JPH0415408B2 - - Google Patents

Info

Publication number
JPH0415408B2
JPH0415408B2 JP26595686A JP26595686A JPH0415408B2 JP H0415408 B2 JPH0415408 B2 JP H0415408B2 JP 26595686 A JP26595686 A JP 26595686A JP 26595686 A JP26595686 A JP 26595686A JP H0415408 B2 JPH0415408 B2 JP H0415408B2
Authority
JP
Japan
Prior art keywords
diffraction grating
array
wavelength
rowland circle
concave diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP26595686A
Other languages
Japanese (ja)
Other versions
JPS63120230A (en
Inventor
Kazuaki Ookubo
Hideo Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26595686A priority Critical patent/JPS63120230A/en
Publication of JPS63120230A publication Critical patent/JPS63120230A/en
Publication of JPH0415408B2 publication Critical patent/JPH0415408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光源色や物体色を短時間のうちに精
度良く測定することを可能にし、カラーマツチン
グや自動着色におけるカラーモニタ、光源や
CRTデイスプレイなどの光色評価などを正しく
行なう分光測光器に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention enables the measurement of light source color and object color with high accuracy in a short time, and is useful for color monitors, light sources, etc. in color matching and automatic coloring.
This relates to a spectrophotometer that accurately evaluates the light color of CRT displays and other devices.

従来の技術 従来は、一般の回折格子モノクロメータの出射
スリツトの位置に、リニアイメージセンサを配置
し、多チヤンネル光電検出器として使用した分光
測光器があつた。(例えば、内田他「リニアセン
サを用いた分光測光システム」(1983)No.73P.198
インターフエイス)、角井他「固体イメージセン
サの測光特性と分光測定への応用」照明学会誌
Vol.61No.7P13(昭和52年))これらの装置は、い
ずれも分光プロフイルを観測することを第一の目
的としたものであつた。
Prior Art Conventionally, there has been a spectrophotometer in which a linear image sensor is placed at the exit slit of a general diffraction grating monochromator and used as a multi-channel photoelectric detector. (For example, Uchida et al. “Spectrophotometric system using linear sensor” (1983) No.73P.198
Interface), Kakui et al. “Photometric characteristics of solid-state image sensors and their application to spectroscopic measurements” Journal of the Institute of Illumination Technology
Vol.61No.7P13 (1978)) The primary purpose of all of these devices was to observe spectral profiles.

発明が解決しようとする問題点 一般に、回折格子モノクロメータは、出射スリ
ツト上に、ある波長の光を結像する構造となつて
いる。このとき、その出射スリツトの近くに結像
される、分散像の結像面は、平面とはならない。
Problems to be Solved by the Invention In general, a diffraction grating monochromator has a structure in which light of a certain wavelength is imaged onto an exit slit. At this time, the imaging plane of the dispersed image formed near the exit slit is not a plane.

たとえば、凹面回折格子を使用したモノクロメ
ータの場合、凹面格子の曲率半径Rを直径とする
円(Rowland円)上に入射スリツトを置くと、
すべての光は波長の順にこのロウランド
(Rowland)円の円周上結像する。したがつて、
この波長分解された光を、直線(平面)の受光器
アレイで、検出しようとする場合、受光面上に、
波長に対してリニアな分散像が結像せず、たとえ
ば、受光面中央を、ロウランド円上にもつてくる
と、受光面上に投影される分散光の波長は、受光
面の端に行くにしたがつて、拡がり大きくなる。
すなわち線分散が大きく変化する。
For example, in the case of a monochromator using a concave diffraction grating, if the entrance slit is placed on a circle (Rowland circle) whose diameter is the radius of curvature R of the concave grating,
All light is focused on the circumference of this Rowland circle in order of wavelength. Therefore,
When trying to detect this wavelength-resolved light with a linear (plane) photoreceiver array, on the photoreceptor surface,
If a dispersion image that is linear with respect to wavelength is not formed, and the center of the light-receiving surface is placed on the Rowland circle, for example, the wavelength of the dispersed light projected onto the light-receiving surface will change as it approaches the edge of the light-receiving surface. Therefore, it spreads and becomes larger.
In other words, the line dispersion changes significantly.

受光器アレイの各素子の有効感度領域の形状は
同じであるから、各アレイに対する感度波長帯域
特性も変化する。
Since the shape of the effective sensitivity region of each element of the photoreceiver array is the same, the sensitivity wavelength band characteristics for each array also change.

分光測定による放射のエネルギー積分や、測色
値を正しくもとめるためにスペクトルと三刺激値
との重価積分を正確に行なうためには、受光器ア
レイの中心の波長間隔(受光面上の線分散と受光
器アレイ間の距離より求める。)と、各受光器ア
レイの感度波長帯域半値幅が一致しなければなら
ない。(これに関する詳細な説明は渡会:照明学
会放射の応用、関連計測研究会資料AR−81−20
(1981)にある。)従つてこのためには、受光器の
各アレイの感度波長帯域半値幅を一定にし、かつ
その値とアレイの波長間隔を一致させなければな
らない。
In order to accurately integrate the energy of radiation through spectrometry and to perform multiple integrals between spectra and tristimulus values to obtain correct colorimetric values, it is necessary to and the distance between the photoreceiver arrays) and the half-width of the sensitivity wavelength band of each photoreceiver array must match. (For a detailed explanation of this, see Watari: Applications of Illumination Society Radiation, Related Measurement Study Group Materials AR-81-20.
(1981). ) Therefore, for this purpose, it is necessary to make the sensitivity wavelength band half width of each array of photodetectors constant, and to match that value with the wavelength spacing of the arrays.

問題点を解決するための手段 上記の問題点を解決するために、本発明は凹面
回折格子のロウランド円の円周上よりわずかに内
側に受光器アレイの中心の受光面がくるように受
光器アレイを配置し、分散光を受光器アレイ上に
波長に対してリニアに投影するようにしたもので
ある。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides optical receivers so that the light-receiving surface at the center of the receiver array is located slightly inside the circumference of the Rowland circle of the concave diffraction grating. The array is arranged so that the dispersed light is projected onto the photoreceiver array linearly with respect to the wavelength.

作 用 上記の手段によつて、受光器アレイ上に波長に
対してリニアに分散光が投映されることにより、
受光器アレイの感度波長帯域半値幅が、すべての
アレイに対して一致させることができ、さらに入
射スリツト幅を使つて感度波長帯域半値幅を、ア
レイの波長間隔(モノクロメータの線分散よりも
とめる。)に一致させれば、放射のエネルギー積
分や、測色値をもとめるためにスペクトルと三刺
激値との重価積分を正確に行なうことができ、測
色精度は向上する。
Effect By using the above means, the dispersed light is projected onto the photoreceiver array linearly with respect to the wavelength.
The half-width of the sensitive wavelength band of the photoreceiver array can be matched for all arrays, and the half-width of the sensitive wavelength band can be determined using the input slit width based on the wavelength interval of the array (the linear dispersion of the monochromator). ), it is possible to accurately perform energy integration of radiation and weighted integration of the spectrum and tristimulus values to obtain colorimetric values, improving colorimetric accuracy.

実施例 本発明の一実施例として、凹面回折格子のロウ
ランド円の0.13%内側に、受光器アレイを配置し
た分光測光器について説明する。第1図に、上記
分光測光器の構成を示す。図において1は凹面回
折格子、2は前記凹面回折格子1のロウランド円
である。そのロウランド円2の円周上に入射スリ
ツト3を設け、それを通して外部から凹面回折格
子1に光を導くと、それによつて生ずる分散像4
はロウランド円2上に沿つて結像する。この分散
像4を凹面回折格子のロウランド円の直径の0.13
%ロウランド円内側に配置した受光器アレイ5上
に結像する。
Embodiment As an embodiment of the present invention, a spectrophotometer will be described in which a photodetector array is arranged 0.13% inside the Rowland circle of a concave diffraction grating. FIG. 1 shows the configuration of the spectrophotometer described above. In the figure, 1 is a concave diffraction grating, and 2 is a Rowland circle of the concave diffraction grating 1. When an entrance slit 3 is provided on the circumference of the Rowland circle 2 and light is guided from the outside to the concave diffraction grating 1 through the entrance slit 3, a dispersed image 4 is generated thereby.
is imaged along the Rowland circle 2. This dispersion image 4 is 0.13 of the diameter of the Rowland circle of the concave diffraction grating.
The image is formed on a photoreceiver array 5 arranged inside the % Rowland circle.

実際の実施例の回折格子の分散について考え
る。凹面回折格子1の焦点距離Rを200mm、刻線
間隔d=1/150mmとし、回折格子の中心法線に対
して入射各5゜となる位置に入射スリツトを配置す
る。回折格子の中心法線と回折光のなす角をβと
すれば、線分散Dは次式で与えられる。ただしm
は整数である。
Let us consider the dispersion of the diffraction grating in an actual example. The focal length R of the concave diffraction grating 1 is 200 mm, the line interval d is 1/150 mm, and the entrance slits are arranged at positions each having an angle of 5° relative to the center normal of the diffraction grating. If the angle between the center normal of the diffraction grating and the diffracted light is β, the linear dispersion D is given by the following equation. However, m
is an integer.

D=mR/dcos2β ……(1) (m=0、+1、+2、+3、…) 凹面回折格子の正常分散域で回折光を検出する
ために、βを−1.8゜から+1.8゜の間に検出領域を
さだめると、このとき分散像はロウランド円2上
で波長370nmから790nmのものがえられる。さ
らにβ=+1.8゜のときの線分散は、(1)式より
0.04007(mm/nm)ゆえ検出領域内での線分散の
変化は、0.04000から、0.04007と、波長370nmか
ら790nmの間で、ロウランド円2上で、0.02%以
内と、ほとんど変化しない。
D=mR/dcos2β...(1) (m=0, +1, +2, +3,...) In order to detect the diffracted light in the normal dispersion region of the concave diffraction grating, β is changed from -1.8° to +1.8°. If a detection area is placed between the two, a dispersion image with a wavelength of 370 nm to 790 nm can be obtained on the Rowland circle 2. Furthermore, the linear dispersion when β = +1.8° is obtained from equation (1).
0.04007 (mm/nm) Therefore, the change in linear dispersion within the detection region hardly changes within 0.02% on the Rowland circle 2 between 0.04000 and 0.04007 and wavelengths of 370 nm to 790 nm.

また、波長370nmから790nmの間の分散像4
のロウランド円2上での機械幅は約16mmゆえ、こ
のあいだのロウランド円上の分散像4の湾曲を凹
面回折格子のロウランド円の0.13%内側、すなわ
ち凹面回折格子の中心法線に沿つて0.26mm、ロウ
ランド円より内側に配置した受光器アレイ5上に
結像する。
In addition, the dispersion image 4 between wavelengths 370nm and 790nm
Since the machine width on the Rowland circle 2 is approximately 16 mm, the curvature of the dispersion image 4 on the Rowland circle during this period is 0.13% inside the Rowland circle of the concave diffraction grating, that is, 0.26 mm along the center normal of the concave diffraction grating. , the image is formed on a photodetector array 5 arranged inside the Rowland circle.

このとき、受光器アレイ5のアレイ間隔が50μ
のものを使用すれば、波長370nmから790nmの
間のスペクトルを320分割した分解能で捕えるこ
とができる。このとき、受光器アレイ5の、各ア
レイの波長間隔や感度波長帯域特性は、ほとんど
変化せず精度の高い測光測色が実現できる。図2
に実際の各素子の波長位置の、各素子の波長間隔
を一定(0.9nm)とした場合に対する波長のずれ
を示す。
At this time, the array spacing of the photodetector array 5 is 50μ.
If you use this, you can capture the spectrum between wavelengths 370nm and 790nm with a resolution of 320 divisions. At this time, the wavelength spacing and sensitivity wavelength band characteristics of each array of the photoreceiver array 5 hardly change, and highly accurate photometric colorimetry can be realized. Figure 2
shows the deviation of the wavelength of the actual wavelength position of each element with respect to the case where the wavelength interval of each element is constant (0.9 nm).

さらに入射スリツト幅を使つて感度波長帯域半
値幅を、アレイの波長間隔(モノクロメータの線
分散よりもとめる。)に一致させれば、放射のエ
ネルギー積分や、測色値をもとめるためにスペク
トルと三刺激値との重価積分を正確に行なうこと
ができ、測色精度は向上する。
Furthermore, by using the entrance slit width to match the half-width of the sensitivity wavelength band to the wavelength spacing of the array (determined from the linear dispersion of the monochromator), the spectrum and three Weighted integration with stimulus values can be performed accurately, improving colorimetric accuracy.

発明の効果 以上述べてきたように、本発明の構成によつ
て、受光器アレイを最適位置にもつてくることに
よつて、受光器アレイ上に波長に対して最もリニ
アにちかい分散光が投影されることにより、受光
器アレイの感度波長帯域半値幅が、すべてのアレ
イに対して最小限の誤差で一致させることがで
き、さらに入射スリツト幅を使つて感度波長帯域
半値幅を、アレイの波長間隔(モノクロメータの
線分散よりもとめる。)に一致させれば、放射の
エネルギー積分や、測色値をもとめるためにスペ
クトルと三刺激値との重価積分を正確に行なうこ
とができ、測色精度は向上する。
Effects of the Invention As described above, with the configuration of the present invention, by bringing the photoreceiver array to the optimum position, dispersion light that is most linear with respect to wavelength is projected onto the photoreceiver array. As a result, the half-width of the sensitive wavelength band of the receiver array can be matched with the minimum error for all arrays, and the width of the sensitive wavelength band at half-maximum can be adjusted to the wavelength of the array using the entrance slit width. By matching the interval (determined from the linear dispersion of the monochromator), it is possible to accurately integrate the energy of radiation and the weighted integration of the spectrum and tristimulus values to obtain the colorimetric value. Accuracy improves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における分光測光器
の構成図、第2図は同分光測光器における受光器
アレイの各素子の波長位置の、等間隔波長目盛か
らのずれを示す特性図である。 1……凹面回折格子、2……ロウランド円、3
……入射スリツト、4……分散像、5……受光器
アレイ。
Fig. 1 is a configuration diagram of a spectrophotometer according to an embodiment of the present invention, and Fig. 2 is a characteristic diagram showing the deviation of the wavelength position of each element of the photoreceiver array in the spectrophotometer from a uniformly spaced wavelength scale. be. 1...Concave diffraction grating, 2...Rowland circle, 3
...Incidence slit, 4... Dispersed image, 5... Photoreceiver array.

Claims (1)

【特許請求の範囲】[Claims] 1 凹面回折格子と入射スリツトおよび前記凹面
回折格子からの光スペクトルを一度に受光し測定
する機能を持つ受光器アレイを組合せた分光測光
器において、前記凹面回折格子のロウランド円の
直径の0.125〜0.15%、ロウランド円の内側に前
記受光器アレイを配置し、凹面回折格子の中心法
線に対して−1.8゜から+1.8゜の間の分散像を前記
受光器アレイ上に、波長に対してほぼリニアに結
像することを特徴とする分光測光器。
1. In a spectrophotometer that combines a concave diffraction grating, an incident slit, and a photoreceiver array having the function of simultaneously receiving and measuring the light spectrum from the concave diffraction grating, the diameter of the Rowland circle of the concave diffraction grating is 0.125 to 0.15. %, the receiver array is placed inside a Rowland circle, and a dispersion image between −1.8° and +1.8° with respect to the center normal of the concave diffraction grating is placed on the receiver array with respect to the wavelength. A spectrophotometer that is characterized by almost linear imaging.
JP26595686A 1986-11-07 1986-11-07 Spectrophotometer Granted JPS63120230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26595686A JPS63120230A (en) 1986-11-07 1986-11-07 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26595686A JPS63120230A (en) 1986-11-07 1986-11-07 Spectrophotometer

Publications (2)

Publication Number Publication Date
JPS63120230A JPS63120230A (en) 1988-05-24
JPH0415408B2 true JPH0415408B2 (en) 1992-03-17

Family

ID=17424392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26595686A Granted JPS63120230A (en) 1986-11-07 1986-11-07 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS63120230A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140188A (en) * 2013-04-24 2013-07-18 Canon Inc Spectral colorimeter and image forming device including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524568B2 (en) * 1991-09-18 1996-08-14 キヤノン株式会社 Color image reading device
JP2009111173A (en) * 2007-10-30 2009-05-21 Horiba Ltd Spectrometric analysis device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013140188A (en) * 2013-04-24 2013-07-18 Canon Inc Spectral colorimeter and image forming device including the same

Also Published As

Publication number Publication date
JPS63120230A (en) 1988-05-24

Similar Documents

Publication Publication Date Title
US5128549A (en) Stray radiation compensation
US7978324B2 (en) Multi-channel array spectrometer and method for using the same
US5166755A (en) Spectrometer apparatus
US3874799A (en) Method and apparatus for color spectrophotometry
US4076421A (en) Spectrophotometer with parallel sensing
JPS628729B2 (en)
Brown Ultraviolet, visible, near-infrared spectrophotometers
US3936190A (en) Fluorescence spectrophotometer for absorption spectrum analysis
JPS6038644B2 (en) spectrophotometer
JP2511902B2 (en) Spectrophotometer
JP2689707B2 (en) Spectrometer with wavelength calibration function
JP4324693B2 (en) Spectral response measuring device of photodetector, measuring method thereof, and spectral irradiance calibration method of light source
JPH0415408B2 (en)
JPH0341326A (en) Spectrometry
JPS63250534A (en) Spectrophotometric device
EP4089380A1 (en) Spectroscope and imaging device
JPS63273023A (en) Spectrophotometer
JPS6020021Y2 (en) Multiwavelength photometer
JPH04252924A (en) Spectrometry
JPH07103825A (en) Infrared spectroscopic radiation energy measuring equipment
KR20100031933A (en) Simplified spectrometers and its calibration method
JPS62226024A (en) Spectroscope
JP3402524B2 (en) 3D spectrophotometer
JPH0458893B2 (en)
JPS6219945Y2 (en)