JPH04148307A - Detecting method for working force for force control robot - Google Patents

Detecting method for working force for force control robot

Info

Publication number
JPH04148307A
JPH04148307A JP27273190A JP27273190A JPH04148307A JP H04148307 A JPH04148307 A JP H04148307A JP 27273190 A JP27273190 A JP 27273190A JP 27273190 A JP27273190 A JP 27273190A JP H04148307 A JPH04148307 A JP H04148307A
Authority
JP
Japan
Prior art keywords
force
machining
tool
working
robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27273190A
Other languages
Japanese (ja)
Inventor
Manabu Akishige
秋重 学
Yoichi Kimura
洋一 木村
Mikio Yonemitsu
米満 幹夫
Ryoji Mukai
良二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP27273190A priority Critical patent/JPH04148307A/en
Publication of JPH04148307A publication Critical patent/JPH04148307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To improve a working accuracy by preparing fine-grained correction data at a time interval close to continuity while dynamically operating on an actual locus, removing force elements except for the working force acting on a force sensor, and searching a net force with which a tool is acting on a work. CONSTITUTION:Preliminarily prepared teaching data are reproduced before an actual work without any working operation, the detected value of a force sensor 39 is inputted in each time synchronous with the sampling time of a force control, and the detected value being the force except for the working force is successively stored and held in a memory 25 as the calibration value of the force. Then, at the time of the actual working operation, the synchronously corresponding calibration value of the force stored and held in the memory 25 is subtracted from the detected value of the force sensor 39, including the working force obtained at every force control sampling during working, and the net working force generated between a work 10 and a tool T1 is searched by operating it. Thus, the working by the force control whose accuracy is satisfactory can be operated.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、力制御ロボットにおいて、ロボットに取り付
けた加工工具とワークとの間で生じる加工力を求める方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for determining a machining force generated between a machining tool attached to the robot and a workpiece in a force-controlled robot.

(従来の技術) 力制御を用いてワークを加工する場合、工具でワークに
所望の力を作用させながら加工していくが、核力を制御
するためには、ワークに作用する力を正確に検出しなけ
ればならない。−船釣にこの力の検出器として力センサ
が用いられ、ロボット先端と工具との間に取り付けられ
る。該力センサに連結した工具をいつも同姿勢で動作さ
せるならば、工具の重力による力センサにかかる力の成
分はいつも一定なので、この工具の重力に対する較正を
予め1回行なえば十分である。しかしながら実際的にこ
のような場合はほとんどなく、工具姿勢を変化させなが
ら作業する場合が多いこの場合、力センサにかかる力の
成分の工具姿勢によって変化してしまう。その解決策が
特開昭62−74594に開示されている。この要約は
次のとおりである。
(Conventional technology) When machining a workpiece using force control, the tool applies a desired force to the workpiece while machining it, but in order to control nuclear force, it is necessary to accurately control the force acting on the workpiece. must be detected. -For boat fishing, a force sensor is used to detect this force and is installed between the tip of the robot and the tool. If the tool connected to the force sensor is always operated in the same posture, the component of the force applied to the force sensor due to the gravity of the tool is always constant, so it is sufficient to calibrate the tool against gravity once in advance. However, in practice, such cases rarely occur, and in this case, where work is often performed while changing the tool posture, the component of the force applied to the force sensor changes depending on the tool posture. A solution to this problem is disclosed in Japanese Patent Application Laid-Open No. 62-74594. The summary is as follows.

即ち、ロボットに複数のハンド姿勢をとらせ、各ハンド
の姿勢における力センサの出力を測定し、ハンドにかか
る重力を計算して求める。そして、ロボットを動作させ
てワークとハンドにかかる力を検出する際、その時点の
ハンド姿勢と、先に求めたハンドにかかる重力からセン
サ出力中のハンドにかかる重力による因子を計算して求
め、力センサ出力値から差し引くことにより、力センサ
中のハンドにかかる重力による因子を除去し、ワークと
ハンドの間にかかる力を求めるのである。
That is, the robot is made to take a plurality of hand postures, the output of the force sensor in each hand posture is measured, and the gravity applied to the hand is calculated and determined. Then, when operating the robot and detecting the force applied to the workpiece and hand, the factor due to the gravity applied to the hand during sensor output is calculated from the hand posture at that time and the previously determined gravity applied to the hand. By subtracting it from the force sensor output value, the factor of gravity applied to the hand in the force sensor is removed, and the force applied between the workpiece and the hand is determined.

〔発明が解決しようする問題点〕[Problem that the invention aims to solve]

従来の方法では、較正用データが特定の静止したハンド
姿勢でのデータで、実作業時のハンド姿勢と較正データ
を作成したハンド姿勢が一致した時点でのみ正しく、そ
の他は近似的に較正しているので、検出精度が悪い。ま
た、この方法での補償要素は重力のみである。すなわち
実際にはロボット先端に取り付けた工具が振り回され、
それによる慣性力など加工力以外の外乱力が発生するが
、従来例ではこのことを解決できない。特に加工ロボッ
トではその影響が大きく、仕上げ精度が悪くなる。
In the conventional method, the calibration data is data for a specific stationary hand posture, and it is correct only when the hand posture during actual work matches the hand posture that created the calibration data, and the rest is approximately calibrated. Therefore, the detection accuracy is poor. Also, the compensation factor in this method is only gravity. In other words, the tool attached to the tip of the robot is actually swung around,
As a result, disturbance forces other than the machining force, such as inertial force, are generated, but this problem cannot be solved in the conventional example. This has a particularly large effect on processing robots, resulting in poor finishing accuracy.

本発明の目的は、加工工具とワークとの間で生じる正味
の加工力を求め、精度のよい力制御による加工を行なう
ことである。
An object of the present invention is to determine the net machining force generated between a machining tool and a workpiece, and perform machining with highly accurate force control.

〔問題点を解決するための手段〕[Means for solving problems]

教示再生ロボットと、該ロボットの先端と加工工具の間
に取り付けた力センサと、ロボット制御装置とで構成し
た力制御ロボットシステムで、加工作業時のワークと工
具との間の加工力検出方法において、 予め作成した教示データを加工作業無しで実作業の前に
再生し、力制御のサンプリング時間に同期した時間毎に
力センサの検出値を入力し、加工力以外の力である該検
出値を力の較正値として順次メモリに記憶保存し、実際
の加工作業時は加工中の力制御サンプリング毎に得た加
工力を含む力センサの検出値から、同期対応する前記メ
モリに記憶保存した力の較正値を差し引き、ワークと工
具との間で生じる正味の加工力を演算して求めることを
特徴とする力制御ロボットにおける加工力の検出法を提
供するものである。
A force control robot system consisting of a teaching/reproducing robot, a force sensor attached between the tip of the robot and a processing tool, and a robot control device, and a method for detecting processing force between a workpiece and a tool during processing operations. , Regenerate the teaching data created in advance before the actual work without any machining work, input the detected value of the force sensor at every time synchronized with the sampling time of force control, and calculate the detected value, which is a force other than the machining force. The force is sequentially stored and stored in memory as a force calibration value, and during actual machining work, the force stored in the corresponding memory is synchronously calculated from the detected value of the force sensor including the machining force obtained at each force control sampling during machining. The present invention provides a method for detecting machining force in a force-controlled robot, which is characterized by subtracting a calibration value and calculating and finding the net machining force generated between a workpiece and a tool.

〔実施例] 本発明の実施例を図面に基づいて詳説する。〔Example] Embodiments of the present invention will be explained in detail based on the drawings.

第2図は本発明の加工力の検出方法を用いる切削加工用
ロボットの構成を示し、ロボットの本体1と制御盤20
を主構成とする。
FIG. 2 shows the configuration of a cutting robot using the machining force detection method of the present invention.
The main structure is

本体lには加工工具T、および工具ホルダー2、回転す
るためのモータMl、ひねるためのモータM2、曲げる
ためのモータM1、前後進用のモータM4、上下降用の
モータM3、旋回用モータのM6、および力制御を行う
ための力センサ39を設け、工具ホルダー2には加工工
具T1を固着して設け、該工具ホルダー2と前記ロボッ
トの本体1の先端の間に力センサ39を備える。モータ
M1〜M、は何れもサーボモータである。
The main body L includes a processing tool T, a tool holder 2, a motor Ml for rotation, a motor M2 for twisting, a motor M1 for bending, a motor M4 for forward and backward movement, a motor M3 for raising and lowering, and a turning motor. M6 and a force sensor 39 for force control are provided, a machining tool T1 is fixedly provided to the tool holder 2, and the force sensor 39 is provided between the tool holder 2 and the tip of the robot main body 1. Motors M1 to M are all servo motors.

加工工具T1の先端にはエンドミルなと切削用の工具9
を装着する。ロボットの本体1に設けたモータM、〜M
、と制御盤20とは、動力線3および信号線4を以て結
線する。
An end mill and a cutting tool 9 are attached to the tip of the processing tool T1.
Attach. Motors M, ~M provided in the robot body 1
, and the control panel 20 are connected through a power line 3 and a signal line 4.

一方、ロボットの本体1近辺にワークIOを治具に固定
して静置する。ワークlOは母材13と突起物12とで
構成されており、突起物12は母材13の外郭縁11の
外方に不定形状に突出している。
On the other hand, the workpiece IO is fixed to a jig and left stationary near the main body 1 of the robot. The workpiece 1O is composed of a base material 13 and a protrusion 12, and the protrusion 12 protrudes outward from the outer edge 11 of the base material 13 in an irregular shape.

ここでロボット本体lは、第2図では6軸円筒座標形と
しているが、軸数は突起物12を加工する姿勢を満たす
ことができれば必ずしも6軸ある必要はない、また形式
も加工反力に対する耐負荷力、剛性から用途に応じて決
まるものであり、特に制限はない。
Here, the robot body l has a 6-axis cylindrical coordinate system in FIG. It is determined based on the load capacity and rigidity depending on the application, and there are no particular restrictions.

また用途も教示動作を反復繰返して作業するロボットで
あれば、切削加工以外にも同様に適用可能である。
Furthermore, as long as the robot works by repeatedly performing teaching operations, it can be applied to other applications besides cutting.

第3図はロボットの本体lと制御盤20との信号応答を
する回路を示す。
FIG. 3 shows a circuit for signal response between the robot main body l and the control panel 20.

バス23にはマイクロプロセッサ24、RAM25、R
OM26、演算部27、操作盤28、D/A変換器29
、A/D変換器37、およびカウンタ30とをそれぞれ
結線する。ここにおいて、D/A変換器29及びカウン
タ30はサーボモータM、−M6の各々に存在するが、
第3図では一括したもので記しである。
The bus 23 includes a microprocessor 24, RAM 25, and R
OM26, calculation unit 27, operation panel 28, D/A converter 29
, A/D converter 37, and counter 30, respectively. Here, the D/A converter 29 and the counter 30 are present in each of the servo motors M and -M6,
In Figure 3, they are shown all at once.

D/A変換器29の出力端子35とサーボモータ用のア
ンプ31の入力端子32とを結線して、アンプ31の出
力端子33はロボットの本体1のモータM1 と結線し
、モータM1 とタコジェネレータTGl とパルスエ
ンコーダPE、 とは、機械的に連結する。尚、タコジ
ェネレータTO,はアンプ31のもう一つの入力端子3
4に結線する。
The output terminal 35 of the D/A converter 29 and the input terminal 32 of the amplifier 31 for the servo motor are connected, and the output terminal 33 of the amplifier 31 is connected to the motor M1 of the robot body 1, and the motor M1 and the tachogenerator are connected. TGl and pulse encoder PE are mechanically connected. Incidentally, the tacho generator TO, is another input terminal 3 of the amplifier 31.
Connect to 4.

パルスエンコーダP E r は、制御装置20に設け
たカウンタ30の入力端子36に結線する。
The pulse encoder P E r is connected to an input terminal 36 of a counter 30 provided in the control device 20 .

D/A変換器29とカウンタ30との間は、モータM、
を1例として述べたが、他のモータM2〜M6も同様の
結線をする。A/D変換器37の入力端子38と力セン
サ39の出力端子を結線する。
Between the D/A converter 29 and the counter 30, a motor M,
Although this has been described as an example, the other motors M2 to M6 are also connected in a similar manner. The input terminal 38 of the A/D converter 37 and the output terminal of the force sensor 39 are connected.

以上に述べたような第2図及び第3図のロボットの本体
1と制御盤20の構成によって、次の作用をするのであ
る。
The structure of the robot main body 1 and control panel 20 shown in FIGS. 2 and 3 as described above provides the following effects.

まず、ロボットの教示操作をするには、ロボ。First of all, in order to teach and operate the robot, you need to use the robot.

トを誘導した後、その位置をモータM1に連結している
パルスエンコーダPE、にて、工具9を通過させたい位
置としてカウンタ30から読み取り、バス23を介して
RAM25に記憶させる。このことは、PE2〜PE、
まで同等に成される。
After guiding the tool 9, the pulse encoder PE connected to the motor M1 reads the position from the counter 30 as the position at which the tool 9 should pass, and stores it in the RAM 25 via the bus 23. This means that PE2~PE,
be achieved equally.

このようにして工具9の動作経路の通過点である教示点
、教示点間動作の補間形態および工具の送り速度を順次
教示していくことによって、RAM25内に教示プログ
ラムを作成する。
In this way, a teaching program is created in the RAM 25 by sequentially teaching the teaching points, which are the passing points of the motion path of the tool 9, the interpolation form of the motion between the teaching points, and the feed rate of the tool.

第2図及び第3図のように構成された切削加工用ロボッ
トで、工具9がワーク10に所望の力が作用するように
、力制御方法によって突起物12を切削加工していく。
Using a cutting robot configured as shown in FIGS. 2 and 3, the protrusion 12 is cut using a force control method so that the tool 9 applies a desired force to the workpiece 10.

ここで、力制御法について簡単に説明する。Here, the force control method will be briefly explained.

第4図は、力制御を用いてワークを加工していく場合の
モデル図である。板状のワークaの端に、ワークaに垂
直方向(力制御方向O)に所望の力を作用させながら、
切削工具すをワークaに倣って(位置制御方向N)移動
していく場合を想定する。
FIG. 4 is a model diagram when processing a workpiece using force control. While applying a desired force to the end of the plate-shaped workpiece a in a direction perpendicular to the workpiece a (force control direction O),
Assume that the cutting tool is moved following the workpiece a (in the position control direction N).

工具すが力制御方向Oへ移動する速度Vfは次式のよう
に、工具すとワークaの間で生じる力Fcと所望の力F
sの差に比例するように制御する。
The speed Vf at which the tool moves in the force control direction O is determined by the force Fc generated between the tool and the workpiece a and the desired force F, as shown in the following equation.
Control is performed so that it is proportional to the difference in s.

Vr=KpX (Fs−Fc)      (1)vf
:工具が力制御方向へ移動する速度Kp:比例定数 Fs:所望の力(目標値) Fc:工具がワークに作用する力(計測M)(1)式の
力制御方向の速度制御によって、ワークに所望の力が作
用する。
Vr=KpX (Fs-Fc) (1) vf
: Speed at which the tool moves in the force control direction Kp: Proportionality constant Fs: Desired force (target value) Fc: Force that the tool acts on the workpiece (measurement M) By speed control in the force control direction of equation (1), the workpiece The desired force acts on the

ワークに所望の力Fsが作用するように制御するために
は、ワークに作用する力Pcを正確に検出する必要があ
る。ここで本発明である加工力の検出について説明する
In order to control the work so that a desired force Fs acts on the work, it is necessary to accurately detect the force Pc acting on the work. Here, detection of machining force according to the present invention will be explained.

工具がワークに作用する力Fcと力センサが検出する力
Fの関係は、次式で表わされる。
The relationship between the force Fc exerted by the tool on the workpiece and the force F detected by the force sensor is expressed by the following equation.

F c = F −F g           (3
)F;力センサの出力値 Fg:加工力以外の力(外乱力) 外乱力Fgには、例として次の要素がある。
F c = F − F g (3
)F; Output value of force sensor Fg: Force other than processing force (disturbance force) The disturbance force Fg includes the following elements as an example.

■ 加工工具等の力センサに取り付けた装置の姿勢変化
によって変化する重力要因による力■ ロボットのアー
ム動作による慣性力によって受ける力 ■ 力センサの温度ドリフト ■力センサの温度ドリフトについては、一定時間ごとに
温度ドリフト較正データを取って補償する。
■ Forces due to gravitational factors that change due to changes in the posture of devices attached to force sensors such as processing tools ■ Forces received by inertial forces due to robot arm movements ■ Temperature drift of force sensors ■ Temperature drifts of force sensors are measured at regular intervals. Compensate by taking temperature drift calibration data.

ここで、これらの外乱力がロボット動作中にどの様に影
響するか、外乱力の測定実験を示す。
Here, we will show an experiment to measure disturbance forces to see how these disturbance forces affect robot operation.

第6図は、第5図■から■のように工具を垂直姿勢から
水平に近い姿勢に変化させたときの力センサのX軸方向
力成分を測定したグラフである。
FIG. 6 is a graph obtained by measuring the force component in the X-axis direction of the force sensor when the tool is changed from a vertical posture to a nearly horizontal posture as shown in FIGS.

グラフの横軸は時間、縦軸は力を示し、工具の姿勢が垂
直の時の力センサの値を0とした。その結果、X軸方向
力成分だけに注目すると、姿勢を変化させると工具重力
のために、力センサの出力値が変化する。
The horizontal axis of the graph shows time and the vertical axis shows force, and the value of the force sensor when the tool is vertical is taken as 0. As a result, if we focus only on the force component in the X-axis direction, when the posture changes, the output value of the force sensor changes due to the gravity of the tool.

第8図は、第7図■■のように工具を垂直にして姿勢を
変化しないで、工具を300 m/secの速さで半径
150mmの円弧を始点から終点まで描かせたときの力
センサのX軸方向力成分を測定したものである。静止状
態の力センサの値を0とした。第7図■の円弧の軌跡の
始点、終点においては、急加速のために工具の慣性によ
って突発的に力センサに力が作用する。また円弧を描い
ているときも、工具の慣性によって力センサ出力が変化
する。先に引用した従来例は、前者の重力を補償するも
のであり、後者の慣性力は考慮していない。
Figure 8 shows the force sensor when the tool is held vertically as shown in Figure 7, without changing its posture, and the tool is drawn at a speed of 300 m/sec to draw an arc with a radius of 150 mm from the start point to the end point. The force component in the X-axis direction is measured. The value of the force sensor in a resting state was set to 0. At the start and end points of the arc locus shown in FIG. 7 (2), a force suddenly acts on the force sensor due to the inertia of the tool due to sudden acceleration. Also, when drawing an arc, the force sensor output changes depending on the inertia of the tool. The conventional example cited above compensates for the former gravity, but does not take into account the latter inertial force.

これらの外乱力を力センサ出力から差し引いて、ワーク
の作用する正味の力Pcの検出を、本発明の加工力の検
出法によって実現する。第1図のフローチャートに基づ
いて本発明の加工力の検出法を説明する。
By subtracting these disturbance forces from the force sensor output, the detection of the net force Pc acting on the workpiece is realized by the machining force detection method of the present invention. The processing force detection method of the present invention will be explained based on the flowchart of FIG.

(1)第2図においてワークをセットしない加工作業無
しの無負荷状態で、教示データを再生、自動運転する。
(1) In FIG. 2, the teaching data is reproduced and automatic operation is performed in a no-load state with no workpiece set and no machining work.

(ステップ■)動作中、力制御のサンプリング毎に、力
センサの出力値Fg(fgx。
(Step ■) During operation, the output value Fg (fgx) of the force sensor is determined every sampling of force control.

fgy+  fgz)を測定しくステップ■)、その出
力値を各位置での負荷外乱力に対する補正値として制御
装置内のRAMに順次格納する(ステップ■)。
fgy+fgz) is measured (Step (2)), and its output value is sequentially stored in the RAM in the control device as a correction value for the load disturbance force at each position (Step (2)).

(2)  (1)の動作を運転が終了するまで繰り返し
て行なう(ステップ■)。
(2) Repeat the operation in (1) until the operation is completed (step ■).

(3)突起物のあるワークを静置し、負荷自動運転を行
なう(ステップ■)。この際にも、(1)と同様に、力
制御のサンプリング時間毎に力センサの出力値F (f
x、fy、fz)を測定する(ステップ■)。
(3) Leave the workpiece with protrusions still and perform automatic load operation (step ■). In this case, similarly to (1), the output value F (f
x, fy, fz) (step ■).

(4)  (1)で求めたその位置での負荷外乱力に対
する補正値FgをRAMから読み出しくステップ■)、
(2)式によって力センサの出力値Fから差し引いて工
具がワークに作用する正味の力Pcを求める(ステップ
■)。
(4) Step (■) of reading the correction value Fg for the load disturbance force at that position obtained in (1) from the RAM;
Using equation (2), the net force Pc exerted by the tool on the workpiece is determined by subtracting it from the output value F of the force sensor (step 2).

(5)  Fcを(1)式に適用して、ワークに所望の
力が作用するように制御する(ステップ■)。
(5) Apply Fc to equation (1) and control so that a desired force is applied to the workpiece (step ■).

(6)  (3)〜(5)の動作を運転が終了するまで
繰り返して行なう(ステップ@)。
(6) Repeat operations (3) to (5) until the operation is completed (step @).

なお、実施例では力センサ座標系と工具座標系の各軸方
向が同じで、工具座標系でのPg(fgx。
In the embodiment, the axis directions of the force sensor coordinate system and the tool coordinate system are the same, and Pg(fgx) in the tool coordinate system.

fgy、  fgz)を求めるのにモーメントmが不要
な場合について述べた。−船釣にFgは力センサの6軸
力Fgo (fgox +  fgoy +  fgo
z + mgOX +mgoy 、 mgoz )から
求まる。負荷自動運転時も力センサの6軸力を測定して
工具座標系でのFを求め、(2)式によって工具がワー
クに作用する正味の力を求めることは言うまでもない。
We have described the case where the moment m is not required to find the values (fgy, fgz). -For boat fishing, Fg is the 6-axis force of the force sensor Fgo (fgox + fgoy + fgo
z + mgOX + mgoy, mgoz). Needless to say, even during load automatic operation, the 6-axis force of the force sensor is measured to determine F in the tool coordinate system, and the net force acting on the workpiece by the tool is determined using equation (2).

〔発明の効果〕〔Effect of the invention〕

以上のことにより本発明によれば、実際の軌跡上をダイ
ナミックに動作しながら、極めて連続に近い時間間隔で
木目の細かい補正データを作成し、力センサに作用する
加工力以外の力成分を取り除き、工具がワークに作用す
る正味の力を求めることができるため、高精度の力検出
ができる。よって、加工精度の向上に著しく寄与する。
As described above, according to the present invention, while moving dynamically on an actual trajectory, fine-grained correction data is created at extremely continuous time intervals, and force components other than the machining force acting on the force sensor are removed. , the net force that the tool acts on the workpiece can be determined, allowing highly accurate force detection. Therefore, it significantly contributes to improving machining accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明するためのフローチャート、第2
図は本発明の加工力検出法を用いる切削加工用ロボット
の構成図、第3図はロボット本体と制御盤との信号回路
図、第4図は力制御法の原理を説明するための切削加工
モデル図、第5図は工具の姿勢変化による力センサの出
力変化測定実験を説明するための図、第6図は第5図で
行なった実験の実験結果グラフ、第7図は工具の慣性に
よる力の出力変化測定実験を説明するための図、第8図
は第7図で行なった実験の実験結果グラフ。 第 図 第 図 第4 図 第 図 gf 第 図 第 図 ■ ■ 軌 跡 X軸方向 終Ak8A 第8 図
Figure 1 is a flowchart for explaining the present invention, Figure 2 is a flowchart for explaining the present invention;
The figure is a configuration diagram of a cutting robot that uses the machining force detection method of the present invention, Figure 3 is a signal circuit diagram between the robot body and the control panel, and Figure 4 is a cutting process diagram to explain the principle of the force control method. Model diagram, Figure 5 is a diagram to explain an experiment to measure the change in the output of the force sensor due to changes in tool posture, Figure 6 is a graph of the experimental results of the experiment conducted in Figure 5, and Figure 7 is due to tool inertia. FIG. 8 is a diagram for explaining the force output change measurement experiment, and FIG. 8 is a graph of the experimental results of the experiment conducted in FIG. 7. Figure Figure Figure 4 Figure Figure gf Figure Figure ■ ■ End of trajectory in X-axis direction Ak8A Figure 8

Claims (1)

【特許請求の範囲】 教示再生ロボットと、該ロボットの先端と加工工具の間
に取り付けた力センサと、ロボット制御装置とで構成し
た力制御ロボットシステムで、加工作業時のワークと工
具との間の加工力検出方法において、 予め作成した教示データを加工作業無しで実作業の前に
再生し、力制御のサンプリング時間に同期した時間毎に
力センサの検出値を入力し、加工力以外の力である該検
出値を力の較正値として順次メモリに記憶保存し、実際
の加工作業時は加工中の力制御サンプリング毎に得た加
工を含む力センサの検出値から、同期対応する前記メモ
リに記憶保存した力の較正値を差し引き、ワークと工具
との間で生じる正味の加工力を演算して求めることを特
徴とする力制御ロボットにおける加工力の検出法。
[Claims] A force control robot system consisting of a teaching/reproducing robot, a force sensor attached between the tip of the robot and a machining tool, and a robot control device, which controls the distance between the workpiece and the tool during machining work. In the machining force detection method, pre-created teaching data is played back before actual work without any machining work, and the detected value of the force sensor is input at every time synchronized with the force control sampling time, and forces other than the machining force are detected. The detected values are sequentially stored in memory as force calibration values, and during actual machining work, the detected values of the force sensor including machining obtained at each force control sampling during machining are synchronously stored in the corresponding memory. A method for detecting machining force in a force-controlled robot, characterized in that the net machining force generated between a workpiece and a tool is calculated and obtained by subtracting a memorized force calibration value.
JP27273190A 1990-10-11 1990-10-11 Detecting method for working force for force control robot Pending JPH04148307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27273190A JPH04148307A (en) 1990-10-11 1990-10-11 Detecting method for working force for force control robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27273190A JPH04148307A (en) 1990-10-11 1990-10-11 Detecting method for working force for force control robot

Publications (1)

Publication Number Publication Date
JPH04148307A true JPH04148307A (en) 1992-05-21

Family

ID=17517995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27273190A Pending JPH04148307A (en) 1990-10-11 1990-10-11 Detecting method for working force for force control robot

Country Status (1)

Country Link
JP (1) JPH04148307A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189417A (en) * 2010-03-12 2011-09-29 Ihi Corp Processing robot and gravity compensating method thereof
JP2012115912A (en) * 2010-11-29 2012-06-21 Ihi Corp Machining robot and gravity compensation method thereof
JP2015171747A (en) * 2014-03-12 2015-10-01 ファナック株式会社 Robot control device that senses contact with external environment
US10730183B2 (en) 2017-06-15 2020-08-04 Fanuc Corporation Learning device, controller, and control system
US11691293B2 (en) 2018-08-31 2023-07-04 Fanuc Corporation Robot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189417A (en) * 2010-03-12 2011-09-29 Ihi Corp Processing robot and gravity compensating method thereof
JP2012115912A (en) * 2010-11-29 2012-06-21 Ihi Corp Machining robot and gravity compensation method thereof
JP2015171747A (en) * 2014-03-12 2015-10-01 ファナック株式会社 Robot control device that senses contact with external environment
US9327408B2 (en) 2014-03-12 2016-05-03 Fanuc Corporation Robot control device detecting contact with external environment
US10730183B2 (en) 2017-06-15 2020-08-04 Fanuc Corporation Learning device, controller, and control system
DE102018113656B4 (en) * 2017-06-15 2020-12-10 Fanuc Corporation LEARNING DEVICE, CONTROL AND CONTROL SYSTEM
US11691293B2 (en) 2018-08-31 2023-07-04 Fanuc Corporation Robot

Similar Documents

Publication Publication Date Title
JP2807461B2 (en) Three-dimensional shape processing laser device
US7847502B2 (en) Device and method for controlling machine tool
JPH04148307A (en) Detecting method for working force for force control robot
JPS638913A (en) Robot controller
US4841430A (en) Method of teaching a path to a moving body
JP2001051713A (en) Method and device for teaching work to robot
JP2793695B2 (en) Object recognition control method
JPS59220806A (en) Controlling method of industrial robot
JP2922617B2 (en) Designation method of pressing force direction in force control robot
WO2024116223A1 (en) Robot control device
JPH02256481A (en) Relative distance control method between robot and work and correction data preparing device thereof
JPH0871966A (en) Robot control device
JPS638912A (en) Control system for robot
JPH05265537A (en) Automatic teaching method for robot
JP2713656B2 (en) Synchronous conveyor data input method for industrial robots
JPS5845887A (en) Controller for industrial robot
JP2604838B2 (en) Industrial robot control method
JPS61188095A (en) Position controller in industrial robot
JPH04123884A (en) Follow-up controller of three dimensional laser beam machine
JPH0519824A (en) Numerical controller and work attitude detection device
JPH02236703A (en) Numerical controller
Blume et al. Sensor-controlled MIG welding installation using a microcomputer
JPH0754445B2 (en) Robot geometric error correction method
JPH0551438B2 (en)
JPH01234141A (en) Method and apparatus for removing influence of inertia of tool