JPH04146210A - Polycarbonate multifilament yarn for matrix resin of molded article - Google Patents

Polycarbonate multifilament yarn for matrix resin of molded article

Info

Publication number
JPH04146210A
JPH04146210A JP26042890A JP26042890A JPH04146210A JP H04146210 A JPH04146210 A JP H04146210A JP 26042890 A JP26042890 A JP 26042890A JP 26042890 A JP26042890 A JP 26042890A JP H04146210 A JPH04146210 A JP H04146210A
Authority
JP
Japan
Prior art keywords
polycarbonate
yarn
fibers
multifilament yarn
reinforcing fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26042890A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
浩一 山田
Toshimasa Kuroda
黒田 俊正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP26042890A priority Critical patent/JPH04146210A/en
Publication of JPH04146210A publication Critical patent/JPH04146210A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the subject filament yarn produced e.g. by the melt-spinning of a polycarbonate, having specific birefringence and elongation at break, suitable for the manufacture of fiber-reinforced molded article and giving a reinforced article free from warpage, strain and void and having excellent strength. CONSTITUTION:The objective filament yarn is a multifilament yarn produced by melt-spinning a polycarbonate and optionally drawing the spun fiber. The multifilament yarn has a birefringence of 0.01-0.03 and an elongation at break of 40-100%. The single fiber denier of the yarn is preferably 1-15de.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ポリカーボネート樹脂が強化繊維を包埋して
いるような成形品を得るために、強化繊維と共に用いら
れるような成形品母材樹脂用ポリカーボネートマルチフ
ィラメント糸に間する。さらに詳しくは、強化繊維との
なじみが良く、寸法安定性が良好で強力の優れた成形品
が得られる母材樹脂用マルチフィラメント糸に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention is directed to a molded article matrix resin that is used together with reinforcing fibers in order to obtain a molded article in which a polycarbonate resin embeds reinforcing fibers. Polycarbonate multifilament yarn for use. More specifically, the present invention relates to a multifilament yarn for base resin that has good compatibility with reinforcing fibers, has good dimensional stability, and provides molded products with excellent strength.

〈従来技術〉 ポリカーボネートは、衝撃特性1寸法安定性。<Conventional technology> Polycarbonate has impact properties and dimensional stability.

電気特性、衛生性に優れていることから、複合材料のマ
トリックス(母材樹脂)として多く用いられている。し
かし、−数的には、ガラス繊維、炭素繊維等の強化繊維
の短繊維をポリカーボネートに分散含有させた、いわゆ
るコンパウンド樹脂として、射出成形もしくは押出成形
、ブロー成形等により成形されているため、強化繊維は
短いものしか使用できず、また成形品中の強化繊維の方
向がランダムになることから、強化繊維による母材樹脂
の補強が不充分であるという問題がある。
Due to its excellent electrical properties and sanitary properties, it is often used as a matrix (base material resin) for composite materials. However, in terms of numbers, it is a so-called compound resin in which short fibers of reinforcing fibers such as glass fibers and carbon fibers are dispersed in polycarbonate, and is molded by injection molding, extrusion molding, blow molding, etc. Since only short fibers can be used and the direction of the reinforcing fibers in the molded product is random, there is a problem that the reinforcement of the base resin by the reinforcing fibers is insufficient.

そこで、上述の問題を解消する成形方法として、強化繊
維の織物のような布帛と熱可塑性ポリマーのフィルムと
を重ねて型板等により挟圧、加熱して成形する方法、強
化繊維布帛と熱可塑性フィルムとを重ねる代わりに、強
化繊維の引き揃えに対して溶融ポリマーを含浸させて得
られるICI社製APC−IIのようなプレプレーグを
用いる特開昭59−47233号公報に記載されている
ような方法、また強化繊維と熱可塑性繊維とからなる織
物を用いる米国特許第4.479.999号明細書に記
載されているような方法、あるいは前記熱可塑性フィル
ムの代わりに熱可塑性繊維布帛を用いる方法が知られて
いる。これらの方法のうち、プレプレーグを用いる方法
は、プレプレーグが剛性の大きいドレープ性の乏しいも
のとなるから、プレプレーグから成形品にする際の変形
量を大きくすることができないという問題がある。また
、熱可塑性フィルムを用いる方法は、プレプレーグを用
いる方法よりも成形品にする際の変形量を大きくできる
が、織物等繊維布帛を用いる方法に比較すると変形量が
制限されるし、プレプレーグや織物を用いる方法に比較
すると母材樹脂が強化繊維に侵入しにくいという問題が
ある。なお、これらの方法は、比較的肉厚の薄い成形品
や肉厚が均一な成形品に好適に用いられる方法である。
Therefore, as a molding method to solve the above-mentioned problems, a method in which a fabric such as a reinforcing fiber fabric and a thermoplastic polymer film are layered, pressed and heated using a template, etc., and a reinforcing fiber fabric and a thermoplastic Instead of overlapping with a film, a prepreg such as APC-II manufactured by ICI Co., which is obtained by impregnating the alignment of reinforcing fibers with a molten polymer, is used. 4,479,999 using a fabric made of reinforcing fibers and thermoplastic fibers, or using a thermoplastic fiber fabric instead of said thermoplastic film. It has been known. Among these methods, the method using prepreg has a problem in that the amount of deformation when making a molded product from prepreg cannot be increased because the prepreg has high rigidity and poor drapability. In addition, the method using thermoplastic film allows for a larger amount of deformation when forming a molded product than the method using prepreg, but the amount of deformation is limited compared to the method using fiber fabric such as woven fabric. There is a problem in that the base material resin is difficult to penetrate into the reinforcing fibers compared to the method using . Note that these methods are suitable for use in molded products with relatively thin walls or molded products with uniform wall thickness.

また、コーン形状等の成形品については、熱可塑性繊維
糸と強化繊維糸または側繊維の混繊糸を型に巻き付けて
加圧、加熱するフィラメントワインディング法も知られ
ている。
Furthermore, for molded products such as cone shapes, a filament winding method is also known in which a mixed fiber yarn of thermoplastic fiber yarn and reinforcing fiber yarn or side fiber is wound around a mold, pressurized, and heated.

そして、フィラメントワインディング法の巻き付は糸や
強化繊維と熱可塑性繊維とからなる織物の経緯糸等とし
て好適に用いられる強化繊維と熱可塑性繊維とが緊密に
混合した混合繊維トウが特開昭60−209034号公
報によって知られている。このトウの製造には従来公知
の混繊技術が用いられる。すなわち、絶縁性の熱可塑性
繊維とアラミド繊維やガラス繊維のような絶縁性の強化
繊維との混繊は、一般にそれら繊維には、溶融紡糸や延
伸といった製糸工程で、制電剤と油脂類の潤滑剤あるい
は乳化を必要とする場合はさらにポリオキシエチレンの
オレイルエーテルのような乳化剤とを含む油剤が付与さ
れていて、その油剤中の制電剤。
In the filament winding method, a mixed fiber tow in which reinforcing fibers and thermoplastic fibers are intimately mixed, which is suitably used as yarn or warp threads of textiles made of reinforcing fibers and thermoplastic fibers, is used in Japanese Patent Application Laid-Open No. 60-60. It is known from the publication No.-209034. Conventionally known mixed fiber technology is used to manufacture this tow. In other words, when blending insulating thermoplastic fibers with insulating reinforcing fibers such as aramid fibers and glass fibers, these fibers are generally treated with antistatic agents and oils during the spinning process such as melt spinning and drawing. If a lubricant or emulsification is required, an oil agent containing an emulsifier such as polyoxyethylene oleyl ether is added, and an antistatic agent in the oil agent.

乳化剤が界面活性を有し吸水して繊維表面に導電性を与
えるから、それぞれのマルチフィラメント糸を高圧電極
に接触させてそれぞれの糸のフィラメントをクローンカ
による反発で開繊させ、その開繊した状態で両糸を重ね
てから一本に纏める方法、あるいはさらに纏めた糸を流
体(−数的には空気)噴射ノズル等の交絡処理ノズルに
通して混繊を一層促進させる方法によって行われる。ま
た、熱可塑性繊維と炭素繊維やステンレス鋼繊維のよう
な導電性の強化繊維との混繊は、導電性のマルチフィラ
メント糸を電気開繊させることはできないから、それら
のマルチフィラメント糸を一緒に交絡処理ノズルに通し
て混繊交絡させる方法によって行われる。
Since the emulsifier has surface activity and absorbs water, giving conductivity to the fiber surface, each multifilament yarn is brought into contact with a high-voltage electrode and the filaments of each yarn are opened by the repulsion by the cloner, and the opened state is created. This can be done either by overlapping both yarns and then combining them into a single yarn, or by passing the combined yarn through an entangling treatment nozzle such as a fluid (in terms of numbers, air) jetting nozzle to further promote the mixing. In addition, when mixing thermoplastic fibers with conductive reinforcing fibers such as carbon fibers or stainless steel fibers, conductive multifilament yarns cannot be electrospread, so these multifilament yarns cannot be mixed together. This is carried out by passing the fibers through an entangling treatment nozzle to mix and entangle the fibers.

〈発明が解決しようとする課題〉 成形品にする際の変形量が制限されず、ポリカーボネー
ト樹脂が強化繊維によく入り込んでポリカーボネート樹
脂と強化繊維とがよく密着し、強化繊維によるポリカー
ボネート樹脂の補強が十分行われる成形品の成形方法は
、マトリックス樹脂用にポリカーボネートマルチフィラ
メント糸を用いる方法であり、特に混繊織物や混繊糸等
を作るのが簡単となる。しかし、従来ポリカーボネート
が繊維形状で用いられるのは、光ファイバーのような特
殊な目的のためのものであり、決して織編物等にするの
に適したものではない。たとえ最終的に織編物等とする
ことを目的としてポリカーボネート繊維が製糸されると
しても、かかる繊維の強伸度特性は織編物としての特性
を付与するになる性能を付与する必要があり、かかる繊
維をマトリックス樹脂用繊維として用いても、成形品に
反りや歪が生じたり、溶融しても強化繊維間に入り込み
にくくて強化繊維と母材樹脂との十分な密着が得られず
、そのために強度に優れた成形品が得られなかったりし
やすいといった問題がある。
<Problems to be solved by the invention> The amount of deformation when forming a molded product is not limited, the polycarbonate resin penetrates into the reinforcing fibers well, the polycarbonate resin and the reinforcing fibers are in close contact with each other, and the reinforcement of the polycarbonate resin by the reinforcing fibers is effective. A well-performed method for molding a molded article is a method using polycarbonate multifilament yarn for the matrix resin, and it is particularly easy to make mixed fiber fabrics, mixed fiber yarns, and the like. However, polycarbonate has conventionally been used in the form of fibers for special purposes such as optical fibers, and is by no means suitable for making into woven or knitted fabrics. Even if polycarbonate fibers are ultimately spun for the purpose of making woven or knitted fabrics, the strength and elongation characteristics of such fibers need to be imparted with performance that will give them the properties of woven or knitted fabrics. Even when used as fibers for matrix resin, warping or distortion occurs in the molded product, and even when melted, it is difficult for the reinforcing fibers to penetrate between the reinforcing fibers, making it difficult to achieve sufficient adhesion between the reinforcing fibers and the matrix resin, resulting in poor strength. There is a problem that it is easy to obtain molded products with excellent quality.

本発明は、上述の問題を解決するためになされたもので
あり、成形品を得るまでの取扱い性に優れ、溶融すると
強化繊維間に入り込み易く、強化繊維との接着性に優れ
、強度の優れた成形品を得ることができる成形品母材樹
脂用ポリカーボネートマルチフィラメント糸の提供を目
的とする。
The present invention was made to solve the above-mentioned problems, and has excellent handling properties until a molded product is obtained, easily penetrates between reinforcing fibers when melted, has excellent adhesiveness with reinforcing fibers, and has excellent strength. The purpose of the present invention is to provide a polycarbonate multifilament yarn for use in molded product base material resin, which allows for the production of molded products.

く課題を解決するための手段〉 本発明はポリカーボネートを溶融紡糸または延伸して得
られたマルチフィラメント糸であって、該マルチフィラ
メント糸の複屈折率が0.010以上0、030以下で
あり、破断伸度が40%以上100%以下であることを
特徴とする成形品母材樹脂用ポリカーボネートマルチフ
ィラメント糸にあり、この構成によって前記目的を達成
する。
Means for Solving the Problems> The present invention provides a multifilament yarn obtained by melt spinning or drawing polycarbonate, wherein the multifilament yarn has a birefringence index of 0.010 or more and 0.030 or less, The present invention provides a polycarbonate multifilament yarn for molded product base material resin characterized by having a breaking elongation of 40% or more and 100% or less, and with this configuration, the above object is achieved.

本発明において、ポリカーボネートは通常の薬剤、例え
ば紫外線吸収剤、光安定剤、難燃剤、防炎剤、染料、顔
料などを含有していても、もしくは製糸段階でこれらを
含有させてもかまわない。
In the present invention, the polycarbonate may contain conventional chemicals, such as ultraviolet absorbers, light stabilizers, flame retardants, flame retardants, dyes, pigments, etc., or may contain these during the spinning step.

ポリカーボネートの溶融紡糸は、通常紡糸温度260〜
330℃にて、断糸の生じない範囲で高い生産性が得ら
れる紡糸速度で巻取ることにより行われる。紡糸工程に
よって得られる糸条は、−数的に未延伸糸(UDY)と
言われ、ポリマーの分子量及び紡糸条件を選択すること
によって、さらに延伸することなく繊維の中心部の平均
複屈折率が0.01〜0.03でかつ破断伸度が40〜
100%の範囲の紡出糸条を得ることができる。
Melt spinning of polycarbonate is usually carried out at a spinning temperature of 260~260°C.
This is carried out by winding at 330° C. at a spinning speed that provides high productivity without causing yarn breakage. The yarn obtained by the spinning process is numerically referred to as undrawn yarn (UDY), and by selecting the molecular weight of the polymer and spinning conditions, the average birefringence of the center of the fiber can be increased without further drawing. 0.01-0.03 and elongation at break 40-
Spun yarns in the range of 100% can be obtained.

かかる配向性の向上した紡出糸条を得るには、ポリカー
ボネートの分子量を上げても良いが、紡糸温度を工程調
子が悪くならない範囲で下げることによっても可能であ
るし、また、紡糸速度を上げることでも可能である。な
かでも、紡糸速度を上げる方法は、高い生産性で配向性
の向上した紡出糸条が得られるので特に有利である0例
えば、分子量122000〜123000のポリカーボ
ネートを用いる場合には、紡糸温度280〜310℃に
て紡糸することができるが、その際700〜1500m
 7分で巻き取ることにより前述の紡出糸条を得ること
ができる。しかしながら、設備的な理由などで上述の如
き紡糸条件が採用できない場合には、得られた未延伸糸
をさらに延伸して複屈折率が0.01〜0.03゜破断
伸度が40〜100%の範囲内となるようにしてもよい
。未延伸糸の延伸は、乾熱まなは温熱で適当な温度に加
熱し、適当な倍率にて延伸する従来公知の延伸方法がそ
のまま採用できるが、特に90〜98℃の温水中または
蒸気による加熱下で行うのが好ましい。
In order to obtain a spun yarn with improved orientation, it is possible to increase the molecular weight of the polycarbonate, but it is also possible to lower the spinning temperature within a range that does not worsen the process condition, or to increase the spinning speed. It is also possible. Among these methods, the method of increasing the spinning speed is particularly advantageous because it yields spun yarn with high productivity and improved orientation.For example, when using polycarbonate with a molecular weight of 122,000 to 123,000, the spinning temperature is 280 to 280. Can be spun at 310℃, but at that time 700~1500m
The above-mentioned spun yarn can be obtained by winding in 7 minutes. However, if the above-mentioned spinning conditions cannot be adopted for reasons such as equipment, the obtained undrawn yarn may be further stretched to achieve a birefringence of 0.01 to 0.03 degrees and an elongation at break of 40 to 100 degrees. It may be within the range of %. For stretching the undrawn yarn, conventionally known stretching methods in which the yarn is heated to an appropriate temperature with dry heat or warm heat and stretched at an appropriate magnification can be used as is, but in particular, heating in hot water at 90 to 98°C or with steam can be used. Preferably done below.

なお、紡糸工程や延伸工程、さらにはかかる糸条を後で
布帛として用いる場合はこれらの各工程で、糸条に水量
外の油剤や糊剤等を使用しないのが好ましい。油剤や糊
剤等は、繊維が溶融して強化繊維間に侵入するのを防げ
たり、母材樹脂の性能を低下させたりするだけでなく、
紡糸温度と同程度の成形温度で熱分解してガスを発生し
易く、そのために成形品にボイドや欠陥を生じさせ、表
面に窪みを生じさせたりする。したがって、油剤や糊剤
は、成形工程の前段階、例えば布帛などの状態のとき精
練工程で除去可能な場合のみに使用でき、その際容易に
除去し得るようなものを選択する。通常、紡糸工程ある
いは延伸工程において、プロピレンオキサイドとエチレ
ンオキサイドの共重合体で分子量が1000〜2000
程度のポリエーテル系油剤に制電剤としてオレイルホス
フェートカリウム塩等のアニオン活性剤を少量加えたも
のが油剤として用いられるが、このような油剤ならば通
常の溶剤や洗剤を用いて洗浄し、次に温水を用いて溶剤
や洗剤を除去した後、脱水して乾煤する精練工程で十分
除去することができる。また、糊剤も通常用いられてい
るようなものであれば、同様に精練工程で除去できる。
In addition, in the spinning process, the drawing process, and when the yarn is later used as a fabric, it is preferable not to use any oil or sizing agent other than the amount of water on the yarn. Oils, glues, etc. not only prevent the fibers from melting and entering between the reinforcing fibers, but also reduce the performance of the base material resin.
It tends to thermally decompose and generate gas at a molding temperature comparable to the spinning temperature, which causes voids and defects in molded products, and causes dents on the surface. Therefore, oils and glues can be used only when they can be removed in the scouring process prior to the molding process, for example when they are in the form of fabric, and those that can be easily removed at that time are selected. Usually, in the spinning or drawing process, a copolymer of propylene oxide and ethylene oxide with a molecular weight of 1000 to 2000 is used.
The oil used is a polyether oil with a small amount of anion activator such as oleyl phosphate potassium salt added as an antistatic agent. Solvents and detergents can be sufficiently removed through a scouring process in which the solvents and detergents are removed using warm water, then dehydrated and dried. Furthermore, if the sizing agent is a commonly used sizing agent, it can be similarly removed in the scouring process.

以上に説明した本発明のポリカーボネートマルチフィラ
メント糸は、短繊維デニールを1〜40de、好ましく
は1〜15deの範囲にして、゛糸デニールを強化繊維
の糸デニールに適当に合わせるようにするのが好ましい
。短繊維デニールがlde未満では、紡糸、延伸あるい
はその後の工程で毛羽や短繊維切れが発生し易かったり
、成形溶融時の気泡抜けが悪くなったりするし、40d
eを超えると布帛にした場合のドレープ性がなくなった
り、強化繊維との混繊糸を得る場合に均一な混繊糸が得
にくくなったり、成形溶融時の強化繊維間への侵入性が
悪くなったりする。また、糸デニールについては成形品
における強化繊維の体積分率すなわち、成形品の体積(
重量を密度で割った値)に対する強化繊維の体積(重量
を密度で割った値)の比率が40〜70%の範囲が好ま
しいので、このような体積分率が得やすいように強化繊
維の糸デニールに対して決定すればよい。
It is preferable that the polycarbonate multifilament yarn of the present invention described above has a short fiber denier in the range of 1 to 40 de, preferably 1 to 15 de, so that the yarn denier suitably matches the yarn denier of the reinforcing fibers. . If the short fiber denier is less than lde, fuzz or short fiber breakage will easily occur during spinning, drawing or subsequent processes, and air bubbles will not come out easily during molding and melting.
If it exceeds e, drapability will be lost when made into a fabric, it will be difficult to obtain a uniform mixed yarn with reinforcing fibers, and the penetration between reinforcing fibers will be poor during molding and melting. It happens. Regarding yarn denier, the volume fraction of reinforcing fibers in the molded product, that is, the volume of the molded product (
The ratio of the volume (weight divided by density) of reinforcing fibers to (weight divided by density) is preferably in the range of 40 to 70%. It is sufficient to decide on the denier.

く作用〉 以上のような本発明のポリカーボネートマルチフィラメ
ント糸は破断伸度100%以下、複屈折率0.01以上
の特性を示すものであるから、交絡処理ノズルで強化繊
維と共に混繊糸にする場合、単独で織編物等の布帛にす
る場合、強化繊維と交織で織物にする場合、フィラメン
トワイディング法で強化繊維と共に型に巻き付ける場合
等における取扱い性がサイジング等を行わなくても良好
で、均一な混繊糸、布帛1巻き付は状態等が得られると
いう効果を奏する。これについて、複屈折率が0.01
より低いと混繊、製編織2巻き付けの工程で掛かる張力
によってポリカーボネートマルチフィラメント糸が引き
伸ばされ易く、そのために張力斑が糸足差を与えてルー
プや引き吊りが生じ均一な混繊糸、布帛1巻き付は状態
が得られなくなる。
Effects> Since the polycarbonate multifilament yarn of the present invention as described above exhibits the characteristics of a breaking elongation of 100% or less and a birefringence of 0.01 or more, it is made into a mixed fiber yarn with reinforcing fibers using an entangling treatment nozzle. In this case, it is easy to handle without sizing, etc., when it is used alone to make a fabric such as a woven or knitted fabric, when it is mixed with reinforcing fibers to make a fabric, or when it is wrapped around a mold together with reinforcing fibers using the filament winding method. Uniform mixed fiber yarn and one wrap of fabric have the effect of obtaining the desired condition. Regarding this, the birefringence index is 0.01
If it is lower, the polycarbonate multifilament yarn is likely to be stretched due to the tension applied during the two-winding process of blending, weaving, weaving, and wrapping.As a result, uneven tension causes differences in yarn length, resulting in loops and hangings, resulting in a uniform blended yarn, Fabric 1 Wrapping makes it impossible to obtain a state.

一方、破断伸度が40%より低く、複屈折率が0.03
以上と配向度が高いと、繊維強度も大きいから、破断伸
度が数%以下といった極端に低い場合は別として、前述
の各工程における取扱い性は良好であるが、成形品の母
材樹脂とすべく加熱溶融した際、収縮が大きくて流れも
悪く、そのために強化繊維間に空隙を生じたり、成形品
に反りや歪を生じ易い。
On the other hand, the elongation at break is lower than 40% and the birefringence is 0.03.
If the degree of orientation is higher than the above, the fiber strength is also high, so handleability in each of the above-mentioned processes is good, except when the elongation at break is extremely low, such as a few percent or less. When heated and melted, the shrinkage is large and the flow is poor, which tends to create voids between the reinforcing fibers and cause warping and distortion in the molded product.

本発明のポリカーボネートマルチフィラメント糸は、複
屈折率が0.01以上0.03以下、破断伸度が40%
以上100%以下といった特定の範囲内にあるから、母
材樹脂とするなめに溶融したとき収縮することが少なく
て流れ性がよく、強化繊維間に侵入して強化繊維との接
着力が強く、優れた成形品を得ることができるという効
果を奏する。
The polycarbonate multifilament yarn of the present invention has a birefringence of 0.01 to 0.03 and a breaking elongation of 40%.
Since it is within a specific range of 100% or less, it does not shrink when melted as a base material resin, has good flowability, penetrates between reinforcing fibers, and has strong adhesive strength with reinforcing fibers. The effect is that excellent molded products can be obtained.

なお、以上に説明した本発明のポリカーボネートマルチ
フィラメント糸による効果を十分に発揮させるためには
、強化繊維も、少なくとも本発明のポリカーボネートマ
ルチフィラメント糸と共に用いる前の段階で、油剤や糊
剤等が付着されていないことが望ましく、強化繊維に油
剤や糊剤等が用いられている場合は、例えば洗浄や熱分
解で除去すればよい。また、強化繊維がポリカーボネー
トの溶融紡糸温度と同程度の成形温度で熱分解や強度劣
化を起こさないものであることも重要であるが、ポリカ
ーボネートはポリエーテルエーテルケトン(PEEK)
やポリエーテルイミド(PE工)といった他のエンジニ
アリングプラスチックに比べ、比較的低温で成形可能な
ため、炭素繊維。
In addition, in order to fully exhibit the effects of the polycarbonate multifilament yarn of the present invention as explained above, the reinforcing fibers must also be coated with an oil, a sizing agent, etc. at least before being used together with the polycarbonate multifilament yarn of the present invention. If the reinforcing fibers are coated with oil or glue, they can be removed, for example, by washing or thermal decomposition. It is also important that the reinforcing fibers do not undergo thermal decomposition or strength deterioration at the same molding temperature as the melt spinning temperature of polycarbonate.
Compared to other engineering plastics such as polyester and polyetherimide (PE), carbon fiber can be molded at relatively low temperatures.

セラミック繊維、ガラス繊維、アラミド繊維といったあ
らゆるものを強化繊維として用いることができる。本発
明のポリカーボネートマルチフィラメント糸を母材樹脂
用として用い、上述の如き強化繊維で補強した成形品は
、耐衝撃性、絶縁性。
Anything such as ceramic fiber, glass fiber, or aramid fiber can be used as the reinforcing fiber. Molded products using the polycarbonate multifilament yarn of the present invention as a base material resin and reinforced with the above-mentioned reinforcing fibers have impact resistance and insulation properties.

耐候性、低吸湿性、力学特性が、熱硬化性複合成形品に
比較して格段に優れているなめ、スポーツ用品、電気機
器、自動車・車両、タンクなどの分野で好適に用いられ
る。
Because it has much better weather resistance, low moisture absorption, and mechanical properties than thermosetting composite molded products, it is suitable for use in fields such as sporting goods, electrical equipment, automobiles and vehicles, and tanks.

〈実施例〉 以下、さらに本発明を実施例によって説明する。<Example> The present invention will be further explained below with reference to Examples.

実施例1 ポリカーボネート(帝人化成■製パンライトし−122
5)を溶融温度290℃70金温度280℃1巻取速度
1300m/分で、水を付着させながら巻取り、900
de /100fil野マルチフィラメント糸を得た。
Example 1 Polycarbonate (Teijin Kasei Panlite-122)
5) was wound at a melting temperature of 290°C, 70°C, a gold temperature of 280°C, and a winding speed of 1,300 m/min, while adhering water.
A multifilament yarn of de/100fil was obtained.

この糸は破断強度2jg/de 、破断伸度73%、複
屈折率0.018であった。この糸と1800de/3
000filの炭素繊維マルチフィラメント(住友バー
キュレス■製マグナマイトAS41とを、それぞれ無撚
で取出してフィードローラー上で重ね、フィードローラ
ーと送り速度を同一にしたデリベリローラーとの間で1
0mmφのアルミナ製丸棒に120°の接触角度で接触
させて、ポリカーボネート繊維を摩擦帯電により開繊さ
せた。このとき、ポリカーボネート繊維の開繊につられ
て、炭素繊維も若干開繊した。デリベリローラーを出た
糸は巻取り機に巻取った。巻き取られた糸は、炭素繊維
の間にかなりポリカーボネート繊維が入り込んでいる混
合糸になっていた。この混繊糸をサイジングすることな
く経、緯糸に用いて、目付300g/rn’の平織を得
た。この平m物の10枚を同一方向に揃えて積層し、2
5眩/−の圧力で挟圧して、室温から250℃まで10
分で昇温し、250℃に5分間保った後、50℃まで1
5分で冷却して平板成形品を得な。この成形品には反り
や歪がなく、表面が平滑で内部に空孔は認められず、J
IS K6911の測定法による3点曲げ強度が経方向
77kg/awn2.緯方向75 kg / mm 2
と良好な結果を示した。この成形品の炭素繊維の体積分
率は約57%であった。
This yarn had a breaking strength of 2 jg/de, a breaking elongation of 73%, and a birefringence of 0.018. This thread and 1800de/3
000fil of carbon fiber multifilament (Magnamite AS41 manufactured by Sumitomo Vercules ■) was taken out without twisting, stacked on a feed roller, and then placed between the feed roller and a delivery roller with the same feeding speed.
The polycarbonate fibers were brought into contact with a 0 mmφ alumina round rod at a contact angle of 120° to open the polycarbonate fibers by frictional charging. At this time, as the polycarbonate fibers were opened, the carbon fibers were also slightly opened. The thread that came out of the delivery roller was wound into a winder. The wound yarn was a mixed yarn with a considerable amount of polycarbonate fibers interwoven between the carbon fibers. This mixed fiber yarn was used for the warp and weft yarns without sizing to obtain a plain weave with a basis weight of 300 g/rn'. Stack 10 of these flat sheets in the same direction, and
10°C from room temperature to 250°C by squeezing with a pressure of 5 dazzles/-.
After increasing the temperature to 250℃ for 5 minutes, the temperature was raised to 50℃ for 1 minute.
Cool in 5 minutes to obtain a flat plate molded product. This molded product has no warpage or distortion, has a smooth surface, and has no internal pores.
The three-point bending strength according to IS K6911 measurement method is 77kg/awn2. Latitude direction 75 kg/mm2
showed good results. The volume fraction of carbon fiber in this molded article was about 57%.

実施例2 ポリカーボネート(帝人化成■製パンライトL−122
5)を溶融温度290℃2口金温度280℃9巻取速度
1300m /分で、ポリエーテル系油剤にアニオン系
活性剤を添加した通常ポリエステル等の紡糸に使用する
紡糸油剤を付与して巻取った。得られた糸は、破断強度
2、Ig/de 、破断伸度85%、複屈折率0.01
5であった。
Example 2 Polycarbonate (Teijin Kasei Panlite L-122
5) was applied with a spinning oil usually used for spinning polyester, etc., which is a polyether oil with an anionic activator added thereto, at a melting temperature of 290°C, a spindle temperature of 280°C, a winding speed of 1300 m/min, and then wound up. . The obtained yarn has a breaking strength of 2, Ig/de, a breaking elongation of 85%, and a birefringence of 0.01.
It was 5.

この糸を経緯糸に用いて平織物を製織し、得られた織物
を洗剤(スコアロール)を用いて洗浄した後、60℃純
水で水洗いし、100℃で乾燥しな。
A plain woven fabric is woven using this yarn as warp and warp yarns, and the resulting woven fabric is washed with a detergent (score roll), washed with pure water at 60°C, and dried at 100°C.

乾燥後の体積目付は70csa’/−であった。一方、
強化繊維として1800de/ 3000f i Iの
炭素繊維マルチフィラメント糸(東し■製トレカT−3
00+の平織を用い、この織物には糊剤が付着している
ため、350℃の熱風乾燥機中で30分間処理して糊剤
を取り除いた。この処理後の炭素繊維織物の体積目付は
111 cm3/nfであった。
The volume basis weight after drying was 70 csa'/-. on the other hand,
Carbon fiber multifilament yarn of 1800 de/3000 fi I was used as reinforcing fiber (Trading card T-3 manufactured by Toshi ■)
A 00+ plain weave was used, and since this fabric had a sizing agent attached to it, it was treated in a hot air dryer at 350° C. for 30 minutes to remove the sizing agent. The volume basis weight of the carbon fiber fabric after this treatment was 111 cm3/nf.

以上の付着物を除去したポリカーボネート織物10枚と
炭素繊維織!1IJ9枚を交互に、かつそれぞれの織物
について順次90°づつ交差させて経緯の差を打ち消す
ように重ね合わせて積層し、25m/rrrの圧力で挟
圧して、室温から250℃まで10分で昇温し250℃
に5分間保った後、50℃まで15分で冷却して平板成
形品を得た。この成形品には反りや歪がなく、表面が平
滑で内部に空孔は認められず、JIS K6911の測
定法による3点曲げ強度が、経方向78kg/IIm”
 、緯方向80 kg / mm ”と良好な結果を示
した。この成形品の炭素繊維の体積分率は約59%であ
った。
10 pieces of polycarbonate fabric and carbon fiber fabric with the above deposits removed! Nine pieces of 1IJ were stacked alternately and each fabric was crossed at 90 degrees in order to cancel out the difference in warp and weave, and was pressed at a pressure of 25 m/rrr and heated from room temperature to 250°C in 10 minutes. Warm 250℃
After being maintained at 50° C. for 5 minutes, the mixture was cooled to 50° C. for 15 minutes to obtain a flat plate molded product. This molded product has no warpage or distortion, has a smooth surface, and has no internal pores, and has a three-point bending strength of 78 kg/IIm in the warp direction according to the JIS K6911 measurement method.
, 80 kg/mm'' in the latitudinal direction.The volume fraction of carbon fiber in this molded product was approximately 59%.

〈発明の効果〉 本発明のポリカーボネートマルチフィラメント糸は、強
化繊維によって補強された成形品を得るのに好適に用い
られ、反りや歪のない、内部に気泡もない、強度に優れ
た成形品を比較的安価に作ることができるといった効果
を奏する。
<Effects of the Invention> The polycarbonate multifilament yarn of the present invention can be suitably used to obtain molded products reinforced with reinforcing fibers, and can produce molded products with excellent strength without warping or distortion, and without internal air bubbles. It has the advantage of being relatively inexpensive to manufacture.

なお、本発明のポリカーボネートマルフィラメント糸は
、強化繊維を共に用いる例に限らず単独に成形品の成形
に用いてもよい。
Note that the polycarbonate multifilament yarn of the present invention is not limited to the example in which reinforcing fibers are used together, and may be used alone for molding a molded article.

Claims (1)

【特許請求の範囲】[Claims] ポリカーボネートを溶融紡糸またはさらに延伸して得ら
れたマルチフィラメント糸であって、該マルチフィラメ
ント糸の複屈折率が0.01以上0.03以下、破断伸
度が40%以上100%以下であることを特徴とする成
形品母材樹脂用ポリカーボネートマルチフィラメント糸
A multifilament yarn obtained by melt spinning or further drawing polycarbonate, the multifilament yarn having a birefringence of 0.01 or more and 0.03 or less and a breaking elongation of 40% or more and 100% or less. Polycarbonate multifilament yarn for molded product base material resin.
JP26042890A 1990-10-01 1990-10-01 Polycarbonate multifilament yarn for matrix resin of molded article Pending JPH04146210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26042890A JPH04146210A (en) 1990-10-01 1990-10-01 Polycarbonate multifilament yarn for matrix resin of molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26042890A JPH04146210A (en) 1990-10-01 1990-10-01 Polycarbonate multifilament yarn for matrix resin of molded article

Publications (1)

Publication Number Publication Date
JPH04146210A true JPH04146210A (en) 1992-05-20

Family

ID=17347799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26042890A Pending JPH04146210A (en) 1990-10-01 1990-10-01 Polycarbonate multifilament yarn for matrix resin of molded article

Country Status (1)

Country Link
JP (1) JPH04146210A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518505B1 (en) 1999-11-19 2003-02-11 Hitachi Cable, Ltd. Ultrafine copper alloy wire and process for producing the same
US6627009B1 (en) 1999-11-19 2003-09-30 Hitachi Cable Ltd. Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same
JP2009084736A (en) * 2007-09-28 2009-04-23 Daiwabo Co Ltd Method for producing polycarbonate fiber
JP2009084737A (en) * 2007-09-28 2009-04-23 Daiwabo Co Ltd Polycarbonate split type conjugate fiber, fiber aggregate and nonwoven fabric using the same
JP2010248684A (en) * 2009-03-27 2010-11-04 Daiwabo Holdings Co Ltd Polycarbonate fiber
JP2012067170A (en) * 2010-09-22 2012-04-05 Teijin Fibers Ltd Fiber-reinforced resin composition
JP2018009277A (en) * 2016-07-05 2018-01-18 三菱ケミカル株式会社 Fiber and fabric
JPWO2021060179A1 (en) * 2019-09-27 2021-04-01

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518505B1 (en) 1999-11-19 2003-02-11 Hitachi Cable, Ltd. Ultrafine copper alloy wire and process for producing the same
US6627009B1 (en) 1999-11-19 2003-09-30 Hitachi Cable Ltd. Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same
US6751855B2 (en) 1999-11-19 2004-06-22 Hitachi Cable, Ltd. Process for forming an ultrafine copper alloy wire
JP2009084736A (en) * 2007-09-28 2009-04-23 Daiwabo Co Ltd Method for producing polycarbonate fiber
JP2009084737A (en) * 2007-09-28 2009-04-23 Daiwabo Co Ltd Polycarbonate split type conjugate fiber, fiber aggregate and nonwoven fabric using the same
JP2010248684A (en) * 2009-03-27 2010-11-04 Daiwabo Holdings Co Ltd Polycarbonate fiber
JP2012067170A (en) * 2010-09-22 2012-04-05 Teijin Fibers Ltd Fiber-reinforced resin composition
JP2018009277A (en) * 2016-07-05 2018-01-18 三菱ケミカル株式会社 Fiber and fabric
JPWO2021060179A1 (en) * 2019-09-27 2021-04-01
WO2021060179A1 (en) 2019-09-27 2021-04-01 株式会社クラレ Polycarbonate fibers, fiber structure and resin composite body
CN114729470A (en) * 2019-09-27 2022-07-08 株式会社可乐丽 Polycarbonate fiber, fiber structure, and resin composite

Similar Documents

Publication Publication Date Title
US6139956A (en) Molding material and method for producing the same
US5455114A (en) Water soluble polyvinyl alcohol-based fiber
JP5772012B2 (en) Carbon fiber for filament winding molding and method for producing the same
WO2000053831A1 (en) Split type conjugate fiber, method for producing the same and fiber formed article using the same
US5292389A (en) Process for producing nonwoven fabric
JPH04146210A (en) Polycarbonate multifilament yarn for matrix resin of molded article
KR950010291B1 (en) Stitching thread of carbon fiber
JP2014196584A (en) Method for producing nonwoven fabric and method for producing composite material
CN105803571A (en) FDY/POY different shrinkage combined filament yarn of biomass nylon 56 fiber/PET fiber and preparing method thereof
JP6836765B2 (en) Method for manufacturing drawn multifilament yarn
JPH02308824A (en) Material for thermoplastic composite
JPH04183729A (en) Molding material for thermoplastic composite
JPS59130309A (en) Production of yarn mix of different shrinkage
JP3345661B2 (en) Yarn for thermoplastic composites
KR960005469B1 (en) Conjugated for strand molding
JPS6395915A (en) Manufacture of composite material
TW202033850A (en) Precursor fiber bundle production method, carbon fiber bundle production method, and carbon fiber bundle
JP2600209B2 (en) Composite fiber yarn for molding and composite fiber fabric for molding
JPH01280017A (en) Multifilament yarn for formed product matrix resin
JPH0359038A (en) Precursor of thermoplastic composite material and its production
JPH01280031A (en) Production of conjugated yarn
KR102219084B1 (en) Interlace composite yarn with high strength and elongation and method for producing the same
JPH02216295A (en) Production of highly strong polyester fiber paper
JPH04222246A (en) Production of multiple interlaced yarn
JP2004052173A (en) High-strength polyester monofilament and method for producing the same