JPH04154920A - Manufacture of high strength steel belt - Google Patents

Manufacture of high strength steel belt

Info

Publication number
JPH04154920A
JPH04154920A JP2275422A JP27542290A JPH04154920A JP H04154920 A JPH04154920 A JP H04154920A JP 2275422 A JP2275422 A JP 2275422A JP 27542290 A JP27542290 A JP 27542290A JP H04154920 A JPH04154920 A JP H04154920A
Authority
JP
Japan
Prior art keywords
phase
steel
belt
point
martensitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2275422A
Other languages
Japanese (ja)
Other versions
JP3032273B2 (en
Inventor
Takashi Igawa
井川 孝
Yoshihiro Uematsu
植松 美博
Toshihiko Takemoto
敏彦 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2275422A priority Critical patent/JP3032273B2/en
Priority to DE69102969T priority patent/DE69102969T2/en
Priority to AT91117409T priority patent/ATE108711T1/en
Priority to EP91117409A priority patent/EP0481378B1/en
Publication of JPH04154920A publication Critical patent/JPH04154920A/en
Priority to US07/976,054 priority patent/US5269856A/en
Application granted granted Critical
Publication of JP3032273B2 publication Critical patent/JP3032273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/14Making other particular articles belts, e.g. machine-gun belts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Belt Conveyors (AREA)

Abstract

PURPOSE:To simply manufacture a flat high strength steel belt at high yield by subjecting an endless belt of a low C martensitic stainless steel having a specified compsn. to heating treatment to a specified temp. under required tension between rolls. CONSTITUTION:A cold rolled or annealed steel strip with a martensitic structure preferably having <=20vol.% ferritic phase or austenitic phase is manufactured from a low C martensitic stainless steel contg. 10 to 17% Cr and <=0.15% C and, if required, furthermore contg. <=8.0% Ni, <=6.0% Si, <=10.0% Mn and <=0.3% N. This steel strip is formed into an endless belt 1, which is bridged between rolls 2 and 3, and is continuously passed through a heat treating furnace 4 provided with an air injection nozzle 5 under about 0.5kgf/mm<2> tension, where the endless belt 1 is heated to >= the As point + 30 deg.C and <= the Af point (no higher than 900 deg.C) to transform a part of the martensitic phase into an inversely transformed austenitic phase and, is thereafter cooled to font its structure into a dual-phase one.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、マルテンサイト相とオーステナイト相の微細
な二相組織を有し且つ平坦度に優れた高強度のステンレ
ス製スチールベルトの製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a high-strength stainless steel belt having a fine two-phase structure of a martensitic phase and an austenite phase and having excellent flatness. .

〔従来の技術〕[Conventional technology]

ステンレス鋼製のスチールベルトは、高温での連続クツ
キー焼き1 低温での食品フリージング。
The stainless steel belt can be used for continuous kutsky baking at high temperatures and food freezing at low temperatures.

合板等の連続プレス、機械部品の搬送等の各種の分野で
数多く使用されており、その材料鋼種としては、高強度
と優れた疲労強度を必要とする関係上、加工硬化型オー
ステナイト系ステンレス鋼。
Work-hardening austenitic stainless steel is widely used in various fields such as continuous pressing of plywood and conveyance of mechanical parts, and requires high strength and excellent fatigue strength.

低炭素マルテンサイト系ステンレス鋼、或いは析出硬化
型ステンレス鋼などが適用されている。この種のスチー
ルベルト用材やスチールベルトの製造方法については例
えば特公昭51−31085号公報や特公昭61−99
03号公報に示されている。
Low carbon martensitic stainless steel or precipitation hardening stainless steel is used. Regarding materials for steel belts and methods for manufacturing steel belts, for example, Japanese Patent Publication No. 51-31085 and Japanese Patent Publication No. 61-99
This is shown in Publication No. 03.

かようなステンレス鋼製のスチールベルトの製造にあた
っては、形状修正によって平坦としたステンレス鋼帯を
作ってから2両端を溶接してエンドレス状にした後、再
び張力を与えて平坦化する方法を採用するのが通常であ
る。
In manufacturing such stainless steel belts, a method is used in which the stainless steel belt is made flat by shape modification, the two ends are welded to form an endless shape, and then tension is applied again to flatten the belt. It is normal to do so.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のスチールベルト製造法では、形状に優れたスチー
ルベルトを製造するには、まず平坦度に優れたスチール
ベルト素材板を得ることが必要となる。この平坦度に優
れた素材板を得るにはスチールベルト素材の最終工程に
形状修正のための圧延工程が必要である。この形状修正
圧延においては、加工硬化型オーステナイト系ステンレ
ス鋼およびマルテンサイト系ステンレス鋼とも、良好な
形状を得るには圧下率、ロール径、圧延速度、板厚、前
工程の履歴などを考慮して適正に行うことが必要であり
、その成否は製品歩留りに大きく影響する極めて高度な
技術である。したがって、出来得るならば、この形状修
正圧延なしでも平坦度の優れた鋼帯が得られるに越した
ことはないが。
In conventional steel belt manufacturing methods, in order to manufacture a steel belt with an excellent shape, it is first necessary to obtain a steel belt material plate with excellent flatness. In order to obtain a material plate with excellent flatness, a rolling step for shape modification is required as the final step of the steel belt material. In this shape correction rolling, for both work-hardening austenitic stainless steel and martensitic stainless steel, in order to obtain a good shape, consideration must be given to the rolling reduction, roll diameter, rolling speed, plate thickness, history of the previous process, etc. It is an extremely advanced technology that must be carried out properly, and its success or failure will greatly affect product yield. Therefore, if possible, it would be better to obtain a steel strip with excellent flatness without this shape correction rolling.

この種の鋼帯においてその技術は完成されていなのが実
状である。
The reality is that the technology for this type of steel strip has not yet been perfected.

また、形状修正圧延によって平坦度に優れた素材板が得
られたとしても、素材板の両端を溶接してエンドレス状
とする際、溶接時の入熱で素材板に膨張・収縮が生じ、
溶接部近傍が歪むことは避けられない。このため、エン
ドレス状にした後。
In addition, even if a material plate with excellent flatness is obtained by shape correction rolling, when welding both ends of the material plate to form an endless shape, the material plate expands and contracts due to the heat input during welding.
Distortion in the vicinity of the weld is unavoidable. For this reason, after making it into an endless form.

再度エンドレス状のスチールベルトに張力をかけて平坦
化のための作業が必要となる。
It is necessary to apply tension to the endless steel belt again to flatten it.

このようなことから、高強度ステンレス鋼製スチールベ
ルトを高歩留りで製造するには精密且つ繁雑な作業を要
していた。特に、広幅のスチールベルトを製造する場合
には、スチールベルト素材板を縦継ぎで溶接(長手方向
に溶接)して広幅鋼帯としたあと、その両端を溶接して
エンドレス状とすることが行われるが、この場合には、
このエンドレス状ベルトに張力を与えて溶接部の歪を修
正し平坦化する作業を行っても、全体に平坦化するには
一段と煩雑で多大な時間を要する作業となり、極めて問
題の多い製造方法となっていた。
For this reason, precise and complicated work is required to manufacture high-strength stainless steel belts at a high yield. In particular, when manufacturing wide steel belts, it is possible to weld steel belt material plates vertically (welding in the longitudinal direction) to form a wide steel belt, and then weld both ends of the belt to create an endless shape. However, in this case,
Even if tension is applied to this endless belt to correct the distortion of the welded part and flatten it, it becomes a more complicated and time-consuming process to flatten the entire belt, resulting in an extremely problematic manufacturing method. It had become.

本発明はこのような問題の解決を目的としたものである
The present invention aims to solve such problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、 10〜17%のCrを含有しC含有
量が0.15%以下の低炭素マルテンサイト系ステンレ
ス鋼からマルテンサイト組織を有する冷延鋼帯または焼
鈍鋼帯を製造し、この鋼帯を素材板として端部を連結し
てエンドレスベルトとし、このエンドレスベルトをロー
ル間に所要の張力下に架け渡して回動させながら加熱炉
に連続的に通板し5この加熱炉において(As点+30
℃)以上でAf点以下の温度範囲(ただし900℃以下
の範囲)に加熱してマルテンサイト相の一部を逆変態オ
ーステナイト相としたうえ、室温に冷却してオーステナ
イト相とマルテンサイト相の複相組織にすることを特徴
とする高強度スチールベルトの製造方法を提供する。な
お、As点は昇温過程でマルテンサイト相からオーステ
ナイト相へ変態が開始する温度を、またAf点は昇温過
程でマルテンサイト相からオーステナイト相へ変態が終
了する温度を意味しているる。
According to the present invention, a cold rolled steel strip or annealed steel strip having a martensitic structure is produced from a low carbon martensitic stainless steel containing 10 to 17% Cr and a C content of 0.15% or less, This steel strip is used as a raw material plate and the ends are connected to form an endless belt, and this endless belt is stretched between rolls under the required tension and rotated while being continuously passed through a heating furnace. (As point +30
℃) to a temperature range below the Af point (however, below 900℃) to convert a part of the martensite phase into a reversely transformed austenite phase, and then cooled to room temperature to transform the austenite phase into a composite of the austenite phase and martensite phase. A method for producing a high-strength steel belt characterized by forming it into a phase structure is provided. Note that the As point refers to the temperature at which transformation from martensite phase to austenite phase begins during the temperature increase process, and the Af point refers to the temperature at which the transformation from martensite phase to austenite phase ends during the temperature increase process.

〔作用〕 鋼帯の最終製造工程で形状修正圧延を行わなかった調帯
を素材板として使用し、その端部を溶接でエンドレスベ
ルトにしたさいにさらに形状が悪化したものでも、マル
テンサイト組織を有するエンドレスベルトをロール間に
所要の張力下で架け渡して加熱炉に通板し、As点以上
の温度に加熱すると、炉内ではベルトの長手方向に張力
が加わりながらマルテンサイトがオーステナイトに逆変
態し、この逆変態の進行につれて材料が平坦化される。
[Function] Even if a strip that was not subjected to shape correction rolling in the final manufacturing process of the steel strip is used as a raw material plate, and the shape deteriorates even more when the ends are welded to form an endless belt, the martensitic structure can be maintained. When the endless belt is stretched between rolls under the required tension and passed through a heating furnace and heated to a temperature above the As point, martensite undergoes reverse transformation into austenite while tension is applied in the longitudinal direction of the belt in the furnace. However, as this reverse transformation progresses, the material becomes flattened.

900℃を越えない温度であって(As点+30℃)以
上、Af点以下の温度範囲であれば、マルテンサイ1−
の一部をオーステナイトに逆変態させることができ、こ
の逆変態で生成したオーステナイト相は微細で安定なも
のとすることができ、したがって室温まで冷却しても焼
入れマルテンサイトに再度変態しない。このため、マル
テンサイト相と逆変態オーステナイト相との微細な2相
組織のスチールベルトが得られる。
If the temperature does not exceed 900℃ and is within the temperature range of (As point + 30℃) or higher and Af point or lower, martensai 1-
A part of the steel can be reversely transformed into austenite, and the austenite phase generated by this reverse transformation can be made fine and stable, and therefore does not transform again into quenched martensite even when cooled to room temperature. Therefore, a steel belt having a fine two-phase structure of a martensitic phase and a reversely transformed austenite phase is obtained.

また、加熱温度からの冷却のさいに焼入れマルテンサイ
トに再度変態しないことは焼入れひずみが発生しないこ
とを意味し、このために常温まで良好な平坦度が維持さ
れる。
Further, the fact that the material does not transform again into hardened martensite upon cooling from the heating temperature means that hardening strain does not occur, and therefore good flatness is maintained up to room temperature.

このようにして1本発明によれば、形状修正圧延を省略
した鋼帯を素材としても(もっとも、形状修正圧延を行
った鋼帯を素材としても特に問題はないが)、溶接接合
後のエンドレスベルトの連続熱処理によって平坦化と複
相組織化が同時に達成され、形状が優れ且つ高強度のス
テンレス鋼製のスチールベルトが製造性よく作製できる
In this way, according to the present invention, even if a steel strip without shape correction rolling is used as a material (although there is no particular problem in using a steel strip subjected to shape correction rolling as a material), endless Continuous heat treatment of the belt achieves flattening and multi-phase structure at the same time, making it possible to manufacture stainless steel belts with excellent shape and high strength with good manufacturability.

なお、このような作用は、加熱炉に通板される前の鋼帯
が実質的にマルテン→ノ′イト組織を有しておればよく
1例えば20容積%以下のフェライト相またはオーステ
ナイト相を有していてもそれほど損なわれない。
Note that this effect can be achieved only if the steel strip before being passed through the heating furnace has a substantially marten→noite structure. Even if you do, it won't hurt much.

このように本発明の特徴は、熱処理時にマルテンサイト
相から微細なオーステナイト相が逆変態で生じて微細な
二相組織となり、この微細な二相組織を維持することで
、平坦度に優れた高強度ステンレススチールヘル1−を
得たことにある。すなわちl1all−Petchの式
でも知られるように組織の微細化で強度を得るとともに
、炉内を通板する際の張力で平坦化された状態において
、張力を緩和しながら、逆変態が進行することからテン
ションアニール状態となって優れた形状が得られるので
ある。したがって安定した微細な二相組織を得ることが
鍵となる。As点→−30℃以下では生成される逆変態
オーステナイ1−ffiが少なすぎるため、またAf点
以」二でかつ900℃以上では逆にマルテンサイト量が
残留しなくなるか、残留量が少なくなりすぎるため、安
定した微細な二相組織が得られない。
As described above, the feature of the present invention is that during heat treatment, a fine austenite phase is reversely transformed from a martensite phase to form a fine two-phase structure, and by maintaining this fine two-phase structure, a high The strength of stainless steel is to obtain 1-. In other words, as is known from the l1all-Petch equation, strength is obtained by making the structure finer, and in a flattened state due to the tension when passing through the furnace, reverse transformation progresses while the tension is relaxed. This results in a tension annealing state where an excellent shape can be obtained. Therefore, the key is to obtain a stable fine two-phase structure. When the As point is below -30°C, the amount of reversely transformed austenite 1-ffi produced is too small, and when the temperature is above the Af point and above 900°C, no martensite remains or the residual amount becomes small. Therefore, a stable fine two-phase structure cannot be obtained.

〔発明の好ましい態様〕[Preferred embodiment of the invention]

第1図に本発明で使用する熱処理炉の例を示した。マル
テンサイト組織を有する素材板から作ったエンドレスベ
ルト1をロール2と3に架け渡し。
FIG. 1 shows an example of a heat treatment furnace used in the present invention. An endless belt 1 made from a material plate having a martensitic structure is stretched between rolls 2 and 3.

これらロールのいずれかを駆動ロールとしてヘルド1を
回動させる。この回動するヘルド1が連続通板されるよ
うに熱処理炉4を設ける。この熱処理炉4のヘルド出側
に空気噴射ノズル5を設け。
The heald 1 is rotated using one of these rolls as a driving roll. A heat treatment furnace 4 is provided so that the rotating heald 1 is continuously passed through. An air injection nozzle 5 is provided on the heald outlet side of the heat treatment furnace 4.

このノズル5によって熱処理されたヘルドを冷却するよ
うにすることもできる。熱処理炉4の加熱は電気抵抗発
熱体加熱方式で行うのが便宜であるが、燃料燃焼方式で
あってもよい。雰囲気はヘルドの酸化を防止したい場合
は、還元性ガスや不活性ガスを使用するが、大気雰囲気
でも特に支障はない。
It is also possible to use this nozzle 5 to cool the heat-treated heald. It is convenient to heat the heat treatment furnace 4 using an electric resistance heating element heating method, but a fuel combustion method may also be used. When it is desired to prevent oxidation of the heald, a reducing gas or an inert gas is used as the atmosphere, but there is no particular problem in the atmosphere.

エンドレスベルト1は、マルテンサイト組織の鋼帯から
所要長さの素材板を切出し、その両端部を溶接接合する
ことによって作られる。広幅のものでは、この両端部の
溶接のほか、複数の素材板の側縁を長手方向に縦継ぎ溶
接して作ることもできる。場合によってはビレット打ち
で接合することもできる。いずれにしても、マルテンサ
イト組織の鋼帯としては形状修正圧延を行わないものを
使用することができ、またヘルドへの接合によって平坦
度が悪くなったものでも、前記の熱処理によって平坦化
される。
The endless belt 1 is made by cutting a material plate of a required length from a steel strip having a martensitic structure, and welding and joining both ends of the material plate. In addition to welding both ends, a wide one can also be made by vertically welding the side edges of multiple material plates in the longitudinal direction. In some cases, it is also possible to join by billet hammering. In any case, a steel strip with a martensitic structure that is not subjected to shape correction rolling can be used, and even if the flatness has deteriorated due to joining to the heald, it can be flattened by the heat treatment described above. .

ロール1と2とにヘルド1を所要の張力下に架け渡すが
、その張力の程度はAs点に近い低温域では0.5kg
f/mm2以上の高い張力が望ましく、Af点に近い高
温域では0.5kgf/mm2未満の低い張力が望まし
い。また熱処理時間は低温域では長く、高温域では短く
調節するようにするのがよい。このような張力と保持時
間は、鋼の成分組成や熱処理温度とも関係するが、マル
テンサイト相の一部がオーステナイト相に逆変態し、微
細な二相組織となるように且つ平坦化が達成されるよう
に調節することが肝要であり、これは当該鋼の数度の試
験によって知ることができる。
Heald 1 is placed between rolls 1 and 2 under the required tension, and the tension is 0.5 kg in the low temperature range near the As point.
A high tension of f/mm2 or more is desirable, and a low tension of less than 0.5 kgf/mm2 is desirable in the high temperature range near the Af point. Further, it is preferable to adjust the heat treatment time to be long in a low temperature range and short in a high temperature range. Such tension and holding time are related to the steel composition and heat treatment temperature, but it is necessary to ensure that part of the martensite phase undergoes reverse transformation to the austenite phase, forming a fine two-phase structure and achieving flattening. It is important to adjust the steel so that the

このようにして張力下に熱処理することにより微細な二
相組織となり、この微細な二相組織を維持することで形
状に優れ且つ高強度のスチールベルトが得られ、溶接部
も母材と実質的に同一の組織および平坦度を有すること
になる。したがってこのヘルドの熱処理にあたっては安
定した微細な二相組織を得ることが鍵となる。As点+
30℃未満の温度域での熱処理では生成される逆変態オ
ーステナイト量が少なすぎるため、またAf点を越える
温度または900℃を越える温度域での熱処理では逆変
態オーステナイト量が多くなってマルテンサイト量が残
留しなくなるか、残留量が少なくなりすぎるので安定し
た微細な二相組織が得られなくなる。したがって、該熱
処理はCAs点+30’C)以上でAf点以下の温度範
囲(ただし900℃以下の範囲)で行う必要がある。
In this way, heat treatment under tension creates a fine two-phase structure, and by maintaining this fine two-phase structure, a steel belt with excellent shape and high strength can be obtained, and the welded part is also substantially connected to the base material. will have the same texture and flatness. Therefore, the key to heat treating this heald is to obtain a stable fine two-phase structure. As point +
Heat treatment in a temperature range below 30°C produces too little amount of reverse transformed austenite, and heat treatment at a temperature exceeding the Af point or in a temperature range exceeding 900°C increases the amount of reverse transformed austenite and reduces the amount of martensite. Either no more remains, or the amount remaining becomes too small, making it impossible to obtain a stable fine two-phase structure. Therefore, the heat treatment needs to be carried out in a temperature range from CAs point +30'C) to Af point (but not more than 900C).

本発明法を適用するステンレス鋼は、焼鈍状態でフル1
テンサイド組織を呈するマルテンサイト系ステンレス鋼
が本旨である。熱処理炉に通板する前のベルトの組織状
態は実質的にマルテンサイト組織であることが必要であ
り、このマルテンサイト組織は鋼中の成分とも関係する
が、鋼帯の最終製造工程が焼鈍工程であるマルテンサイ
ト組織とした焼鈍鋼帯、この焼鈍鋼帯を仕上冷間圧延し
た冷延鋼帯(場合によっては冷間圧延によって加工誘起
マルテンサイトを生成させた冷延鋼帯)を素材板とする
。しかし、100%マルテンサイト相である必要は必ず
しもなく、20容量%までのフェライト相或いはオース
テナイト相が存在したものでもよい。いずれにしても、
スチールベルトに作ってから熱処理して得られる複相組
織の状態で引張強さがloOkg/mm”クラス以上の
高強度を得ることを本発明の一方の柱とするものであり
、この要件を満たす範囲の鋼の成分と組織割合を本発明
は包含するものである。
Stainless steel to which the method of the present invention is applied is full 1 in the annealed state.
The main idea is martensitic stainless steel that exhibits a ten-sided structure. The structure of the belt before passing through the heat treatment furnace must be substantially martensitic, and although this martensitic structure is related to the components in the steel, the final manufacturing process of the steel strip is an annealing process. An annealed steel strip with a martensitic structure, and a cold rolled steel strip obtained by finishing cold rolling this annealed steel strip (in some cases, a cold rolled steel strip in which deformation-induced martensite is generated by cold rolling) are used as a raw material plate. do. However, it is not necessarily necessary that the phase be 100% martensitic, and up to 20% by volume of ferrite or austenite phase may be present. In any case,
One of the pillars of the present invention is to obtain high strength with a tensile strength of LOOkg/mm" class or higher in a multiphase structure obtained by heat treatment after being made into a steel belt, and this requirement is met. The present invention encompasses a range of steel components and microstructure ratios.

綱の成分については、10〜17%のCrと0.15%
以下のCを含有する低炭素マルテンサイト系ステンレス
鋼を中心とする。Niも主要な成分の一つとすることが
でき、また前記の要件を満たすかぎり、この種の鋼に含
有させる通常の合金元素の添加も勿論可能である。
Regarding the components of steel, 10-17% Cr and 0.15%
We mainly use low carbon martensitic stainless steel containing the following C. Ni can also be one of the main components, and as long as the above requirements are met, it is of course possible to add other alloying elements that are normally included in this type of steel.

その代表的な化学成分と含有量を挙げると次のとおりで
ある。
The typical chemical components and contents are as follows.

C:0.15%以下(Oを含まず)。C: 0.15% or less (not including O).

S i : 6.0%以下(0を含まず)。Si: 6.0% or less (not including 0).

Mn:10.0%以下(Oを含まず)。Mn: 10.0% or less (not including O).

N i : 8.0%以下(0を含まず)。Ni: 8.0% or less (not including 0).

Cr : 10.0〜17.0%。Cr: 10.0-17.0%.

N:0.3%以下(0を含まず)。N: 0.3% or less (not including 0).

Mo:4.0%以下(Oを含む)。Mo: 4.0% or less (including O).

Cu : 4.0%以下(0を含む)。Cu: 4.0% or less (including 0).

Co : 4.0%以下(0を含む)。Co: 4.0% or less (including 0).

さらに、Tt、AI、Nb、V、Zr、B、希土類元素
を総量で1.0%以下や、不可避的不純物も含有するこ
とができる。
Furthermore, the total amount of Tt, AI, Nb, V, Zr, B, and rare earth elements can be 1.0% or less, and unavoidable impurities can also be contained.

ただし、Ti、AI、Nb、V、Zr、B、希土類元素
を含まない組成の場合は。
However, if the composition does not contain Ti, AI, Nb, V, Zr, B, or rare earth elements.

N1eq−Ni+ Mn+ Cu+ Mo+0.2Co
+0.5Cr+0.3S i+20(C+ N)Ti、
AI、Nb、V、Zr、B、希土類元素を含む組成の場
合は。
N1eq-Ni+ Mn+ Cu+ Mo+0.2Co
+0.5Cr+0.3S i+20(C+N)Ti,
For compositions containing AI, Nb, V, Zr, B, and rare earth elements.

N1eq=Ni+Mn+Cu+Mo+0.2Co+0.
5Cr+0.3Si で定義されるN1e9(Ni当量)の値が8.0〜17
.5の範囲内となるように各成分量を調整する。これら
主要元素の含有量範囲をこのように規制するのは次のよ
うな理由による。
N1eq=Ni+Mn+Cu+Mo+0.2Co+0.
The value of N1e9 (Ni equivalent) defined by 5Cr+0.3Si is 8.0 to 17
.. Adjust the amount of each component so that it falls within the range of 5. The content ranges of these major elements are regulated in this way for the following reasons.

Cはオーステナイト生成元素で、As点+30℃以上、
Af点以下の温度域での熱処理により生成される逆変態
オーステナイト相の安定化に有効に作用するとともに、
逆変態オーステナイト相とマルテンサイト相の強化に有
効に作用する。しがしながら、多量に含有すると逆変態
処理時にCr炭化物が生成され耐食性が劣化するため、
その上限を0.15%とする。
C is an austenite-forming element, with an As point of +30°C or higher,
It acts effectively on stabilizing the reversely transformed austenite phase produced by heat treatment in the temperature range below the Af point, and
Effectively acts to strengthen the reversely transformed austenite phase and martensite phase. However, if it is contained in a large amount, Cr carbide will be generated during reverse transformation treatment and corrosion resistance will deteriorate.
The upper limit is set to 0.15%.

Crはステンレス鋼の基本成分であり、良好な耐食性を
得るには10.0%以上含有させる必要がある。しかし
ながら、Crはフェライト生成元素であり、多量に含有
すると多量のδフェライト相が生成され焼鈍後、常温で
マルテンサイト単相組織が得られ難くなるため、上限を
17.0%とする。
Cr is a basic component of stainless steel, and must be contained in an amount of 10.0% or more to obtain good corrosion resistance. However, Cr is a ferrite-forming element, and if it is contained in a large amount, a large amount of δ ferrite phase will be generated, making it difficult to obtain a martensitic single-phase structure at room temperature after annealing, so the upper limit is set to 17.0%.

Niはオーステナイ;・生成元素でAs点→−30℃以
J:、Af点以下の温度域での熱処理により生成される
逆変態オーステナイト相の安定化に有効に作用する。し
かし、多量に含有すると鋼帯製造時の焼鈍後、常温でマ
ルテンサイト単相組織が得られ難くなるので8.0%以
下の範囲で含有さ−ヒるのがよい。
Ni is an austenite-forming element that effectively acts to stabilize the reversely transformed austenite phase produced by heat treatment in the temperature range from the As point to -30°C or below and the Af point or below. However, if it is contained in a large amount, it becomes difficult to obtain a martensitic single phase structure at room temperature after annealing during steel strip production, so it is preferable to contain it within a range of 8.0% or less.

SiはAs点とAf点の温度範囲を広げるのでオーステ
ナイト相とマルテンサイト相の安定した二相組織を得る
のに有利に作用し、また熱処理後の逆変態オーステナイ
ト相とマルテンサイト相の強化にも有効な元素である。
Since Si widens the temperature range between As point and Af point, it acts advantageously to obtain a stable two-phase structure of austenite phase and martensite phase, and also strengthens the reversely transformed austenite phase and martensite phase after heat treatment. It is a valid element.

しかし多量に含有すると製造性が劣化するため、6.0
%以下の範囲で含有させるのがよい。
However, if it is contained in a large amount, manufacturability will deteriorate, so 6.0
% or less.

Mnはオーステナイト生成元素でありAs点+30℃以
上、Af点以下の温度域での熱処理により生成される逆
変態オーステナイト相の安定化に有効に作用する。しか
し多量に含有すると鋼の溶製時にMnヒユームが生成す
る等、鋼の製造性が悪くなるので10.0%以下とする
のがよい。
Mn is an austenite-forming element, and effectively acts to stabilize the reversely transformed austenite phase produced by heat treatment in a temperature range of +30° C. above the As point and below the Af point. However, if it is contained in a large amount, the manufacturability of the steel will deteriorate, such as the formation of Mn fume during melting of the steel, so it is preferable to keep it at 10.0% or less.

NはCと同様のオーステナイト生成元素でAs点+30
℃以上、Af点以下の温度域で熱処理により生成される
逆変態オーステナイト相の安定化に有効に作用するとと
もに、逆変態オーステナイト相とマルテンサイト相の強
化にも有効な元素である。しかしながら、多量に含有す
ると鋼の溶製時にブローホールが生成し、健全な鋼塊が
得られなくなるので0.30%以下とするのがよい。
N is an austenite forming element similar to C and has an As point of +30
It is an element that is effective in stabilizing the reversely transformed austenite phase produced by heat treatment in the temperature range of .degree. C. or above and below the Af point, and is also effective in strengthening the reversely transformed austenite phase and martensite phase. However, if it is contained in a large amount, blowholes will be generated during steel melting, making it impossible to obtain a sound steel ingot, so the content is preferably 0.30% or less.

Moは耐食性を向上させるとともに、熱処理後の逆変態
オーステナイト相とマルテンサイト相の強化に有効な元
素である。しかしながら、Moはフェライト生成元素で
あり、多量に含有すると多量のδフェライトが生成され
、鋼帯製造時の焼鈍後、常温でマルテンサイト単相組織
が得られ難くなるので4.0%以下とするのがよい。
Mo is an element that improves corrosion resistance and is effective in strengthening the reversely transformed austenite phase and martensite phase after heat treatment. However, Mo is a ferrite-forming element, and if it is contained in a large amount, a large amount of δ ferrite will be generated, making it difficult to obtain a martensitic single-phase structure at room temperature after annealing during steel strip production, so the content should be 4.0% or less. It is better.

CuはNiと同様にオーステナイト生成元素であり、熱
処理後のオーステナイト相の形成に有効であるが、多量
に含有すると鋼帯製造時の熱間加工性が低下するので4
.0%以下とするのがよい。
Cu, like Ni, is an austenite-forming element and is effective in forming the austenite phase after heat treatment, but if it is contained in a large amount, hot workability during steel strip production decreases.
.. It is preferable to set it to 0% or less.

coはNiと同様にオーステナイト生成元素であり、熱
処理後のオーステナイト相の形成に有効であるが、多量
に含有すると鋼が高価になるので。
Like Ni, Co is an austenite-forming element and is effective in forming the austenite phase after heat treatment, but if it is contained in a large amount, the steel becomes expensive.

4.0%以下とするのがよい。The content is preferably 4.0% or less.

T i、 A I、 Nb、 VおよびZrはいずれも
逆変態処理によって生成したオーステナイト・マルテン
サイト相組織を安定した微細且つ均一な組織に維持する
のに有効であるとともに、Cr炭化物の生成を抑制し、
耐食性を維持するのにも有効な元素である。しかしなが
ら、多量に含有すると鋼の製造が困難となるのでそれぞ
れ1.0%以丁とすると共にこれらの合計量も1%以下
とするのがよい。
Ti, AI, Nb, V and Zr are all effective in maintaining the austenite-martensitic phase structure generated by the reverse transformation treatment into a stable, fine and uniform structure, and at the same time suppressing the formation of Cr carbides. death,
It is also an effective element for maintaining corrosion resistance. However, if they are contained in large amounts, it becomes difficult to manufacture steel, so it is preferable that each of these elements be contained in an amount of 1.0% or less, and that the total amount of these elements be 1% or less.

N i、9(N i当量値)については次の通りである
N i,9 (N i equivalent value) is as follows.

本発明では、ベルトの熱処理時にマルテンサイト相から
微細なオーステナイト相が逆変態で生じて微細な二相組
織となり、この微細な二相組織を維持することにより、
疲労特性に優れた高強度スチールベルトが得られる。し
たがって3本発明では安定した微細な二相組織を得るこ
とが鍵となる。
In the present invention, during heat treatment of the belt, a fine austenite phase is reversely transformed from a martensitic phase to form a fine two-phase structure, and by maintaining this fine two-phase structure,
A high-strength steel belt with excellent fatigue properties can be obtained. Therefore, the key to the present invention is to obtain a stable fine two-phase structure.

N i、Qが8.0未満であるとAs点」−30℃以」
二、Af点以下の温度範囲の低温熱処理を施しても逆変
態オーステナイト量が少なくなり2 またN l (I
 Qが17.5を越えると逆変態オーステナイト■が多
ずぎるようになり、いずれも安定した微細な二相組織を
得難くなる。従ってN il!Qが8.0〜17.5と
なるように各成分量を調整するのが好ましい。
If Ni and Q are less than 8.0, the As point is ``-30℃ or lower.''
2. Even if low-temperature heat treatment is performed in the temperature range below the Af point, the amount of reversely transformed austenite decreases.
If Q exceeds 17.5, there will be too much reverse transformed austenite (2), making it difficult to obtain a stable fine two-phase structure. Therefore, Nil! It is preferable to adjust the amount of each component so that Q is 8.0 to 17.5.

〔実施例〕〔Example〕

第1表に示す組成の鋼を通常の方法によって溶製し、鍛
造、熱間圧延により5mm厚さとし、溶体化処理・酸洗
を施した後、冷間圧延、焼鈍し1次いで所定の圧延率で
仕上冷間圧延し1mmの冷間圧延材とした。冷間圧延の
際は熱処理による形状修正を確認するため故意に圧延形
状が悪くなる条件を設定した。一部の仕上冷間圧延材は
1030℃で焼鈍し、酸洗を施した。これらの鋼帯から
素材板を切り出し9両端をTIG溶接して1幅300m
m、  長さ5mエンドレスベルトとし、これを後記の
熱処理に供した。なお、第1表にはAs、Af点も合わ
せて示すが、これらの変態点は電気抵抗測定装置により
1℃/minの加熱速度で昇温しで得た温度−電気抵抗
の関係曲線の変曲点から求めた。
Steel having the composition shown in Table 1 is melted by a conventional method, forged and hot rolled to a thickness of 5 mm, subjected to solution treatment and pickling, then cold rolled and annealed to a predetermined rolling rate. Finish cold rolling was performed to obtain a 1 mm cold rolled material. During cold rolling, conditions were intentionally set to make the rolled shape worse in order to confirm the shape modification caused by heat treatment. Some of the finished cold-rolled materials were annealed at 1030°C and pickled. Cut out 9 material plates from these steel strips and TIG weld them at both ends to make one piece with a width of 300m.
An endless belt with a length of 5 m was prepared, and this was subjected to the heat treatment described below. Table 1 also shows the As and Af points, but these transformation points are determined by the change in the temperature-electrical resistance relationship curve obtained by increasing the temperature at a heating rate of 1°C/min using an electrical resistance measuring device. Obtained from the curve point.

各ヘルドを第1図に示す熱処理設備で第2表に示す種々
の条件により熱処理を施した。第2表に熱処理後のスチ
ールベルト形状およびスチールベルトから取り出した引
張り試験片の引張り試験結果を合わせて示す。なお、形
状検査は熱処理の前と後に行ったが、これらは、第2図
に示すようにうねり高さh (mm)を圧延方向の距離
!(1)で除した値をL方向の形状値、また第3図に示
すようにうねり高さh (mm)を鋼帯幅12 (30
0mm)で除した値をT方向の形状値とした。
Each heald was heat treated using the heat treatment equipment shown in FIG. 1 under various conditions shown in Table 2. Table 2 also shows the shape of the steel belt after heat treatment and the results of the tensile test of the tensile test piece taken out from the steel belt. Note that the shape inspection was carried out before and after heat treatment, and as shown in Fig. 2, the waviness height h (mm) was measured by the distance in the rolling direction. (1) is the shape value in the L direction, and as shown in Figure 3, the waviness height h (mm) is the steel strip width 12 (30
The value divided by 0 mm) was taken as the shape value in the T direction.

第2表の結果から明らかなように1本発明方法によれば
各供試材はいずれも耐力80kgf/mm”以上の高強
度を有し、且つ形状はL方向で2.5/1000以下、
T方向で1/300以下と優れた形状を示す。
As is clear from the results in Table 2, according to the method of the present invention, each sample material has a high strength of 80 kgf/mm'' or more, and the shape is 2.5/1000 or less in the L direction.
It shows an excellent shape of 1/300 or less in the T direction.

これに対し、第2表中に*印で示す本発明で規定する範
囲を外れた熱処理条件の比較法では、形状が悪かったり
強度が低くなったりして不具合いが生じ、高強度スチー
ルベルトとして適さない。
On the other hand, in the comparison method using heat treatment conditions outside the range specified by the present invention, which is indicated by an asterisk in Table 2, defects occur due to poor shape and low strength, and the belt cannot be used as a high-strength steel belt. Not suitable.

〔発明の効果〕 以」二のように本発明によれば、ステンレス鋼製のスチ
ールベルトに要求される平坦性と高強度という両特性が
溶接後の熱処理だけで同時に達成される。このことは形
状修正圧延を省略した鋼帯を素材板として使用できるこ
と、および溶接前後の張力による平坦化処理を別途に行
わなくてもよいことを意味する。したがって、スチール
ベルト製造における省工程および高歩留り化に大きく貢
献できる。また、縦継ぎの幅広スチールベルトの製造も
容易に行い得る。
[Effects of the Invention] As described below, according to the present invention, both characteristics of flatness and high strength required of a stainless steel belt can be simultaneously achieved only by heat treatment after welding. This means that a steel strip without shape correction rolling can be used as a blank plate, and that there is no need to separately perform flattening treatment using tension before and after welding. Therefore, it can greatly contribute to process saving and high yield in steel belt manufacturing. Further, it is possible to easily manufacture a wide steel belt with vertical splicing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法に従うベルトの熱処理設備を示ず略断
面図、第2図は熱処理前後の鋼帯の形状測定方法のうち
L方向(圧延方向)の測定方法を示す斜視図、第3図は
同じくT方向(圧延方向に直角)の測定方法を示す斜視
図である。
Fig. 1 is a schematic sectional view, not showing belt heat treatment equipment according to the method of the present invention; Fig. 2 is a perspective view showing a method for measuring the shape of a steel strip before and after heat treatment in the L direction (rolling direction); The figure is a perspective view showing the measurement method in the T direction (perpendicular to the rolling direction).

Claims (3)

【特許請求の範囲】[Claims] (1)10〜17%のCrを含有しC含有量が0.15
%以下の低炭素マルテンサイト系ステンレス鋼からマル
テンサイト組織を有する冷延鋼帯または焼鈍鋼帯を製造
し、この鋼帯を素材板として端部を連結してエンドレス
ベルトとし、このエンドレスベルトをロール間に所要の
張力下に架け渡して回動させながら加熱炉に連続的に通
板し、この加熱炉において(As点+30℃)以上でA
f点以下の温度範囲(ただし900℃以下の範囲)に加
熱してマルテンサイト相の一部を逆変態オーステナイト
相としたうえ、室温に冷却してオーステナイト相とマル
テンサイト相の複相組織にすることを特徴とする高強度
スチールベルトの製造方法、 ただし、As点は昇温過程でマルテンサイト相からオー
ステナイト相へ変態が開始する温度であり、Af点は昇
温過程でマルテンサイト相からオーステナイト相へ変態
が終了する温度である。
(1) Contains 10-17% Cr and C content is 0.15
A cold-rolled steel strip or annealed steel strip with a martensitic structure is manufactured from low carbon martensitic stainless steel with a carbon content of 1.5% or less, and this steel strip is used as a raw material plate and the ends are connected to form an endless belt.This endless belt is rolled. The plate is continuously passed through a heating furnace while being rotated under the required tension, and in this heating furnace, the A
Heat to a temperature range below the f point (however, below 900°C) to transform a part of the martensite phase into a reversely transformed austenite phase, and then cool to room temperature to create a dual-phase structure of an austenite phase and a martensite phase. A method for manufacturing a high-strength steel belt, characterized in that the As point is the temperature at which transformation from martensite phase to austenite phase begins in the temperature rising process, and the Af point is the temperature at which transformation from martensite phase to austenite phase begins in the temperature rising process. This is the temperature at which the transformation to .
(2)加熱炉に通板される前の鋼帯は、20容積%以下
のフェライト相またはオーステナイト相を有する請求項
1に記載の高強度スチールベルトの製造方法。
(2) The method for manufacturing a high-strength steel belt according to claim 1, wherein the steel strip before being passed through the heating furnace has a ferrite phase or an austenite phase of 20% by volume or less.
(3)ステンレス鋼は、CrおよびCのほかに8.0%
以下のNi、6.0%以下のSi、10.0%以下のM
n、0.3%以下のNを含有したマルテンサイト系ステ
ンレス鋼である請求項1または2に記載の高強度スチー
ルベルトの製造方法。
(3) Stainless steel contains 8.0% in addition to Cr and C.
Ni below, Si below 6.0%, M below 10.0%
3. The method for manufacturing a high-strength steel belt according to claim 1, wherein the belt is martensitic stainless steel containing 0.3% or less of N.
JP2275422A 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt Expired - Lifetime JP3032273B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2275422A JP3032273B2 (en) 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt
DE69102969T DE69102969T2 (en) 1990-10-16 1991-10-11 Process for the production of a particularly strong steel belt.
AT91117409T ATE108711T1 (en) 1990-10-16 1991-10-11 PROCESS FOR MANUFACTURING AN EXCEPTIONALLY STRONG STEEL BELT.
EP91117409A EP0481378B1 (en) 1990-10-16 1991-10-11 Process for producing high strength steel belt
US07/976,054 US5269856A (en) 1990-10-16 1992-11-13 Process for producing high strength endless steel belt having a duplex structure of austenite and martesite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275422A JP3032273B2 (en) 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt

Publications (2)

Publication Number Publication Date
JPH04154920A true JPH04154920A (en) 1992-05-27
JP3032273B2 JP3032273B2 (en) 2000-04-10

Family

ID=17555294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275422A Expired - Lifetime JP3032273B2 (en) 1990-10-16 1990-10-16 Manufacturing method of high strength steel belt

Country Status (4)

Country Link
EP (1) EP0481378B1 (en)
JP (1) JP3032273B2 (en)
AT (1) ATE108711T1 (en)
DE (1) DE69102969T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088663A (en) * 2009-09-24 2012-08-08 에이티아이 프로퍼티즈, 인코퍼레이티드 Processes for reducing faltness deviations in alloy articles

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408088B (en) * 1997-10-14 2001-08-27 Berndorf Band Ges M B H & Co K ENDLESS STEEL TAPE AND METHOD FOR PRODUCING THE SAME
DE60026746T2 (en) * 1999-10-04 2006-11-16 Hitachi Metals, Ltd. belts
DE10025808A1 (en) * 2000-05-24 2001-11-29 Alstom Power Nv Martensitic hardenable tempering steel with improved heat resistance and ductility
DE10152293B4 (en) * 2001-10-23 2004-04-08 Stahlwerk Ergste Westig Gmbh Use a chrome steel alloy
DE102008005803A1 (en) * 2008-01-17 2009-07-23 Technische Universität Bergakademie Freiberg Component used for armoring vehicles and in installations and components for transporting and recovering gases at low temperature is made from a high carbon-containing austenitic cryogenic steel cast mold
DE102010016945C5 (en) * 2010-05-14 2013-10-17 Kirchhoff Automotive Deutschland Gmbh Process for producing a molded part
CN109277426B (en) * 2018-10-26 2019-11-15 山西太钢不锈钢精密带钢有限公司 The production method of stainless steel foil etching products
CN111945113A (en) * 2019-05-15 2020-11-17 宝山钢铁股份有限公司 Production method of steel coil with coating and coating unit thereof
CN112974532B (en) * 2021-02-05 2023-01-31 山西太钢不锈钢股份有限公司 Rolling method of ultrahigh nitrogen austenitic stainless steel hot continuous rolling coiled plate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8301587A (en) * 1983-05-04 1984-12-03 Volvo Car Bv METHOD FOR FORMING AN ENDLESS STEEL STRAP
NL193218C (en) * 1985-08-27 1999-03-03 Nisshin Steel Company Method for the preparation of stainless steel.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088663A (en) * 2009-09-24 2012-08-08 에이티아이 프로퍼티즈, 인코퍼레이티드 Processes for reducing faltness deviations in alloy articles
JP2013505836A (en) * 2009-09-24 2013-02-21 エイティーアイ・プロパティーズ・インコーポレーテッド Process for reducing flatness errors in alloy articles

Also Published As

Publication number Publication date
DE69102969T2 (en) 1995-03-16
EP0481378A1 (en) 1992-04-22
DE69102969D1 (en) 1994-08-25
EP0481378B1 (en) 1994-07-20
JP3032273B2 (en) 2000-04-10
ATE108711T1 (en) 1994-08-15

Similar Documents

Publication Publication Date Title
JP2005509740A5 (en)
JPH04154921A (en) Manufacture of high strength stainless steel strip having excellent shape
KR890003975B1 (en) Dual phase-structured hot rolled high tensile strenght steel sheet and a method of producing the same
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JPH04154920A (en) Manufacture of high strength steel belt
JP2008248359A (en) Method for manufacturing on-line cooling type high tension steel sheet
JP2004300452A (en) Method for producing high strength cold-rolled steel sheet having excellent impact property and shape-fixability
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
US5269856A (en) Process for producing high strength endless steel belt having a duplex structure of austenite and martesite
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3779811B2 (en) ERW steel pipe with excellent workability and its manufacturing method
JPS63210234A (en) Manufacture of high-strength stainless steel stock excellent in workability and free from softening by welding
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JPH04173926A (en) Method for providing fatigue characteristic to martensitic stainless steel strip
JPH0665645A (en) Production of high ductility hot rolled high tensile strength steel sheet
JP2658706B2 (en) Manufacturing method of high strength and high ductility cold rolled steel sheet with excellent aging resistance
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
WO2024038684A1 (en) Thick steel sheet and method for producing same
JP2005281764A (en) Production method of low yield ratio high strength hot-rolled steel strip
JPH0892636A (en) Production of sheet-thickness tapered steel sheet
JP2735376B2 (en) Method for producing cold-rolled steel sheet for processing having excellent aging and BH properties and having surface distortion resistance and dent resistance
JPS60100630A (en) Production of high-strength light-gage steel sheet having good ductility and bending workability