JPH04148189A - Heat receiving part and heat dissipating part separating loop type fine heat pipe - Google Patents

Heat receiving part and heat dissipating part separating loop type fine heat pipe

Info

Publication number
JPH04148189A
JPH04148189A JP26955190A JP26955190A JPH04148189A JP H04148189 A JPH04148189 A JP H04148189A JP 26955190 A JP26955190 A JP 26955190A JP 26955190 A JP26955190 A JP 26955190A JP H04148189 A JPH04148189 A JP H04148189A
Authority
JP
Japan
Prior art keywords
heat
section
thin tube
short
tube container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26955190A
Other languages
Japanese (ja)
Inventor
Hisateru Akachi
赤地 久輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Actronics KK
Original Assignee
Actronics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Actronics KK filed Critical Actronics KK
Priority to JP26955190A priority Critical patent/JPH04148189A/en
Publication of JPH04148189A publication Critical patent/JPH04148189A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To smooth the circulation of condensing operating liquid in a heat dissipating section by a method wherein the predetermined part of a meandering fine tube container for either one or both of a heat receiving section and a heat dissipating section is connected to the predetermined part of a connecting fine tube container through a short-circuit fine tube to form a short-circuit flow passage in one part of operating liquid circulating flow. CONSTITUTION:Short-circuit fine tubes a-1, a-2 connect a high-temperature side connecting fine tube H in a heat modulated section (connecting part) to the predetermined section of a meandering fine tube container in a heat dissipating section 1-2 to short-circuit them and activate the circulation of operating liquid by sending high-temperature pressure vapor into a part, whereat a propulsive force is deteriorated by the pressure loss of the meandering fine tube container or the condensation and liquefying of the vapor. On the other hand, fine short-circuit tubes c-1, c-2 short-circuit and connect a high-temperature side connecting fine tube container H and the predetermined part of the meandering fine tube container in the heat receiving section 1-1 of a high-temperature side connecting fine tube container H to facilitate the generation of vapor and smooth the circulation of the operating liquid while mitigating the loss of the propulsive force of the generated vapor due to a pressure loss in the tube of a continuous meandering fine tube container.

Description

【発明の詳細な説明】 イ1発明の目的 [産業上の利用分野] 本発明はヒートパイプの構造に関するものであり、特に
ループ型細管ヒートパイプにおける一方又は双方が蛇行
により長尺化された受熱部と放熱部とが所定の距離を隔
てて分離配設され、両者の間が複数の連結細管コンテナ
によって連結され、全体としてループ状作動液流路が構
成されてある受放熱部分離式ループ型細管ヒートパイプ
の性能を改善する為の構造に関する。
Detailed Description of the Invention A1 Object of the Invention [Industrial Application Field] The present invention relates to the structure of a heat pipe, and particularly to a heat receiving device in which one or both of the loop-type thin tube heat pipes are made elongated by meandering. The heat receiving and dissipating section is separated type loop type, in which the heat dissipating section and the heat dissipating section are separated by a predetermined distance, and the two are connected by a plurality of connecting capillary containers, forming a loop-shaped working fluid flow path as a whole. This article relates to a structure for improving the performance of thin tube heat pipes.

[従来の技術] 長尺細管の両端末が相互に連結されてなる密「ループ型
細管コンテナ内の所定の部分に逆止弁ン配設され、ルー
プ上の所定の部分が受熱部とじコ、他の所定の部分が放
熱部として構成され、ループ型細管コンテナ内に所定量
の2相凝縮性作動匈が封入されて構成されてあるループ
型細管ヒー)バイブについては特開昭63−31849
3号刀び米国特許4,921,041号に詳述されて誹
る。該細管ヒートパイプは逆止弁と受放熱部間C温度差
との相互作用によって作動液は何等の種籾的又は電気的
循環手段の助けを必要とすることろく、ループ内を所定
の方向に確実強力に循環し、熱量を受熱部から放熱部に
輸送するものであった。この作動液の循環は細管ヒート
パイプの配設姿勢の如何に拘わらず即ちボトムヒートモ
ード、水平ヒートモード、トップヒートモードの何れの
モードでも確実であり、熱量輸送手段として従来のヒー
トパイプとしては考えられなかった機能を発揮するもの
であった。該ループ型細管ヒートパイプは第3図の略図
に例示の如く細管コンテナ1は多数ターンの蛇行を繰返
し、何れも細管コンテナの多数の直管部を有する受熱部
1−1.放熱部1−2.断熱部(連結部)1−3を構成
して使用されるのが一般的であった。2〜1.2−2は
逆止弁であり、破線で示された3、4は夫々加熱手段及
び冷却手段である。細管コンテナは以下各図においても
図面簡略の為総て線図で示す。矢印は作動液循環方向で
ある。ループ状細管1内を矢印の方向に自ずから循環す
る作動液は細管内で大きな圧力損失を受けるが各ターン
部毎の受熱illで核沸騰による新しい推進力を与えら
れ復活するので第3図の如きループ型細管ヒートパイプ
は制限無くターン数を増加せしめることが可能で大容量
の熱量を輸送することが可能である。又φ2IllI1
1、φ3m+mの如き細管コンテナで構成することが出
来るから狭隘な部分で発生する熱量を狭隘な間隙を通過
せしめて熱輸送することが出来る。又この様な細管コン
テナの直管部群で構成される多管放熱部1−2は極めて
大きな熱伝達率が得られるからフィン群を装着すること
な(対流放熱させることが可能である。
[Prior Art] A check valve is disposed at a predetermined portion within a tight loop type capillary container in which both ends of a long thin tube are connected to each other, and a predetermined portion on the loop is connected to a heat receiving part. JP-A No. 63-31849 discloses a loop-type capillary heat vibrator in which another predetermined portion is configured as a heat dissipation section and a predetermined amount of two-phase condensable working fluid is enclosed in a loop-type capillary container.
No. 3 is described in detail in U.S. Pat. No. 4,921,041. The thin tube heat pipe ensures that the working fluid moves in a predetermined direction within the loop due to the interaction between the check valve and the temperature difference between the heat receiving and dissipating parts, without the need for any kind of seed or electric circulation means. It circulated strongly and transported heat from the heat receiving part to the heat radiating part. This circulation of the working fluid is reliable regardless of the arrangement position of the thin tube heat pipe, i.e., in bottom heat mode, horizontal heat mode, or top heat mode, and is unconventional for conventional heat pipes as a means of transporting heat. It was designed to perform functions that were previously unavailable. In the loop type thin tube heat pipe, as illustrated in the schematic diagram of FIG. 3, the thin tube container 1 repeats meandering through many turns, and each of the thin tube containers has a heat receiving section 1-1. Heat radiation part 1-2. It has generally been used to form a heat insulating section (connecting section) 1-3. 2 to 1.2-2 are check valves, and 3 and 4 indicated by broken lines are heating means and cooling means, respectively. The thin tube containers are all shown in line diagrams in the following figures to simplify the drawings. The arrow indicates the direction of hydraulic fluid circulation. The working fluid, which naturally circulates in the direction of the arrow in the loop-shaped capillary 1, suffers a large pressure loss within the capillary, but the heat received at each turn gives it a new driving force due to nucleate boiling, and it is revived, as shown in Figure 3. The loop-type capillary heat pipe can increase the number of turns without limit and can transport a large amount of heat. Also φ2IllI1
1. Since it can be constructed with a thin tube container such as φ3m+m, the amount of heat generated in a narrow part can be transported through a narrow gap. In addition, since the multi-tube heat radiating section 1-2, which is constituted by a group of straight pipes of such a thin tube container, can obtain an extremely high heat transfer coefficient, it is possible to radiate heat by convection without installing a group of fins.

上述の如きループ型細管ヒートパイプに対して更に強い
要望として受熱部1−1と放熱部1−2を連結する断熱
部(連結部)l−3を構成する細管コンテナの直管部群
を少数本化することが求められた。即ち受熱部1−1と
放熱部1−2が極めて複雑狭隘な部品群間隙を縫って連
結する必要ある場合には断熱部(連結部)1−3の細管
コンテナ直管部群は出来るだけ少ない本数であることが
望まれる。又受熱51−1と放熱部1−2との間の離間
距離が長い場合には多数本の直管部群はその手扱いが複
雑で困難となる場合がある。これ等の問題点を解決する
為に特願平2−148809号に詳述されてある如きル
ープ型細管ヒートパイプが案出された。
As for the above-mentioned loop-type thin tube heat pipe, there is a stronger demand for a small number of straight pipe sections of the thin tube container that constitute the heat insulating section (connecting section) l-3 that connects the heat receiving section 1-1 and the heat dissipating section 1-2. It was requested that it be made into a book. In other words, when the heat receiving part 1-1 and the heat dissipating part 1-2 need to be connected through an extremely complicated and narrow gap between the parts, the number of straight pipe parts of the thin tube container in the heat insulating part (connection part) 1-3 should be as small as possible. It is desirable that the number of Furthermore, if the distance between the heat receiving section 51-1 and the heat dissipating section 1-2 is long, handling of the large number of straight pipe sections may become complicated and difficult. In order to solve these problems, a loop-type thin tube heat pipe was devised as detailed in Japanese Patent Application No. 148809/1999.

第4図はその様な受放熱部分離式のループ型細管ヒート
パイプの基本構造の略図である。受熱部1−1及び放熱
部1−2は夫々に複数ターン蛇行により長尺化されてあ
り、両者は所定の距離を隔てて分離配置されてあり、両
者の夫々の両端は複数の連結細管からなる連結部1−3
により連結されてある。この様なループ型細管ヒートパ
イプは従来の業界の要望を完全に満足せしめるもので、
手扱いが極めて容易となり、配設作業が簡易化され、複
数狭隘な間隙を縫って配設することも可能となるもので
あった。
FIG. 4 is a schematic diagram of the basic structure of such a loop-type capillary heat pipe with separate heat receiving and dissipating parts. The heat receiving section 1-1 and the heat dissipating section 1-2 are each made elongated by meandering multiple turns, and are separated from each other by a predetermined distance, and both ends of each are connected to a plurality of connecting thin tubes. Connecting part 1-3
They are connected by This kind of loop-type thin tube heat pipe completely satisfies the demands of the conventional industry.
It is extremely easy to handle, the installation work is simplified, and it is also possible to install multiple devices through narrow gaps.

[発明が解決しようとする問題点] 特願平2−148809号に係る第3図例示の如き受放
熱部分離式ループ型細管ヒートパイプは通常の蛇行ルー
プ型細管ヒートパイプの問題点を解決するものであるが
、他方ではその重要な特′徴を犠牲にして成立っている
。即ち各ターン毎に受熱部における核沸騰によって管内
圧力損失が補われ循環推進力を回復すると言う特徴が失
なわれていることは明らかである。従って受放熱部分離
式ループ型細管ヒートパイプには次の如き問題点が発生
する。
[Problems to be Solved by the Invention] A loop-type capillary heat pipe with separate heat receiving and dissipating sections as illustrated in FIG. On the other hand, it comes at the expense of its important features. In other words, it is clear that the characteristic that the pressure loss in the tube is compensated for by nucleate boiling in the heat receiving section every turn and the circulation propulsion force is restored is lost. Therefore, the following problems occur in the loop type thin tube heat pipe with separate heat receiving and dissipating parts.

a、受放熱部具ターン数及び直管部の長さに限界があり
、大容量化が困難である。これは管内圧力損失の累積に
起因する。
a. There are limits to the number of turns of the heat receiving and dissipating component and the length of the straight pipe section, making it difficult to increase the capacity. This is due to the accumulation of pressure loss within the pipe.

b、水平ヒートモードにおける熱輸送能力が大幅に低下
し、トップヒートモードにおいては作動が困難となる。
b. The heat transport capacity in horizontal heat mode is significantly reduced, and operation in top heat mode becomes difficult.

即ち従来の通常ヒートパイプと類似の性能となる。これ
も上述と同様に管内圧力損失の累積により作動液循環推
進力が低下し重力を克服することが困難となることに因
る。
In other words, the performance is similar to that of a conventional ordinary heat pipe. This is also due to the fact that the hydraulic fluid circulation driving force decreases due to the accumulation of pressure loss within the pipes, making it difficult to overcome gravity, as described above.

C1放熱部の適冷はかえって性能低下の原因となる。こ
れは放熱部内作動液の蒸気成分が凝縮により殆ど失なわ
れることにより作動液循環推進力が低下することによる
Proper cooling of the C1 heat dissipation section may actually cause performance deterioration. This is because most of the vapor component of the working fluid in the heat dissipation section is lost due to condensation, resulting in a reduction in the driving force for circulating the working fluid.

(ロ)発明の構成 [問題点を解決する為の手段] 上述の如き問題点を解決する手段としては受熱部と放熱
部の何れか一方又は双方の蛇行細管コンテナの所定の部
分と連結細管コンテナの所定部分とが短絡細管によって
連結され、作動液循環流の一部の短絡流路が形成されて
ある構造を採用する[作 用] 高温蒸気流路である高温側連結細管コンテナと放熱部蛇
行細管コンテナとの夫々の所定の部分量相互を短絡する
短絡細管は、蛇行の上流側ターンのみに偏って強力な推
進力を加えていた作動液蒸気を中間部ターン以降の下流
側にも分配して放熱部内の凝縮作動液循環を円滑ならし
める。
(B) Structure of the invention [Means for solving the problems] As a means for solving the above-mentioned problems, a predetermined part of the meandering thin tube container of either or both of the heat receiving part and the heat radiating part is connected to the thin tube container. A structure is adopted in which a predetermined part of the high temperature side connecting capillary container, which is a high temperature steam flow path, is connected by a short-circuit capillary tube, and a short-circuit flow path is formed for a part of the working fluid circulation flow. The short-circuiting capillary tube that short-circuits each predetermined portion of the capillary container with the capillary container distributes the working fluid vapor, which was applying a strong propulsive force only to the upstream turn of the meandering, to the downstream side after the middle turn. This ensures smooth circulation of the condensed working fluid within the heat dissipation section.

凝縮作動液流路である低温側連結細管コンテナと放熱部
蛇行細管コンテナとの夫々の所定の部分量相互を短絡す
る短絡細管は、蛇行の下流側ターンのみに偏って加わっ
ていた吸引力(受熱部で発生する核沸騰による蒸気泡の
急激な膨張収縮は高温側連結細管コンテナには推進力を
低温側連結細管コンテナには吸引力を発生する。)を中
間部クン以前の上流側にも分配して放熱部内の凝縮作動
液の循環を円滑ならしめる。
The short-circuiting capillary that short-circuits a predetermined portion of each of the low-temperature side connecting capillary container, which is the condensed working fluid flow path, and the heat dissipating meandering capillary container, reduces the suction force (heat receiving The rapid expansion and contraction of steam bubbles due to nucleate boiling generated in the middle section generates a propulsive force in the connected thin tube container on the high temperature side and a suction force in the connected thin tube container on the low temperature side.) is also distributed to the upstream side before the middle section. This ensures smooth circulation of the condensed working fluid within the heat dissipation section.

高温連結細管コンテナと受熱部蛇行細管コンテナとの夫
々の所定部分間相互を短絡する短絡細管は受熱部内の蒸
気圧を低下せしめ、蒸気流速をも低下せしめこれらによ
って、蒸気゛発生を促進せしめ、蒸気の圧力損失を減少
させる。
The short-circuiting capillary tubes that short-circuit predetermined portions of the high-temperature connecting capillary container and the heat-receiving section meandering capillary container with each other reduce the steam pressure in the heat-receiving section and also reduce the steam flow rate. Reduces pressure loss.

低温連結細管コンテナと受熱部蛇行細管コンテナとの夫
々の所定の部分量相互を短絡する短絡細管は、受熱部内
で発生する吸引力が管内圧力損失で失なわれるのを緩和
せしめ低温細管からの作動液吸入を容易にする。
The short-circuiting capillary that short-circuits a predetermined portion of each of the low-temperature connecting capillary container and the heat-receiving part meandering capillary container reduces the suction force generated in the heat-receiving part from being lost due to pressure loss within the pipe, and reduces the operation from the low-temperature capillary. Facilitates liquid inhalation.

上記各作用が適切に組合せられた場合は問題点の総て又
は大部分を解決せしめることが出来る。
If the above-mentioned effects are appropriately combined, all or most of the problems can be solved.

短絡細管により受熱部蛇行細管コンテナの所定の部分と
放熱部蛇行細管コンテナとの夫々の所定の部分を直接短
絡せしめる場合は高温気相リッチの作動液か又は低温液
相リッチの作動液を効率良く受放熱部に導入することが
出来るのでより効果的である。この場合短絡細管中を流
れる作動液が高温となるか低温となるかは短絡細管に配
設される逆止弁の規制方向で自ずから決定される。
When directly short-circuiting a predetermined portion of the heat-receiving section meandering capillary container and a predetermined portion of the heat dissipating section meandering capillary container using a short-circuit capillary, it is possible to efficiently use a high-temperature gas-phase rich working fluid or a low-temperature liquid-phase rich working fluid. It is more effective because it can be introduced into the heat receiving and radiating section. In this case, whether the working fluid flowing through the short-circuit tube becomes high or low temperature is naturally determined by the regulating direction of the check valve disposed in the short-circuit tube.

[実施例] 第1図は受放熱部分離式ループ型細管ヒートパイプの一
例の略図であり、本発明に係る実施例の各種が同時に適
用されてある。その基本構造は第4図に例示のものと同
一構造である。
[Embodiment] FIG. 1 is a schematic diagram of an example of a loop-type capillary heat pipe with separate heat receiving and dissipating portions, in which various embodiments of the present invention are applied simultaneously. Its basic structure is the same as that illustrated in FIG.

第1実施例 a−1,a−2は本発明に係る短絡細管で断熱部(連結
部)における高温側連結細管Hと放熱部1−2における
蛇行細管コンテナの所定の部分を短絡して連結している
。蛇行細管コンテナの圧力損失により、又蒸気の凝縮液
化により、推進力が低下した部分に高温圧力蒸気を送り
込んで作動液の循環を活性化せしめる。
The first embodiments a-1 and a-2 are short-circuited thin tubes according to the present invention, and are connected by short-circuiting the high temperature side connecting thin tube H in the heat insulation part (connection part) and a predetermined part of the meandering thin tube container in the heat radiation part 1-2. are doing. High-temperature pressure steam is sent to the area where the propulsive force has decreased due to pressure loss in the meandering thin tube container or due to condensation and liquefaction of the steam, thereby activating the circulation of the working fluid.

第2実施例 本実施例においては短絡細管b−1,b−2は低温側連
結細管Cと放熱部1−2における蛇行細管コンテナの所
定の部分を短絡して連結している。逆止弁2−1の弁体
の振動により低温側細管コンテナ内に発生する作動液の
吸引力が圧力損失により及ばない放熱部蛇行細管コンテ
ナ上部の連結部から作動液の一部を吸引し圧力損失を緩
和せしめ作動液の循環を円滑ならしめる。
Second Embodiment In this embodiment, the short-circuited thin tubes b-1 and b-2 short-circuit and connect the low-temperature side connecting thin tube C and a predetermined portion of the meandering thin tube container in the heat radiation section 1-2. The suction force of the working fluid generated in the low-temperature side thin tube container due to the vibration of the valve body of the check valve 2-1 is not reached due to pressure loss.A part of the working fluid is sucked from the connecting part at the top of the meandering thin tube container at the heat dissipation section and the pressure is increased. Alleviates losses and smooths circulation of hydraulic fluid.

第3実施例 本実施例においては短絡細管c−1,c−2は高温側連
結細管コンテナHと受熱部1−1にお(る蛇行細管コン
テナ所定の部分とを短絡連結し。
Third Embodiment In this embodiment, the short-circuited thin tubes c-1 and c-2 short-circuit and connect the high-temperature side connecting thin tube container H and a predetermined portion of the meandering thin tube container in the heat receiving section 1-1.

いる。該短絡細管c−1,c−2は発生蒸気が」尺の蛇
行細管コンテナ中の管内圧力損失により、推進力を失な
われるのを緩和して蒸気発生を容1にし、作動液の循環
を順調にならしめる。
There is. The short-circuit capillary tubes c-1 and c-2 reduce the loss of propulsion of the generated steam due to the pressure loss inside the tube in the meandering capillary container with a length of 100 cm, reduce the steam generation to 1 volume, and improve the circulation of the working fluid. Make things go smoothly.

第4実施例 短絡細管d−1,d−2は受熱部に還流するヂ動液の流
路である低温側連結細管コンテナCとり熱部1−1にお
ける蛇行細管コンテナの所定の8分とを短絡している。
Fourth Embodiment The short-circuited thin tubes d-1 and d-2 connect the low-temperature side connecting thin tube container C, which is a flow path for the didynamic liquid that returns to the heat receiving section, and the predetermined 8 minutes of the meandering thin tube container in the hot section 1-1. There is a short circuit.

該短絡細管d−1,d−Sは受熱部の蛇行細管コンテナ
の管内圧力損失を彩和せしめて還流作動液が順調に受熱
部内に流入するのを助け、作動液のループ内循環を補助
し、り熱部内の蒸気発生を容易ならしめる。
The short-circuit thin tubes d-1 and d-S counteract the pressure loss inside the meandering thin tube container of the heat receiving section, help the refluxing working fluid smoothly flow into the heat receiving section, and assist the circulation of the working fluid within the loop. This makes it easier to generate steam in the heated section.

第1図においては第1〜第4実施例の総てを1設して示
しであるが実際にはそれ等は必要に応じて任意に組合わ
せて使用される。例えば第1図σ如きトップヒートモー
ドの場合は低温側連結細贅コンテナの作動液は重力の助
けのみで充分であイから該コンテナ側短絡細管は不要で
あり管路を太くして圧力損失を低下せしめるだけで充分
な場合が多い。
In FIG. 1, all of the first to fourth embodiments are shown as one, but in reality, they may be used in any combination as required. For example, in the case of the top heat mode as shown in Fig. 1 σ, the working fluid in the low-temperature side connected thin container is sufficient with the help of gravity alone, so the short-circuit thin tube on the container side is unnecessary, and the pressure loss is reduced by making the pipe thicker. In many cases, it is sufficient to simply reduce the amount.

第5実施例 該実施例においては短絡細管e、fは何れも受熱部1−
1の蛇行細管コンテナの所定の部分と放熱部1−2の蛇
行細管コンテナの所定の部分を直接短絡している。該短
絡細管が受熱部の高淵蒸気を放熱部1−2に送出するが
、放熱部1−2の低温作動液を受熱部1−1に還流せし
めるかはそれ等に配設されてある逆止弁5−2.5〜1
の流れ規制方向によって自ずから決定される。これ等は
何れも受熱部1−1及び放熱部1−2における管内圧力
室を同時に緩和せしめることが出来るので非常に有効で
ある。
Fifth Embodiment In this embodiment, both short-circuited tubules e and f are connected to the heat receiving part 1-
A predetermined portion of the meandering thin tube container of heat radiation section 1-2 is directly short-circuited to a predetermined portion of the meandering thin tube container of heat dissipation section 1-2. The short-circuit thin tube sends the high water vapor in the heat receiving section to the heat radiating section 1-2, but whether the low-temperature working fluid in the heat radiating section 1-2 is allowed to flow back to the heat receiving section 1-1 is determined by the reverse direction installed therein. Stop valve 5-2.5~1
is automatically determined by the direction of flow regulation. All of these are very effective because they can simultaneously relieve the pressure chambers in the pipes in the heat receiving section 1-1 and the heat dissipating section 1-2.

ハ、発明の効果 本発明は各種実施例を有効に組合わせ実施することによ
り受放熱部分離式ループ型細管ヒートパイプの問題点の
大部分を解決せしめ、その実用性を向上せしめ、受放熱
部分離によって発生する各種の利点を一層成果あるもの
とすることが出来る
C. Effects of the Invention By effectively combining and implementing various embodiments, the present invention solves most of the problems of a loop-type thin tube heat pipe with separate heat receiving and dissipating parts, improves its practicality, and improves the practicality of the heat receiving and dissipating part. Various advantages arising from separation can be made more fruitful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る受放熱部分離式ループ型細管ヒー
トパイプの側面略図であって第1実施例〜第4実施例の
総てが実施されてある状態を示す第2図は本発明に係る
受放熱部分離式ループ型細管ヒートパイプの側面略図で
あって第5実施例の実施状態を示す。 第3図は従来型のループ型細管ヒートパイプの一例を側
面略図で示しである。 第4図は受放熱分離式ループ型細管ヒートパイプの征来
例を示す側面略図である。 ■・・・細管コンテナ、1−1・・・受熱部、1−2・
・・放熱部、1−3−・・断熱部(連結部)、H・・・
高温側連結細管コンテナ、C・・・低温側連結細管コン
テナ。 2−1.2−2 ・・・逆止弁、 a−1、a−2・・
・短絡細管、b−1b−2・・・短絡細管、c−1,c
−2・・・短絡細管、d−1,d−2・・・短絡細管。 l f・・・短絡細管。 3・・・加熱手段。 4・・・冷却手段 5−2・・・逆止弁。 特許出願人アクトロニクス株式会社 (ばか1名) 第 図 ゝ−3 第 図 第 フ 図 m−3 第 図
FIG. 1 is a schematic side view of a loop-type capillary heat pipe with separate heat receiving and dissipating parts according to the present invention, and FIG. 2 shows a state in which all of the first to fourth embodiments are implemented. FIG. 12 is a schematic side view of a loop-type thin tube heat pipe with separate heat receiving and dissipating portions, showing an implementation state of a fifth embodiment. FIG. 3 is a schematic side view of an example of a conventional loop-type capillary heat pipe. FIG. 4 is a schematic side view showing a conventional example of a heat receiving/radiating separation type loop type thin tube heat pipe. ■... Thin tube container, 1-1... Heat receiving part, 1-2.
...Heat radiation part, 1-3-...Heat insulation part (connection part), H...
High temperature side connected thin tube container, C...low temperature side connected thin tube container. 2-1.2-2...Check valve, a-1, a-2...
・Short-circuited tubule, b-1b-2...Short-circuited tubule, c-1, c
-2...Short-circuited tubule, d-1, d-2...Short-circuited tubule. l f...Short tubule. 3...Heating means. 4... Cooling means 5-2... Check valve. Patent applicant Actronics Co., Ltd. (one idiot) Fig. ゝ-3 Fig. F Fig. m-3 Fig.

Claims (2)

【特許請求の範囲】[Claims] (1)長尺細管の両端末が相互に連結されてなる密閉ル
ープ型細管コンテナ内の所定の部分に逆止弁が配置され
、ループ上の所定の部分が受熱部として、他の所定の部
分が放熱部として構成され、ループ型細管コンテナ内に
は所定量の2相凝縮性作動液が封入されてあり、更に上
記受熱部と放熱部との何れか一方又は双方を構成してい
る細管コンテナの夫々は複数ターンの蛇行により長尺化
されてあり、該受熱部と放熱部とは所定の距離を隔てて
分離配置され、両者の夫々の両端は複数の連結細管コン
テナからなる連結部により連結され全体としてループ状
作動液循環流路が構成されてある受放熱部分離式ループ
型細管ヒートパイプにおいて、受熱部と放熱部の何れか
一方又は双方の蛇行細管コンテナの所定の部分と、連結
細管コンテナ若しくは対応する受熱部か放熱部の蛇行細
管コンテナの所定の部分とが短絡細管によって連結され
作動液循環流の一部の短絡流路が形成されてあることを
特徴とするもの。
(1) A check valve is arranged at a predetermined part in a closed loop type capillary container in which both ends of a long thin tube are connected to each other, and the predetermined part on the loop serves as a heat receiving part, and the other predetermined part is configured as a heat radiating section, a predetermined amount of two-phase condensable working fluid is sealed in the loop-type thin tube container, and the thin tube container is configured as either or both of the heat receiving section and the heat radiating section. The heat receiving section and the heat dissipating section are separated from each other by a predetermined distance, and both ends of the heat receiving section and the heat dissipating section are connected by a connecting section consisting of a plurality of connecting thin tube containers. In a loop-type capillary heat pipe with separate heat receiving and dissipating sections, the loop-shaped working fluid circulation flow path is formed as a whole. A predetermined portion of the meandering thin tube container of the container or the corresponding heat receiving section or heat dissipating section is connected by a short-circuit thin tube to form a short-circuit flow path for a part of the working fluid circulating flow.
(2)受熱部蛇行細管コンテナと放熱部蛇行細管コンテ
ナを直接短絡する短絡細管には所定の位置に受熱部から
放熱部に向って流れを規制する逆止弁か、その反対方向
に流れを規制する逆止弁の何れかが配設されてあること
を特徴とする特許請求の範囲第1項に記載のセパレート
式ループ型細管ヒートパイプ。
(2) The short-circuited thin tube that directly shorts the heat receiving part meandering thin tube container and the heat dissipating part meandering thin tube container is equipped with a check valve in a predetermined position to restrict the flow from the heat receiving part to the heat radiating part, or to restrict the flow in the opposite direction. The separate loop type capillary heat pipe according to claim 1, further comprising a check valve.
JP26955190A 1990-10-09 1990-10-09 Heat receiving part and heat dissipating part separating loop type fine heat pipe Pending JPH04148189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26955190A JPH04148189A (en) 1990-10-09 1990-10-09 Heat receiving part and heat dissipating part separating loop type fine heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26955190A JPH04148189A (en) 1990-10-09 1990-10-09 Heat receiving part and heat dissipating part separating loop type fine heat pipe

Publications (1)

Publication Number Publication Date
JPH04148189A true JPH04148189A (en) 1992-05-21

Family

ID=17473955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26955190A Pending JPH04148189A (en) 1990-10-09 1990-10-09 Heat receiving part and heat dissipating part separating loop type fine heat pipe

Country Status (1)

Country Link
JP (1) JPH04148189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849991A (en) * 1994-08-02 1996-02-20 Akutoronikusu Kk Closed system temperature controller
JPH0961074A (en) * 1995-08-25 1997-03-07 Akutoronikusu Kk Closed temperature control system
US20130186601A1 (en) * 2012-01-19 2013-07-25 Lockheed Martin Corporation Wickless heat pipe and thermal ground plane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0849991A (en) * 1994-08-02 1996-02-20 Akutoronikusu Kk Closed system temperature controller
JPH0961074A (en) * 1995-08-25 1997-03-07 Akutoronikusu Kk Closed temperature control system
US20130186601A1 (en) * 2012-01-19 2013-07-25 Lockheed Martin Corporation Wickless heat pipe and thermal ground plane
US9921003B2 (en) * 2012-01-19 2018-03-20 Lockheed Martin Corporation Wickless heat pipe and thermal ground plane

Similar Documents

Publication Publication Date Title
US4830097A (en) Space vehicle thermal rejection system
US6704200B2 (en) Loop thermosyphon using microchannel etched semiconductor die as evaporator
US7946112B2 (en) Exhaust heat recovery device
US10153261B2 (en) Cooling system for high power application specific integrated circuit with embedded high bandwidth memory
CN107835617A (en) Loop heat pipe structure
US20080078529A1 (en) Cooling of the power components of a frequency converter
CN106766404B (en) Micro-channel condenser
JP2009182313A (en) Component cooling structure
JP2019015200A (en) Intercooler
JPH04148189A (en) Heat receiving part and heat dissipating part separating loop type fine heat pipe
WO2023035574A1 (en) Loop heat pipe-based heat dissipation device
CN207427681U (en) Loop heat pipe structure
US4546818A (en) Multiple source energy recovery system
JP2741364B2 (en) Heat pipe radiator in two-phase fluid loop thermal control system
JPH0534090A (en) Heat exchanger
US20180023900A1 (en) Diphasic cooling loop with satellite evaporators
JP3298016B2 (en) Heat radiator of heat pipe radiator
JP3364758B2 (en) Heat sink for flat heating element
CN202393273U (en) Heat pipe structure
JPH0849991A (en) Closed system temperature controller
JPH0457399A (en) Composite-type heat sink
US20030111217A1 (en) Bubble cycling heat exchanger system
JP2009264719A (en) Heat exchanger
JPS6226491A (en) Heat transfer device
JP2018031557A (en) Cooling device and electric equipment mounting the same, and electric car