JPH04144066A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH04144066A
JPH04144066A JP2269033A JP26903390A JPH04144066A JP H04144066 A JPH04144066 A JP H04144066A JP 2269033 A JP2269033 A JP 2269033A JP 26903390 A JP26903390 A JP 26903390A JP H04144066 A JPH04144066 A JP H04144066A
Authority
JP
Japan
Prior art keywords
fuel
electrode
fuel gas
power generation
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2269033A
Other languages
Japanese (ja)
Inventor
Nobuhiro Iwasa
岩佐 信弘
Norihisa Kamiya
規寿 神家
Hideki Inaka
伊中 秀樹
Yuji Sawada
雄治 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2269033A priority Critical patent/JPH04144066A/en
Publication of JPH04144066A publication Critical patent/JPH04144066A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the energy efficiency of a fuel cell as a whole by providing a decompressing means and a pressurizing means in reasonable arrangement, wherein the decompressing means is required for fuel gas supply to the fuel electrode side and the pressurizing means is required for supplying oxygen containing gas to the oxygen electrode side. CONSTITUTION:A fuel modifier 10 and a transformer 11 are installed in a modified fuel gas supply path 9, and also a decompressing means 12 is installed which decompresses the modified fuel gas from the modifier 10 and transformer 11 down to a specified level and supplies to the fuel electrode 1a side of a power generation part 1. On the other hand, a pressurizing means 14 for pressurizing and supplying air to the air electrode 1b side is installed in an air supply path 4, which is connected with the air electrode (oxygen electrode) 1b side of the power generation part 1. That is, the pressure energy possessed by the modified fuel gas is consumed for power generation at a turbine part 15a, and thereby supplying the fuel electrode 1a is performed. Pressurized supplying of the air electrode 1b side is made, on the other hand, with the modified fuel gas decompressed and the air pressurized by a blower part 15b due to power generation by the turbine part 15a.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、燃料電池に関し、詳しくは、発電部の燃料極
側に供給する燃料ガスを減圧する減圧手段、及び、前記
発電部の酸素極側に酸素含有ガスを加圧供給する加圧手
段を備える燃料電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel cell, and more specifically, a pressure reducing means for reducing the pressure of fuel gas supplied to the fuel electrode side of a power generation section, and an oxygen electrode of the power generation section. The present invention relates to a fuel cell equipped with a pressurizing means for supplying oxygen-containing gas under pressure to the side thereof.

〔従来の技術〕[Conventional technology]

従来、上記形式の燃料電池においては、第2図に示すよ
うに、発電部(1)の燃料極(1a)側に供給する燃料
ガス(第2図の例では、原燃料ガスを改質装置(10,
11)により改質した改質燃料ガス)を減圧する減圧手
段として、圧力調整弁(V)を装備し、また、発電部(
1)の酸素極(lb)側に酸素含有ガス(第2図の例で
は空気)を加圧供給する加圧手段として、電動ファン(
F)を装備していた。
Conventionally, in the above type of fuel cell, as shown in FIG. 2, fuel gas is supplied to the fuel electrode (1a) side of the power generation section (1) (in the example shown in FIG. (10,
A pressure regulating valve (V) is equipped as a pressure reducing means for reducing the pressure of the reformed fuel gas (reformed fuel gas reformed by
1) An electric fan (
It was equipped with F).

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかし、上記従来構成では、燃料電池の運転において、
酸素含有ガス加圧供給用の電動ファン(F)に対する電
力供給か必要であるために、燃料電池全体としてのエネ
ルギ効率の向上か制限される問題かあった。
However, in the above conventional configuration, in the operation of the fuel cell,
Since it is necessary to supply electric power to the electric fan (F) for supplying the oxygen-containing gas under pressure, there is a problem in that the improvement of the energy efficiency of the fuel cell as a whole is limited.

本発明の目的は、燃料極側への燃料ガス供給に要する減
圧手段、及び、酸素極側への酸素含有ガス供給に要する
加圧手段を合理的に構成することにより、上記問題の解
消を図る点にある〔課題を解決するための手段〕 本発明による燃料電池の特徴構成は、発電部の燃料極側
に供給する燃料ガスを減圧する減圧手段、及び、前記発
電部の酸素極側に酸素含有ガスを加圧供給する加圧手段
を備える構成において、 前記減圧手段が、燃料ガスの圧力エネルギを動力発生に
消費させて、燃料ガスを減圧するように構成され、前記
加圧手段が、前記減圧手段での前記発生動力により酸素
含有ガスに対して加圧作動するように構成されているこ
とにあり、その作用・効果は次の通りである。
An object of the present invention is to solve the above problems by rationally configuring the depressurizing means required for supplying fuel gas to the fuel electrode side and the pressurizing means required for supplying oxygen-containing gas to the oxygen electrode side. [Means for Solving the Problems] The characteristic configuration of the fuel cell according to the present invention includes a pressure reducing means for reducing the pressure of the fuel gas supplied to the fuel electrode side of the power generation section, and a pressure reduction means for reducing the pressure of the fuel gas supplied to the fuel electrode side of the power generation section; In the configuration including a pressurizing means for supplying the contained gas under pressure, the pressure reducing means is configured to reduce the pressure of the fuel gas by consuming the pressure energy of the fuel gas to generate power, and the pressurizing means The device is configured to pressurize the oxygen-containing gas using the power generated by the pressure reducing means, and its functions and effects are as follows.

〔作 用〕[For production]

つまり、上記特徴構成によれば、燃料ガスは、上記減圧
手段において保育圧力エネルギか動力発生に消費される
ことで減圧されて、発電部の燃料極側に供給され、一方
、酸素含有ガスは、燃料ガスの圧力エネルギをもって減
圧手段で発生させた上記動力による加圧手段の加圧作動
により加圧されて、発電部の酸素極側に供給される。
That is, according to the characteristic configuration described above, the fuel gas is depressurized by being consumed in the pressure reducing means to generate power and is supplied to the fuel electrode side of the power generation section, while the oxygen-containing gas is The fuel gas is pressurized by the pressurizing operation of the pressurizing means using the power generated by the pressure reducing means using the pressure energy of the fuel gas, and is supplied to the oxygen electrode side of the power generation section.

すなわち、先述の従来構成では圧力調整弁にての単なる
ロスとなっていた燃料ガスの圧力エネルギを、減圧手段
での燃料ガス減圧過程で動力に変換して取り出すことに
より、その圧力エネルギを加圧手段の駆動エネルギに有
効利用して、酸素含有ガスを加圧するのである。
In other words, the pressure energy of the fuel gas, which was a mere loss at the pressure regulating valve in the conventional configuration described above, is converted into power and taken out during the fuel gas pressure reduction process by the pressure reduction means, thereby pressurizing the pressure energy. The driving energy of the means is effectively used to pressurize the oxygen-containing gas.

〔発明の効果〕〔Effect of the invention〕

以上作用の結果、酸素含有ガスの加圧のために電動ファ
ンへの電力供給を必要としていた従来装置に比べ、その
ような酸素含有ガスの加圧のための電力供給を不要にで
きることで、燃料電池全体としてのエネルギ効率を大き
く向上し得るに至った。
As a result of the above actions, compared to conventional equipment that required power supply to an electric fan to pressurize oxygen-containing gas, it is possible to eliminate the need for power supply to pressurize oxygen-containing gas, thereby reducing fuel consumption. It has now been possible to greatly improve the energy efficiency of the battery as a whole.

〔実施例〕〔Example〕

次に実施例を説明する。 Next, an example will be described.

第1図は燃料電池の装置構成を示し、(1)は電解質材
を収納した多数のセルを内装する発電部、(2)は原燃
料ガスとして都市ガスを供給する原燃料ガス供給路であ
り、この原燃料ガス供給路(2)には脱硫器(3)を介
装しである。
Figure 1 shows the device configuration of a fuel cell, in which (1) is a power generation section that includes a large number of cells containing electrolyte materials, and (2) is a raw fuel gas supply path that supplies city gas as raw fuel gas. A desulfurizer (3) is installed in this raw fuel gas supply path (2).

また、(4)は空気(酸素含有ガスの一例)を供給する
空気供給路である。
Further, (4) is an air supply path that supplies air (an example of oxygen-containing gas).

(5)は発電部(1)に対する冷却水の循環路であり、
(6)はその冷却水循環路(5)に介装した気水分離器
である。
(5) is a cooling water circulation path for the power generation section (1),
(6) is a steam/water separator installed in the cooling water circulation path (5).

(7)は水蒸気流路(8)を介し気水分離器(6)から
水蒸気供給を受けるエゼクタであり、このエゼクタ(7
)は、気水分離器(6)からの水蒸気供給により原燃料
ガス供給路(2)から都市ガスを吸入して、その吸入都
市ガスと水蒸気を改質系燃料ガス供給路(9)へ送出す
る。
(7) is an ejector that receives steam supply from the steam separator (6) via the steam flow path (8);
) sucks city gas from the raw fuel gas supply line (2) using steam supplied from the steam separator (6), and sends the drawn city gas and steam to the reforming system fuel gas supply line (9). do.

改質系燃料ガス供給路(9)には、改質器(lO)及び
変成器(11)を介装するとともに、それら改質・変成
器(10)、 (II)により改質した改質燃料ガスを
所定の圧力まで減圧して発電部(1)の燃料極(la)
側に供給する減圧手段(12)を介装しである。
The reforming system fuel gas supply path (9) is equipped with a reformer (lO) and a shift converter (11), and the reformer reformed by the reformer/shift converter (10), (II). The fuel gas is depressurized to a predetermined pressure and the fuel electrode (la) of the power generation section (1) is
A decompression means (12) is provided to supply the pressure to the side.

(13)は発電部(1)の燃料極(1a)側から排出さ
れる高温のオフガスを改質用の加熱源として改質器(l
O)に供給するオフガス供給路であり、改質器(10)
においては、都市ガスの主成分であるCH,と水蒸気と
の下記の反応 CH,土水蒸気#H2+CO+CO□ によりH2を生成し、また、変成器(If)においては
、改質器(10)で得られるCOと水蒸気との下記の反
応 CO+水蒸気#H2+CO□ によりH2をさらに増成し、もって、発電部(1)での
実質的燃料となるH2を多量に含む改質燃料ガスを得る
(13) is a reformer (l
This is an off-gas supply path that supplies the gas to the reformer (10).
In the system, H2 is produced by the following reaction between CH, which is the main component of city gas, and water vapor. H2 is further increased by the following reaction of CO and water vapor: CO+steam #H2+CO□, thereby obtaining reformed fuel gas containing a large amount of H2, which becomes the substantial fuel for the power generation section (1).

一方、空気供給路(4)は発電部(1)の空気極(酸素
極)(lb)側に接続し、そして、この空気供給路(4
)には、発電部(1)の空気極(1b)側へ空気を加圧
供給するための加圧手段(14)を介装しである。
On the other hand, the air supply path (4) is connected to the air electrode (oxygen electrode) (lb) side of the power generation section (1).
) is interposed with a pressurizing means (14) for supplying air under pressure to the air electrode (1b) side of the power generating section (1).

改質系燃料ガス供給路(9)における前記減圧手段(1
2)、及び、空気供給路(4)における上記加圧手段(
14)の具体的構成については、それら両手段(12)
、 (14)の構成装置としてターボ給気装置(15)
を設け、そして、そのターボ給気装置(15)における
タービン部(15a)を、改質燃料ガスに対する上記減
圧手段(12)として改質燃料ガス供給路(9)に介装
し、また、そのターボ給気装置(15)においてタービ
ン部(15a)の発生動力により駆動されるブロア部(
15b)を、空気に対する上記加圧手段(14)として
空気供給路(4)に介装しである。
The pressure reducing means (1) in the reforming system fuel gas supply path (9)
2), and the pressurizing means (
Regarding the specific configuration of 14), both means (12)
, Turbo air supply system (15) as a component of (14)
The turbine section (15a) of the turbo air supply device (15) is interposed in the reformed fuel gas supply path (9) as the pressure reducing means (12) for the reformed fuel gas, and the In the turbo air supply system (15), a blower section (
15b) is interposed in the air supply path (4) as the pressurizing means (14) for air.

つまり、改質燃料ガスの保存圧力エネルギをタービン部
(15a)で動力発生に消費させることで、発電部(1
)の燃料極(1a)側へ供給する改質燃料ガスを減圧し
、一方、空気は、タービン部(15a)での発生動力に
よるブロア部(15b)の加圧作動をもって、発電部(
1)の空気極(1b)側へ加圧供給する構成としである
In other words, by consuming the stored pressure energy of the reformed fuel gas to generate power in the turbine section (15a), the power generation section (15a)
), the reformed fuel gas supplied to the fuel electrode (1a) side is reduced in pressure, while the air is pressurized by the blower part (15b) by the power generated in the turbine part (15a), and the air is supplied to the power generation part (
1) is configured to supply pressure to the air electrode (1b) side.

図中、(16)は改質器(lO)で加熱源として利用し
た排ガスの排出路であり、(17)は気水分離器(6)
から余剰の水蒸気を送出する水蒸気路である。
In the figure, (16) is the exhaust gas exhaust path used as a heating source in the reformer (lO), and (17) is the steam separator (6).
This is a water vapor path that sends out excess water vapor.

また、図中省略しであるが、気水分離器(6)には純水
の補給装置を接続しである。
Although not shown in the figure, a pure water supply device is connected to the steam/water separator (6).

(18a)、 (18b)は、改質器(lO)へ供給す
る燃料ガスを改質器(10)通過後の燃料ガスと熱交換
させて予熱する熱交換器であり、(19a)、 (19
b)は、発電部(1)の空気極(lb)側へ供給する空
気を発電部(1)の空気極(lb)側からの高温排出空
気と熱交換させて予熱する熱交換器である。
(18a) and (18b) are heat exchangers that preheat the fuel gas supplied to the reformer (lO) by exchanging heat with the fuel gas that has passed through the reformer (10); 19
b) is a heat exchanger that preheats the air supplied to the air electrode (lb) side of the power generation section (1) by exchanging heat with the high temperature exhaust air from the air electrode (lb) side of the power generation section (1). .

尚、図中(イ)〜(ネ)の各点での状態値の一例は、(
イ)点−−−−−−7,0kg/cm”G  、  1
70°C(ロ)点−−−−−−0,7kg/cm2G 
 、  423°C(ハ)点−・−・ 0.6  kg
/cm2G  、  200°C(ニ)点−−−−−−
0,1kg/cm2G  、  160°C(ネ)点・
−・−0,0kg/cm2G 、  20″C(へ)点
−・−−−0,1kg/cm”G  、  155°C
である。
An example of the state value at each point (a) to (ne) in the figure is (
b) Point---7,0kg/cm"G, 1
70°C (b) point---0.7kg/cm2G
, 423°C (c) point --- 0.6 kg
/cm2G, 200°C (d) point------
0.1kg/cm2G, 160°C (ne) point・
-・-0,0kg/cm2G, 20"C (to) point-----0,1kg/cm"G, 155°C
It is.

〔別実施例〕[Another example]

次に別実施例を列記する。 Next, another example will be listed.

(1)減圧手段(12)には、圧力エネルギを動力に変
換する各種形式の装置を適用できる。
(1) Various types of devices that convert pressure energy into power can be applied to the pressure reducing means (12).

(2)加圧手段(14)には、上記減圧手段(12)の
発生動力をもって加圧作動させるものてあれば、種々の
加圧形式の装置を適用できる。
(2) Various types of pressurizing devices can be applied to the pressurizing means (14), as long as they are pressurized by the power generated by the pressure reducing means (12).

(3)燃料ガスには、改質を施して発電部(1)の燃料
極(la)側に供給するもの、あるいは、改質を施さず
に発電部(1)の燃料極(la)側に供給できるもの、
いずれにしても各種のものを適用できる。
(3) The fuel gas may be reformed and supplied to the fuel electrode (la) side of the power generation section (1), or it may not be reformed and supplied to the fuel electrode (la) side of the power generation section (1). What can be supplied to
In any case, various types can be applied.

また、発電部(1)の酸素極(lb)側へ供給する酸素
含有ガスも、空気に限定されるものではない。
Furthermore, the oxygen-containing gas supplied to the oxygen electrode (lb) side of the power generation section (1) is not limited to air.

(4)原燃料ガスの減圧を要する場合には、原燃料ガス
に対する減圧手段と、酸素含有ガスに対する加圧手段と
に対して、本発明を適用してもよい。
(4) When it is necessary to reduce the pressure of the raw fuel gas, the present invention may be applied to the pressure reducing means for the raw fuel gas and the pressurizing means for the oxygen-containing gas.

(5)燃料電池における各部の構成は、前述実施例の構
成に限定されるものではなく、種々の構成変更が可能で
ある。
(5) The configuration of each part in the fuel cell is not limited to the configuration of the above embodiment, and various configuration changes are possible.

また、減圧手段(12)の発生動力をもって加圧作動せ
る加圧手段(14)に加えて、別動力により酸素含有ガ
スに対して加圧作動させる補助的な加圧手段を付加装備
してもよい。
Furthermore, in addition to the pressurizing means (14) which is pressurized using the power generated by the depressurizing means (12), an auxiliary pressurizing means may be additionally provided to pressurize the oxygen-containing gas using separate power. good.

尚、特許請求の範囲の項に図面との対照を便利にするた
め符号を記すが、該記入により本発明が添付図面の構成
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure of the accompanying drawings by such entry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す装置構成図であり、第
2図は、従来例を示す装置構成図である。 (1)・・・・・・発電部、(la)・・・・・・燃料
極、(lb)・・・・・・酸素極、(12)・・・・・
・減圧手段、(14)・・・・・・加圧手段。
FIG. 1 is a diagram showing the configuration of an apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of a conventional apparatus. (1)...Power generation section, (la)...Fuel electrode, (lb)...Oxygen electrode, (12)...
- Pressure reduction means, (14)... Pressurization means.

Claims (1)

【特許請求の範囲】[Claims] 発電部(1)の燃料極(1a)側に供給する燃料ガスを
減圧する減圧手段(12)、及び、前記発電部(1)の
酸素極(1b)側に酸素含有ガスを加圧供給する加圧手
段(14)を備える燃料電池であって、前記減圧手段(
12)が、燃料ガスの圧力エネルギを動力発生に消費さ
せて、燃料ガスを減圧するように構成され、前記加圧手
段(14)が、前記減圧手段(12)での前記発生動力
により酸素含有ガスに対して加圧作動するように構成さ
れている燃料電池。
A pressure reducing means (12) that reduces the pressure of the fuel gas supplied to the fuel electrode (1a) side of the power generation section (1), and pressurized supply of oxygen-containing gas to the oxygen electrode (1b) side of the power generation section (1). A fuel cell comprising a pressurizing means (14), the depressurizing means (14)
12) is configured to reduce the pressure of the fuel gas by consuming the pressure energy of the fuel gas to generate power, and the pressurizing means (14) uses the power generated by the pressure reducing means (12) to reduce the pressure of the oxygen-containing gas. A fuel cell configured to operate under pressure against gas.
JP2269033A 1990-10-05 1990-10-05 Fuel cell Pending JPH04144066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269033A JPH04144066A (en) 1990-10-05 1990-10-05 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269033A JPH04144066A (en) 1990-10-05 1990-10-05 Fuel cell

Publications (1)

Publication Number Publication Date
JPH04144066A true JPH04144066A (en) 1992-05-18

Family

ID=17466745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269033A Pending JPH04144066A (en) 1990-10-05 1990-10-05 Fuel cell

Country Status (1)

Country Link
JP (1) JPH04144066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926756A1 (en) * 1997-12-11 1999-06-30 dbb fuel cell engines GmbH PEM fuel cell system as well as its method of operation
JPH11260386A (en) * 1998-03-12 1999-09-24 Toshiba Corp Fuel cell power generating plant and its operation control method
KR20150079200A (en) * 2013-12-31 2015-07-08 두산중공업 주식회사 Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926756A1 (en) * 1997-12-11 1999-06-30 dbb fuel cell engines GmbH PEM fuel cell system as well as its method of operation
US6190791B1 (en) 1997-12-11 2001-02-20 Xcellsis Gmbh Proton exchange membrane (PEM) fuel cell system and process of operating same
JPH11260386A (en) * 1998-03-12 1999-09-24 Toshiba Corp Fuel cell power generating plant and its operation control method
KR20150079200A (en) * 2013-12-31 2015-07-08 두산중공업 주식회사 Fuel cell system

Similar Documents

Publication Publication Date Title
JPH0364866A (en) Fuel cell system
JPS5856230B2 (en) power plant
US6887609B2 (en) Fuel cell system and method for operating the fuel cell system
JPS5918830B2 (en) power plant
JP6644144B2 (en) Energy storage using REP with engine
US20020119354A1 (en) Water recovery for a fuel cell system
JP3100791B2 (en) Fuel cell power generator
JP2000501227A (en) Operating method of high-temperature fuel cell equipment and high-temperature fuel cell equipment
JP2002319428A (en) Molten carbonate fuel cell power generating device
JPS6359229B2 (en)
CN110582880A (en) Fuel cell system and method for operating a fuel cell system
JP3079317B2 (en) Molten carbonate fuel cell power generator
JPH04144066A (en) Fuel cell
JPH05506741A (en) device for generating electrical energy
JPS60258862A (en) Fuel cell generation system
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JP3286795B2 (en) Molten carbonate fuel cell power generator
JPH08250144A (en) Fuel cell generating system
JPH04101364A (en) Fuel cell
JPH03280360A (en) Fuel cell power-generating system
JPS6119073A (en) Molten carbonate type fuel cell system
JPH08339815A (en) Fuel cell power generation device
JPH06318464A (en) Operating method of fuel cell/gas turbine composite generating system
JPH07114933A (en) Fuel cell power generator
JPS60198065A (en) Fuel cell power generating system