができる。
Table 3 [Effects of the Invention] As explained above, according to the present invention, moisture, gas, etc. can be removed from the substrate simply and at low cost, and a high-performance functional element can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基体の脱気処理を行なう装置の概略図
、 第2図はインライン式光記録媒体の製造装置の概略図、 第3図は実施例1及び参考例1の基体の処理時間及びキ
ューリー温度の関係を示すグラフである。 1・・・前処理装置 2・・・基体 3・・・ファン 4・・・ガス導入バルブ 5・・・ガス排出バルブ 6・・・基体支持台 7・・・ゲートバルブ 21・・・投入炉 22・・・下地保護層成膜炉 23・・・記録層成脱炉 24・・・上地保護層成脱炉 25・・・排出炉
Fig. 1 is a schematic diagram of an apparatus for degassing a substrate of the present invention, Fig. 2 is a schematic diagram of an in-line optical recording medium manufacturing apparatus, and Fig. 3 is a schematic diagram of an apparatus for degassing a substrate of the present invention. It is a graph showing the relationship between time and Curie temperature. 1... Pretreatment device 2... Substrate 3... Fan 4... Gas inlet valve 5... Gas discharge valve 6... Substrate support stand 7... Gate valve 21... Charge furnace 22...Underlying protective layer forming furnace 23...Recording layer forming furnace 24...Upper protective layer forming furnace 25...Discharge furnace

Claims (4)

【特許請求の範囲】[Claims] (1)基体上に機能性堆積膜を有する機能性素子の製造
方法に於て基体を空気以外の乾燥した気体の雰囲気中で
保持した後機能性堆積膜を形成することを特徴とする機
能性素子の製造方法。
(1) A method for producing a functional element having a functional deposited film on a substrate, characterized in that the functional deposited film is formed after the substrate is held in a dry gas atmosphere other than air. Method of manufacturing elements.
(2)前記気体の水分濃度が容量基準で300ppm以
下である請求項(1)の機能性素子の製造方法。
(2) The method for manufacturing a functional element according to claim (1), wherein the moisture concentration of the gas is 300 ppm or less on a capacity basis.
(3)前記気体が窒素、アルゴン、酸素から選ばれる少
なくとも1種を含有する請求項(1)の機能性素子の製
造方法。
(3) The method for manufacturing a functional element according to claim (1), wherein the gas contains at least one selected from nitrogen, argon, and oxygen.
(4)前記機能性堆積膜が金属膜である請求項(1)の
機能性素子の製造方法。
(4) The method for manufacturing a functional element according to claim (1), wherein the functional deposited film is a metal film.
JP27381290A 1990-10-12 1990-10-12 Production of functional device Pending JPH04154953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27381290A JPH04154953A (en) 1990-10-12 1990-10-12 Production of functional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27381290A JPH04154953A (en) 1990-10-12 1990-10-12 Production of functional device

Publications (1)

Publication Number Publication Date
JPH04154953A true JPH04154953A (en) 1992-05-27

Family

ID=17532907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27381290A Pending JPH04154953A (en) 1990-10-12 1990-10-12 Production of functional device

Country Status (1)

Country Link
JP (1) JPH04154953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727588B2 (en) * 2003-09-05 2010-06-01 Yield Engineering Systems, Inc. Apparatus for the efficient coating of substrates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727588B2 (en) * 2003-09-05 2010-06-01 Yield Engineering Systems, Inc. Apparatus for the efficient coating of substrates

Similar Documents

Publication Publication Date Title
CA2401139A1 (en) A method for the processing of carbon-containing ultra-thin films
JPH04154953A (en) Production of functional device
JP3951972B2 (en) Film sample fixing method, gas cell, and gas permeability measuring apparatus
TW512323B (en) Method of manufacturing thin-film magnetic recording medium
JPS61184743A (en) Optical recording medium
JP2615612B2 (en) Method of manufacturing optical disk recording medium
JP2519982B2 (en) Method for manufacturing in-plane magnetic recording medium
JPH04500879A (en) Method for manufacturing thermo-optical magnetic recording element
JPS63257938A (en) Production of magneto-optical recording medium
JP2619444B2 (en) Optical disc manufacturing method
JP2001335916A (en) Thin film forming device and method for polymer substrate
Abermann et al. Gas adsorption on thin films of chromium studied by internal stress measurements
JPH11109129A (en) Diagonal evaporation film element
JP3170909B2 (en) Manufacturing method of gas detection element
JPH04232631A (en) Manufacture of magneto-optical disk
JP2710677B2 (en) Deposition film formation method
JPS59171044A (en) Information recording medium
JPS63121147A (en) Manufacture of optical information recording medium
JPS59171041A (en) Information recording medium
JPS63121664A (en) Thin film producing device
US6585906B2 (en) Method for recycling a disk having a layered structure on a glass substrate
JPS59172173A (en) Manufacture of digital signal recording and reproducing disk
Atanassov et al. Mechanical stress of TiO2 and MgF2 thin films and their multilayers deposited by plasma ion assisted deposition in Leybold APS vacuum system
JPS61178747A (en) Method and device for manufacturing optical disk
JPH04143948A (en) Magneto-optical recording medium