JPH04142917A - Manufacture of thermoplastic resin film - Google Patents

Manufacture of thermoplastic resin film

Info

Publication number
JPH04142917A
JPH04142917A JP26765990A JP26765990A JPH04142917A JP H04142917 A JPH04142917 A JP H04142917A JP 26765990 A JP26765990 A JP 26765990A JP 26765990 A JP26765990 A JP 26765990A JP H04142917 A JPH04142917 A JP H04142917A
Authority
JP
Japan
Prior art keywords
film
cooling process
stretching
temperature
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26765990A
Other languages
Japanese (ja)
Other versions
JP2841817B2 (en
Inventor
Chisato Nonomura
千里 野々村
Shinji Fujita
伸二 藤田
Toshiro Yamada
山田 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP26765990A priority Critical patent/JP2841817B2/en
Publication of JPH04142917A publication Critical patent/JPH04142917A/en
Application granted granted Critical
Publication of JP2841817B2 publication Critical patent/JP2841817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a film having uniform physical properties in the lateral direction by orienting a film after lateral orientation in the lateral direction by a cooling process satisfying formula (I) showing a lateral orientation temperature or lower and thermally fixing the film when the thermoplastic resin film oriented in at least the lateral direction is manufactured. CONSTITUTION:When a thermoplastic resin film is laterally oriented and thermally fixed and treated, a film after the completion of a lateral orientation process is cooled at an orientation temperature or lower while being oriented in the lateral direction, thus preventing a bowing phenomenon generated by the lateral orientation process. The effect of the decrease of the bowing phenomenon is improved with the increase of the value of the ratio L/W of the length L of a cooling process to the width W of the film, and it is favorable that the length L of the cooling process is selected at L/W>=2.0 of the ratio of the length L of the cooling process to the width W of the film. L/W>=3.0 is further preferable. It is favorable that the film is passed through speed-controllable nip roll groups in the cooling process after the completion of the cooling process and a thermal fixing process, and the effect is enhanced remarkably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は横方向に均一な熱可塑性樹脂フィルムの製造方
法に係わる。更に詳しくは、テンダーによって横延伸、
熱固定される際に生じるボーイング現象を抑制し、横方
向に均一な物理的、化学的及び物理化学的性質を有する
熱可塑性樹脂フィルムの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing a laterally uniform thermoplastic resin film. More specifically, horizontal stretching with a tender,
The present invention relates to a method for producing a thermoplastic resin film that suppresses the bowing phenomenon that occurs during heat setting and has uniform physical, chemical, and physicochemical properties in the lateral direction.

(従来の技術) 熱可塑性樹脂フィルム、特に二軸配向されたポリエステ
ル系、ポリアミド系、ポリオレフィン系、ホリヒニル系
樹脂、ポリフェニレンサルファイド等のフィルムは、包
装及び工業用途、その他の用途に供せられており、フィ
ルムの横方向のどの部分でも同じ物性値である事が望ま
しい。
(Prior art) Thermoplastic resin films, particularly biaxially oriented polyester, polyamide, polyolefin, polyhinyl, polyphenylene sulfide, and other films, are used for packaging, industrial purposes, and other uses. , it is desirable that the physical property values be the same in any part of the film in the lateral direction.

しかし、従来の製造方法では製品フィルムの横方向の物
性を均一にする事は極めて困難であった。
However, with conventional manufacturing methods, it is extremely difficult to make the physical properties of the product film uniform in the lateral direction.

この理由は、テンダー内においてフィルムの両端はクリ
ップに把持されていて、延伸工程によって生じる縦方向
の延伸応力や、熱固定工程によって発生する収縮応力は
、把持手段であるクリップによって拘束されているに対
し、゛フィルムの中央部は把持手段の影響が低く拘束力
が弱くなり、上記の応力の影響によってクリップで把持
されている端部に対してフィルムの中央部分は遅れが生
じる事がわかっている。そして、横延伸と熱固定を連続
に同一のテンダーで行う場合において、テンダーに入る
前のフィルムの面上に横方向に沿って直線を描いておく
と、この直線はテンダー内で変形してフィルムの進行方
向に対して延伸工程の始めの領域で凸型に変形し、延伸
工程の終わり直前の領域で直線に戻り、延伸工程終了後
には凹型に変形する。さらに熱固定工程の領域の始めで
凹形の変形は最大値に達し、このまま曲線は変化しない
でその後のテンダーを通過し、テンダーを出たフィルム
には凹形の変形が残る。この現象はボーイング現象と称
されているものであるが、このボーイング現象はフィル
ムの横方向の物性値を不均一にする原因になっている。
The reason for this is that both ends of the film are held by clips in the tender, and the longitudinal stretching stress generated by the stretching process and the shrinkage stress generated by the heat setting process are restrained by the clips, which are the gripping means. On the other hand, it is known that in the center of the film, the influence of the gripping means is low and the restraining force is weak, and due to the influence of the stress mentioned above, there is a delay in the center of the film with respect to the end held by the clip. . When horizontal stretching and heat setting are performed continuously using the same tender, if a straight line is drawn along the horizontal direction on the surface of the film before entering the tender, this straight line will deform within the tender and the film will It deforms into a convex shape in the region at the beginning of the stretching process, returns to a straight line in the region just before the end of the stretching process, and deforms into a concave shape after the end of the stretching process. Further, at the beginning of the heat-setting region, the concave deformation reaches its maximum value, and the curve remains unchanged as it passes through the subsequent tenders, leaving a concave deformation in the film leaving the tender. This phenomenon is called the bowing phenomenon, and this bowing phenomenon causes the film to have non-uniform physical properties in the lateral direction.

ボーイング現象によって、フィルムの側端部分では傾斜
した配向主軸が生じて、横方向で配向主軸の角度が異な
る傾向がある。この結果、例えば縦方向の熱収縮率、熱
膨張率、湿潤膨張率等の物性値がフィルムの横方向で異
なってくる。
Due to the bowing phenomenon, an inclined main axis of orientation occurs at the side end portions of the film, and the angle of the main axis of orientation tends to differ in the lateral direction. As a result, physical properties such as thermal shrinkage rate, thermal expansion rate, and wet expansion rate in the longitudinal direction differ in the lateral direction of the film.

このボーイング現象によって、包装用途の一例として、
印刷ラミネート加工、製袋工程等において印刷ピッチず
れ、斑の発生、カーリング、蛇行などのトラブルの原因
になっている。また、工業用途の一例として、フロッピ
ーディスク等のベースフィルムでは面内異方性のため磁
気記録特性の低下などのトラブルの原因になっている。
Due to this bowing phenomenon, as an example of packaging applications,
It causes troubles such as printing pitch deviation, unevenness, curling, and meandering in printing lamination processing, bag making processes, etc. Furthermore, as an example of industrial use, base films for floppy disks and the like cause problems such as deterioration of magnetic recording characteristics due to in-plane anisotropy.

更に詳しく述べると、横延伸と熱固定間に冷却工程を設
ける従来技術としては、特公昭35−11774号公報
には横延伸と熱固定工程の間に20℃〜150℃の緩和
工程を介在させ、実質冷却工程を設けた製造方法が提案
されている。しかし、この冷却工程の長さについては全
く記載されていないばかりか、ボーイング現象の減少の
効果も全く不明である。更に、ボーイング現象を減少な
いし解消する技術として、特開昭50−73978号公
報には延伸工程と熱固定工程との間にニップロール群を
設置するフィルムの製造方法が提案されている。しかし
、この技術ではニップロールを設置する中間帯の温度が
ガラス転移温度以上で、ニップ点でのフィルムの剛性が
低いため改良効果が少ない。
More specifically, as a conventional technique in which a cooling process is provided between the transverse stretching and heat setting, Japanese Patent Publication No. 35-11774 discloses a method in which a relaxation process at 20°C to 150°C is interposed between the transverse stretching and the heat setting. , a manufacturing method including a substantial cooling step has been proposed. However, the length of this cooling process is not described at all, and the effect of reducing the bowing phenomenon is also completely unknown. Furthermore, as a technique for reducing or eliminating the bowing phenomenon, Japanese Patent Application Laid-Open No. 73978/1983 proposes a film manufacturing method in which a group of nip rolls is installed between the stretching process and the heat setting process. However, with this technique, the temperature of the intermediate zone where the nip rolls are installed is above the glass transition temperature, and the rigidity of the film at the nip point is low, so the improvement effect is small.

また、特公昭63−24459号公報には横延伸完了後
のフィルムの両端部を把持しながら中央付近の狭い範囲
のみをニップロールによって強制的な前進をもたらす工
程が提案されている。しかし、この技術ではニップロー
ルをテンダー内の高温領域に設置する必要があり、ロー
ル及びその周辺装置を冷却する必要があり、またフィル
ムが高温であるためロールによる傷が発生するおそれが
あり、実用面で制約される。また、特公昭62−438
56号公報には、横延伸直後のフィルムをガラス転移温
度以下に冷却した後、多段に熱固定を行ない熱固定と同
時に横方向に伸張する技術が提案されている。しかし、
この技術では冷却工程でボーイング現象の減少が少ない
ためか、又は熱固定でボーイング現象が再発生しやすい
ためか冷却工程に加えて多段に熱固定する工程と再延伸
との複雑な工程となっている。そのためテンダー内の雰
囲気温度やフィルム温度を長時間にわたり安定して制御
する事が困難ではないかと懸念される。
Further, Japanese Patent Publication No. 63-24459 proposes a process of forcibly advancing only a narrow area near the center using nip rolls while gripping both ends of the film after completion of lateral stretching. However, with this technology, it is necessary to install the nip roll in a high-temperature area within the tender, and the roll and its peripheral equipment need to be cooled.Also, since the film is at a high temperature, there is a risk of scratches caused by the roll, so it is not practical. is restricted by. In addition, special public service 62-438
No. 56 proposes a technique in which a film immediately after being stretched laterally is cooled to a temperature below the glass transition temperature, and then heat-set in multiple stages, and the film is stretched laterally at the same time as the heat-setting. but,
With this technology, the bowing phenomenon is less likely to be reduced during the cooling process, or because the bowing phenomenon tends to reoccur during heat setting, but in addition to the cooling process, it is a complicated process of multi-stage heat setting and re-stretching. There is. Therefore, there is a concern that it may be difficult to stably control the atmospheric temperature and film temperature inside the tender over a long period of time.

また、本提案も冷却工程の長さとフィルム幅の関係など
は記載されていない。更に、特開昭62183327号
公報には縦延伸後、テンダーて横延伸、熱固定する際に
、横延伸ゾーンと熱固定ゾーンとの間に側端部分のみを
ガラス転移温度以−11熱固定温度以下の温度の予熱ゾ
ーンを設置する技術が提案されている。しかし、この技
術では、予熱□ゾーンの温度を横方向に温度勾配を持た
せながら制御しなければならないため、フィルム温度を
長時間にわたり制御する事が困難ではないかと懸念され
る。なお、本提案の実施例ではこの予熱ゾーンの長さが
フィルム幅の半分と短い事からボーイング現象の減少の
効果が少ないと推測される。
Further, this proposal also does not describe the relationship between the length of the cooling process and the film width. Furthermore, JP-A-62183327 discloses that after longitudinal stretching, when transverse stretching and heat setting are carried out using a tender, only the side end portions are heated between the transverse stretching zone and the heat setting zone at a heat setting temperature of -11 below the glass transition temperature. A technique has been proposed to install a preheating zone with a temperature of: However, with this technique, since the temperature in the preheating zone must be controlled while creating a temperature gradient in the lateral direction, there is concern that it may be difficult to control the film temperature over a long period of time. In addition, in the embodiment of this proposal, since the length of this preheating zone is as short as half the film width, it is presumed that the effect of reducing the bowing phenomenon is small.

また、特開平1−165423号公報には横延伸後のフ
ィルムを横延伸温度以下に冷却した後、多段に昇温しな
がら横方向に再度伸張する技術が提案されている。しか
し、この技術では、特公昭62−43858号公報の場
合と同様に冷却工程でのボーイング現象の減少の効果が
少ないためか、また、熱固定工程でボーイングが発生し
やすいためか、冷却工程に加えて多段に熱固定する工程
と再延伸する工程との複雑な工程となっている。
Furthermore, Japanese Patent Application Laid-Open No. 1-165423 proposes a technique in which a film after being laterally stretched is cooled to a temperature below the laterally stretching temperature and then stretched again in the lateral direction while increasing the temperature in multiple stages. However, with this technology, the effect of reducing the bowing phenomenon in the cooling process is small, as in the case of Japanese Patent Publication No. 62-43858, or perhaps because bowing is likely to occur in the heat setting process. In addition, the process is complicated, including a multi-stage heat-setting process and a re-stretching process.

そのためテンダー内の雰囲気温度やフィルム温度を長時
間にわたり安定して制御する事が困難ではないかと懸念
される。なお、本提案では、冷却工程の長さがフィルム
幅の1/2以上が好ましいとの記載があるが、この根拠
が定かでない。また、冷却温度がガラス転移温度以上延
伸温度以下が好ましいとの記載がある。しかし、この程
度の冷却工程の長さや冷却工程の温度がガラス転移温度
以」二では、ボーイング現象の減少の効果が少ない事が
危惧され、上記のような複雑な工程を採用せざるを得な
かったと推測される。また、特公平1−25894号公
報、特公平1−25696号公報には、フィルムの走行
方向を逆転させて横延伸、熱固定をする技術が提案され
ている。しかし、この技術ではフィルムの走行方向を逆
転させるのにフィルムを一旦巻き取る必要があり、オフ
ラインでの製造方法であるため生産性の面で制約を受け
るなどの問題点がある。
Therefore, there is a concern that it may be difficult to stably control the atmospheric temperature and film temperature inside the tender over a long period of time. Although this proposal states that the length of the cooling step is preferably 1/2 or more of the film width, the basis for this is not clear. There is also a description that the cooling temperature is preferably higher than the glass transition temperature and lower than the stretching temperature. However, if the length of the cooling process is this long or if the temperature of the cooling process is above the glass transition temperature, there is a concern that the effect of reducing the bowing phenomenon will be small, and the complicated process described above has no choice but to be adopted. It is assumed that Further, Japanese Patent Publication No. 1-25894 and Japanese Patent Publication No. 1-25696 propose a technique in which the film is laterally stretched and heat-set by reversing the running direction of the film. However, this technique has problems, such as the need to wind up the film once to reverse the running direction of the film, and because it is an off-line manufacturing method, it is limited in terms of productivity.

(発明が解決しようとする課題) かかる課題に対し、工業的に有利な横方向の物性の均一
なフィルム(特に熱収縮率等の物性値)の製造方法を提
供する事にある。
(Problems to be Solved by the Invention) To solve this problem, it is an object of the present invention to provide an industrially advantageous method for producing a film with uniform physical properties in the lateral direction (particularly physical property values such as heat shrinkage rate).

(課題を解決するための手段) 本発明者らは、テンダー内におけるボーイング線の変化
を観察し、種々の研究からボーイング現象の発生過程を
解明し、このボーイング現象を減少する手段を検討して
本発明に到達した。
(Means for Solving the Problems) The present inventors observed changes in the bowing line inside the tender, clarified the process by which the bowing phenomenon occurs through various studies, and studied means to reduce the bowing phenomenon. We have arrived at the present invention.

本発明は、少なくとも横方向に延伸された熱可塑性樹脂
フィルムを製造するに際し、横延伸後のフィルムを横延
伸温度以下の(1)式を満足する冷却工程で横方向に緩
和を行い、次いで熱固定する事を特徴とする熱可塑性樹
脂フィルムの製造方法である。
In the present invention, when producing a thermoplastic resin film stretched at least in the transverse direction, the film after the transverse stretching is relaxed in the transverse direction in a cooling step that satisfies the equation (1) below the transverse stretching temperature, and then heated. This is a method for producing a thermoplastic resin film characterized by fixation.

L/W≧1.0       …(1)なお、(1)式
において、Lは冷却工程の長さ(m)を、Wはテンダー
出口でのテンダーのクリップ間距離(m)を意味する。
L/W≧1.0 (1) In equation (1), L means the length of the cooling process (m), and W means the distance between the clips of the tender at the exit of the tender (m).

冷却工程の長さしは、所望の横延伸倍率の80%以上横
延伸された箇所から冷却工程の温度より実質的に高い次
工程の温度までの最も長い箇所までの長さを意味するも
のとする。さらに、横方向とはフィルムの走行方向に対
して直角方向、縦方向とは走行方向を意味する。
The length of the cooling process shall mean the length from the point where the material is laterally stretched by 80% or more of the desired lateral stretching ratio to the longest point from the point where the temperature in the next step is substantially higher than the temperature in the cooling step. do. Furthermore, the lateral direction means a direction perpendicular to the running direction of the film, and the longitudinal direction means the running direction.

また、冷却工程の長さしとフィルム幅Wとの比L/Wの
値はテンダー速度に本質的には依存しないが、テンダー
の速度が増加すると、フィルムの温度が実質的に効果の
ある冷却温度に到達するまでに時間がかかり、本発明の
主旨である冷却工程の長さしとフィルム幅Wとの比L/
Wの値は実質的に小さくなる。
Furthermore, although the value of the ratio L/W between the length of the cooling process and the film width W does not essentially depend on the tendering speed, as the tendering speed increases, the temperature of the film becomes substantially lower than that required for effective cooling. It takes time to reach the temperature, and the ratio of the length of the cooling process to the film width W, which is the gist of the present invention, is
The value of W becomes substantially smaller.

そこで、テンダー速度を増加する場合には、冷却工程の
長さしとフィルム幅Wとの比L/Wの値を大きくするほ
ど効果が向上する。例えば、テンダー速度を2倍にした
場合には、冷却工程の長さしとフィルム幅Wとの比L/
Wの値は増速前の値の1.5倍以上を選択する事が好ま
しい。
Therefore, when increasing the tendering speed, the effect improves as the ratio L/W between the length of the cooling process and the film width W increases. For example, when the tender speed is doubled, the ratio L/
It is preferable to select the value of W to be 1.5 times or more the value before speed increase.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明では、熱可塑性樹脂をその融点以上の温度に加熱
・溶融し、スリットダイを含む押出し手段から冷却ドラ
ム表面へフィルム状に押出し、縦方向にロール速度が異
なるロール21Yにより縦方向に延伸し、テンダーで横
方向に延伸し、要すれば熱固定され、フィルムワインダ
ー等によって巻き取られる事は公知である。本発明では
、製膜・延伸条件として、このような樹脂の溶融・押出
し条件、キャスティング条件、縦方向延伸条件、横方向
延伸条件、熱固定条件、巻き条件等を適宜選択できる。
In the present invention, a thermoplastic resin is heated and melted to a temperature higher than its melting point, extruded into a film from an extrusion means including a slit die onto the surface of a cooling drum, and stretched in the longitudinal direction by rolls 21Y having different roll speeds in the longitudinal direction. It is known that the film is stretched in the transverse direction using a tender, heat-set if necessary, and wound up using a film winder or the like. In the present invention, as film forming/stretching conditions, such resin melting/extrusion conditions, casting conditions, longitudinal stretching conditions, lateral stretching conditions, heat setting conditions, winding conditions, etc. can be appropriately selected.

また、本発明では、縦延伸後横延伸する製造方法以外の
延伸方式も本発明に含まれる。例えば、縦横延伸後に再
縦延伸する延伸方式、縦多段延伸を含む延伸方式、横延
伸後のフィルムの両端をトリミングして縦延伸する延伸
方式などその要旨を越えない限り上記に限定されるもの
ではない。
Furthermore, the present invention includes stretching methods other than the manufacturing method of longitudinal stretching followed by transverse stretching. For example, a stretching method in which the film is longitudinally stretched again after being stretched in the longitudinal and lateral directions, a stretching method that includes longitudinal multi-stage stretching, a stretching method in which both ends of the film are trimmed after the transverse stretching and then longitudinally stretched, etc. are not limited to the above unless exceeding the gist. do not have.

本発明に適用される熱可塑性樹脂としては、ポリエチレ
ンテレフタレート、ポリエチレン2,6−ナフタレート
、ポリエチレンイソフタレート、ポリブチレンテレフタ
レートなどのポリエステル系樹脂、ナイロン−6、ナイ
ロン−66などのポ1〇− リアミド系樹脂、ポリプロピレン、ポリエチレンなどの
ポリオレフィン系樹脂、ポリフェニレンサルファイド、
ポリエーテルスルフォン、ポリスルフォン、ポリエーテ
ルエーテルケトン、ポリエーテルケトンケトン、ポリエ
チレントリメリテッドイミド、その他多くの単体、共重
合体、混合体、複合体等が挙げられる。
Thermoplastic resins applicable to the present invention include polyester resins such as polyethylene terephthalate, polyethylene 2,6-naphthalate, polyethylene isophthalate, and polybutylene terephthalate, and polyamide resins such as nylon-6 and nylon-66. resin, polyolefin resins such as polypropylene and polyethylene, polyphenylene sulfide,
Examples include polyether sulfone, polysulfone, polyether ether ketone, polyether ketone ketone, polyethylene trimellited imide, and many other simple substances, copolymers, mixtures, composites, and the like.

本発明の製造方法は熱可塑性樹脂フィルムを横延伸、熱
固定処理する際に、横延伸工程終了後のフィルムを延伸
温度以下に冷却し、同時に横方向に緩和させて横延伸工
程によって発生するボーイング現象を減少するものであ
る。冷却工程の長さLとフィルム幅Wとの比L/Wの値
が大きいほどボーイング現象の減少の効果が向上し、冷
却工程の長さLとフィルム幅Wとの比をL/W≧2.0
で冷却工程の長さしを選択する事が好ましい。さらに好
ましくは、L/W≧3.0である。
The manufacturing method of the present invention involves, when transversely stretching and heat-setting a thermoplastic resin film, the film after the transversely stretching process is cooled to below the stretching temperature, and at the same time it is relaxed in the transverse direction to reduce the bowing that occurs during the transversely stretching process. This reduces the phenomenon. The larger the value of the ratio L/W between the length L of the cooling process and the film width W, the better the effect of reducing the bowing phenomenon. .0
It is preferable to select the length of the cooling process. More preferably, L/W≧3.0.

また、横延伸工程と熱固定工程を行なうテンダーを切り
放す場合には、大気中でフィルムを走行させるためフィ
ルムは冷却されるので、冷却工程の長さLとフィルム幅
Wとの比L/W≧1.0を満足さえすれば横延伸工程と
熱固定工程を別のテンダーで行なう事も本発明に含まれ
る。
In addition, when cutting out the tender that undergoes the transverse stretching process and the heat setting process, the film is cooled because it is run in the atmosphere, so the ratio L/W of the length L of the cooling process and the film width W is As long as ≧1.0 is satisfied, the present invention also includes performing the transverse stretching process and the heat setting process using separate tenders.

更に、この冷却工程及び熱固定工程終了後の冷却工程に
おいては、フィルムを速度制御可能なニップロール群に
通す事が好ましく、その効果は著しく向上する。このニ
ップロールの材質は、金属鏡面とゴム弾性体との組合せ
で、ニップロールはテンダーのクリップとの相対的な速
度でフィルムを緊張させる事から速度制御が容易である
事が条件である。またニップロールは両方相互に制御可
能である事が好ましい。
Furthermore, in the cooling step after this cooling step and the heat setting step, it is preferable to pass the film through a group of nip rolls whose speed can be controlled, and the effect is significantly improved. The material of this nip roll is a combination of a metal mirror surface and a rubber elastic body, and the nip roll tensions the film at a speed relative to the clip of the tender, so the speed must be easily controlled. It is also preferred that both nip rolls be mutually controllable.

従来、横方向の熱収縮率等を減少させるために、熱固定
工程終了後あるいは熱固定工程と同時にテンダーのクリ
ップ間を狭める事により横方向に緩和させる方法が採用
されていた。しかし、その方法では横方向の緩和を大き
くするほどボーイング現象は増大する傾向にある。そこ
で、本発明はボーイング現象を減少すると同時にフィル
ムの物性値を改善する方法として、横延伸終了後の冷却
工程で横方向に緩和させる技術を見いだした。この技術
により、横延伸時に発生する延伸応力の伝播を制御し、
且つ冷却工程で横方向に緩和させる事によりフィルムの
熱収縮率等の物性値を向上させる事ができる。ここで、
この冷却工程での横方向の緩和率は10%以下が、フィ
ルムのしわ発生等の面から好ましく、5%以下がより好
ましい。なお、この緩和率とは横延伸完了時点でのフィ
ルム幅を基準にした値を意味する。
Conventionally, in order to reduce the heat shrinkage rate in the lateral direction, a method has been adopted in which the tension is relaxed in the lateral direction by narrowing the gap between the clips of the tender after or simultaneously with the heat setting process. However, with this method, the bowing phenomenon tends to increase as the lateral relaxation increases. Therefore, in the present invention, as a method for reducing the bowing phenomenon and improving the physical properties of the film at the same time, we have discovered a technique for relaxing the film in the lateral direction in the cooling process after the completion of lateral stretching. This technology controls the propagation of stretching stress that occurs during lateral stretching,
In addition, by relaxing the film in the lateral direction during the cooling process, it is possible to improve the physical properties of the film, such as its thermal shrinkage rate. here,
The relaxation rate in the lateral direction in this cooling step is preferably 10% or less from the viewpoint of preventing wrinkles in the film, and more preferably 5% or less. In addition, this relaxation rate means the value based on the film width at the time of completion of lateral stretching.

本発明において、ボーイング現象の少ないフィルムを製
造するに際して工業的に有利な効果が得られる理由につ
いては、ボーイング現象を減少するのに必要な冷却工程
の長さの決定において、誰もがなしえなかった有限要素
法を適用しつる数式モデルを設定し数値解析によって延
伸応力の伝播を推定可能ならしめ、その結果、冷却工程
の長さLとフィルム幅Wとの比L/W=1.0で応力伝
播は約1/2になり、L/W=2.0で応力伝播は約1
/10になり、L/W=3.0でほとんどゼロになる事
を計算値より求め、実機で裏付けし、いかなる場合も適
用可能な事を見いだせたためである。
The reason why the present invention provides an industrially advantageous effect in producing a film with less bowing is that no one can determine the length of the cooling process necessary to reduce the bowing. The finite element method was applied to set up a numerical equation model, and the propagation of stretching stress could be estimated through numerical analysis. As a result, the ratio of the length L of the cooling process to the film width W, L/W = 1.0 The stress propagation becomes about 1/2, and when L/W=2.0, the stress propagation becomes about 1
/10, and almost zero when L/W=3.0, was obtained from the calculated values, and was confirmed with an actual machine, and was found to be applicable in any case.

次に実施例を示す。Next, examples will be shown.

(実施例) 本発明において、使用される装置の一例について説明す
る。Tダイより押出された熱可塑性樹脂はチルロールに
よって急冷されフィルム状に成形される。そのフィルム
はロール延伸機によって縦方向に延伸され、ついでテン
ダーのクリップによってその両端を把持されつつ、予熱
ゾーンを通って横延伸ゾーンに入り横延伸される。さら
に、フィルムは冷却ゾーンに入り横方向に緩和され、熱
固定ゾーンを通り、熱固定された後、クリップから外さ
れてテンダーから出て巻取り機によって巻取られる。
(Example) An example of a device used in the present invention will be described. The thermoplastic resin extruded from the T-die is rapidly cooled by chill rolls and formed into a film. The film is stretched in the machine direction by a roll stretching machine, and then, while being held at both ends by clips of a tender, it passes through a preheating zone, enters a transverse stretching zone, and is stretched in its transverse direction. Further, the film enters a cooling zone to be laterally relaxed, passes through a heat-setting zone, is heat-set, and is then unclipped and exits the tender to be wound up by a winder.

以下、いくつかの例を挙げて説明する。This will be explained below with some examples.

実施例1 ポリエチレンテレフタレート樹脂を溶融してTダイより
押出し、チルロール上でフィルム状に成形したのち、ロ
ール延伸機による縦方向のば伸倍率を3.5倍とし、そ
の後テンダーによる横方向の延伸倍率を3.5倍として
二軸配向ポリエチレンテレフタレートフィルムを得た。
Example 1 Polyethylene terephthalate resin was melted and extruded through a T-die, formed into a film on a chill roll, and then stretched at a longitudinal stretching ratio of 3.5 times using a roll stretching machine, and then stretched at a transverse stretching ratio using a tender. was multiplied by 3.5 to obtain a biaxially oriented polyethylene terephthalate film.

テンダー内における温度は、予熱温度を90°C1延伸
温度を100°C1冷却温度を80℃、熱固定温度を2
20°Cとし、冷却ゾーンの長さLとフィルム幅Wとの
比L/W=2.0とした。さらに、冷却工程での横方向
の緩和率を3%とし、熱固定工程での横方向の緩和率を
2%とした。
The temperature inside the tender is as follows: preheating temperature: 90°C, stretching temperature: 100°C, cooling temperature: 80°C, heat setting temperature: 2
The temperature was 20° C., and the ratio L/W of the length L of the cooling zone to the film width W was 2.0. Further, the relaxation rate in the lateral direction in the cooling step was set to 3%, and the relaxation rate in the lateral direction in the heat setting step was set to 2%.

実施例2 実施例1において、冷却工程での横方向の緩和率を8%
とし、熱固定工程での横方向の緩和率を0%とする以外
は実施例1と同様にして二軸配向ポリエチレンテレフタ
レートフィルムヲ得り。
Example 2 In Example 1, the lateral relaxation rate in the cooling process was set to 8%.
A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Example 1 except that the relaxation rate in the transverse direction in the heat setting step was 0%.

比較例1 実施例1において、冷却工程での横方向の緩和率を0%
とし、熱固定工程での横方向の緩和率を5%とする以外
は実施例1と同様にして二軸配向ポリエチレンテレフタ
レートフィルムを得た。
Comparative Example 1 In Example 1, the lateral relaxation rate in the cooling process was set to 0%.
A biaxially oriented polyethylene terephthalate film was obtained in the same manner as in Example 1 except that the relaxation rate in the transverse direction in the heat setting step was 5%.

実施例3 ナイロン−6樹脂を溶融してTダイより押出し、チルロ
ール」二でフィルム状に成形したのチ、ロール延伸機に
よる縦方向の延伸倍率を3.3倍とし、その後テンダー
による横方向の延伸倍率を3.4倍として二軸配向ナイ
ロン−6フイルムを得た。
Example 3 Nylon-6 resin was melted and extruded through a T-die and formed into a film using chill rolls.The longitudinal stretching ratio was set to 3.3 times using a roll stretching machine, and then the transverse direction was stretched using a tender. A biaxially oriented nylon-6 film was obtained at a stretching ratio of 3.4 times.

テンダー内における温度は、予熱温度を60°C1延伸
温度を85℃、冷却温度を60℃、熱固定n1;(度を
215°Cとし、冷却ゾーンの長さLとフィルム幅Wと
の比L/W=2.0とした。さらに、冷却工程での横方
向の緩和率を4%とし、熱固定]1程での横方向の緩和
率を1%とした。
The temperature in the tender is as follows: preheating temperature of 60°C, stretching temperature of 85°C, cooling temperature of 60°C, heat setting n1; (degrees of 215°C, ratio L of cooling zone length L to film width W) /W=2.0.Furthermore, the relaxation rate in the lateral direction in the cooling process was set to 4%, and the relaxation rate in the lateral direction in the heat setting]1 was set to 1%.

比較例2 実施例3において、冷却工程での横方向の緩和率を0%
とし、熱固定工程での横方向の緩和率を5%とする以外
は実施例3と同様にして二軸配向ナイロン−6フイルム
を得た。
Comparative Example 2 In Example 3, the lateral relaxation rate in the cooling process was set to 0%.
A biaxially oriented nylon-6 film was obtained in the same manner as in Example 3 except that the relaxation rate in the transverse direction in the heat setting step was 5%.

実施例と比較例における製膜条件とボーイング歪の測定
結果を表1に示す。なおボーイング歪はテンダーにはい
る前のフィルムの表面に直線を描き、最終的に得られた
フィルム」二で第1図に示すような弓状に変形しており
、この弓形の状況を、B=b/WX100  (%) ここで、B=ボーイング歪のM(%) W=フィルムの幅(mm) b=ボーイング線の最大ふくらみ量 (mm) によって算出した。
Table 1 shows the film forming conditions and the measurement results of bowing strain in Examples and Comparative Examples. Note that bowing distortion draws a straight line on the surface of the film before it enters the tender, and the final film is deformed into an arched shape as shown in Figure 1. = b / W

(発明の効果) 比較例(冷却工程で横方向に緩和を行なわない場合)は
、ボーイング歪が大きいが、本発明の実施例では熱可塑
性樹脂フィルムを横延伸、熱固定する工程において発生
するボーイング現象を抑制し、フィルムの横方向に均一
な物性を存するフィルムを製造できる事がわかる。
(Effect of the invention) In the comparative example (where relaxation is not performed in the lateral direction in the cooling process), the bowing strain is large, but in the example of the present invention, the bowing strain that occurs in the process of lateral stretching and heat setting of the thermoplastic resin film is large. It can be seen that this phenomenon can be suppressed and a film with uniform physical properties in the lateral direction of the film can be produced.

【図面の簡単な説明】 第1図はボーイング歪の算出方式を示したものである。 特許出願人  東洋紡績株式会社 −18=[Brief explanation of drawings] Figure 1 shows the calculation method for Boeing distortion. Patent applicant: Toyobo Co., Ltd. −18=

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも横方向に延伸された熱可塑性樹脂フィ
ルムを製造するに際し、横延伸後のフィルムを横延伸温
度以下の(1)式を満足する冷却工程で横方向に緩和を
行い、次いで熱固定する事を特徴とする熱可塑性樹脂フ
ィルムの製造方法。 L/W≧1.0…(1) なお、(1)式において、Lは冷却工程の長さ(m)を
、Wはテンダー出口でのテンダーのクリップ間距離(m
)を意味する。
(1) When producing a thermoplastic resin film stretched at least in the transverse direction, the film after transverse stretching is relaxed in the transverse direction in a cooling process that satisfies equation (1) below the transverse stretching temperature, and then heat set. A method for producing a thermoplastic resin film characterized by: L/W≧1.0…(1) In equation (1), L is the length of the cooling process (m), and W is the distance between the clips of the tender at the exit of the tender (m).
) means.
JP26765990A 1990-10-04 1990-10-04 Method for producing thermoplastic resin film Expired - Fee Related JP2841817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26765990A JP2841817B2 (en) 1990-10-04 1990-10-04 Method for producing thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26765990A JP2841817B2 (en) 1990-10-04 1990-10-04 Method for producing thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH04142917A true JPH04142917A (en) 1992-05-15
JP2841817B2 JP2841817B2 (en) 1998-12-24

Family

ID=17447752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26765990A Expired - Fee Related JP2841817B2 (en) 1990-10-04 1990-10-04 Method for producing thermoplastic resin film

Country Status (1)

Country Link
JP (1) JP2841817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676902A (en) * 1994-07-04 1997-10-14 Skc Limited Process for the preparation of thermoplastic resin film
JP2002225128A (en) * 2001-01-29 2002-08-14 Toyobo Co Ltd Thermoplastic resin film and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5676902A (en) * 1994-07-04 1997-10-14 Skc Limited Process for the preparation of thermoplastic resin film
JP2002225128A (en) * 2001-01-29 2002-08-14 Toyobo Co Ltd Thermoplastic resin film and method for producing the same

Also Published As

Publication number Publication date
JP2841817B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
JPS631174B2 (en)
JP2936688B2 (en) Method for producing thermoplastic resin film
JPH0459332A (en) Thermoplastic resin film and its manufacture
JPH04142917A (en) Manufacture of thermoplastic resin film
JP3852671B2 (en) Method for producing biaxially stretched polyester film
JP2841816B2 (en) Method for producing thermoplastic resin film
JPH03158225A (en) Manufacture of thermoplastic resin film
JP2917443B2 (en) Thermoplastic stretched film
JP2900570B2 (en) Biaxially oriented polyamide film and method for producing the same
JPH0125694B2 (en)
JP2002370278A (en) Method for manufacturing simultaneously biaxially stretched film
JPH03193328A (en) Thermoplastic resin stretched film and its manufacture
JPH0637079B2 (en) Method for producing thermoplastic resin film
JPS62268629A (en) Heat treating method for thermoplastic resin film
JPH03155920A (en) Preparation of thermoplastic resin film
JPH03216326A (en) Manufacture of thermoplastic resin film
JP4945841B2 (en) Manufacturing method of polyamide resin film and polyamide resin film
JP2936699B2 (en) Method for producing polyamide film
JPH03193329A (en) Reduction of bowing of thermoplastic resin stretched film
JP2002361734A (en) Method for producing biaxially oriented polyamide film
JPH03207632A (en) Manufacture of low bowing thermoplastic resin stretched film
JP3503708B2 (en) Method for producing polyamide film
JPH03284934A (en) Manufacture of biaxially oriented polyester film
KR100235565B1 (en) Method for producing sequentially biaxially oriented plastic film
JPS6341126A (en) Simultaneous biaxial orientation of plastic film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees