JPH04142505A - Lens barrel - Google Patents

Lens barrel

Info

Publication number
JPH04142505A
JPH04142505A JP26593490A JP26593490A JPH04142505A JP H04142505 A JPH04142505 A JP H04142505A JP 26593490 A JP26593490 A JP 26593490A JP 26593490 A JP26593490 A JP 26593490A JP H04142505 A JPH04142505 A JP H04142505A
Authority
JP
Japan
Prior art keywords
lens
lens barrel
actuators
support
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26593490A
Other languages
Japanese (ja)
Inventor
Masami Yonekawa
雅見 米川
Seiji Orii
折井 誠司
Yasuyuki Unno
靖行 吽野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26593490A priority Critical patent/JPH04142505A/en
Publication of JPH04142505A publication Critical patent/JPH04142505A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

PURPOSE:To correct gravitational deformation which is rotationally asymmetric and to reduce the manufacture error of a lens itself by fitting at least three support points which are finely displaceable to the lens support part of the lens barrel and controlling the individual support points independently. CONSTITUTION:Six piezoelectric actuators 12 in this case are fitted at equal intervals along the lens support part of the lens barrel 11. The lens 10 is adhered to the actuators and supported. An image of the surface shape of the lens 10 adhered to the actuators 12 is picked up by an image pickup element 36 as interference fringes through a Fizeau's interferometer. The result is operated immediately and sent to a controller 35 to drive the controllable actuators 12 which are fitted at the six places.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はレンズの回転非対称な変形を効果的に防止しつ
つ、収納、保持することができるレンズ鏡筒に関し、特
に鉛直方向に光軸をもち、高い光学性能が要求される光
学装置に適用する際に好適なレンズ鏡筒に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a lens barrel that can be stored and held while effectively preventing rotationally asymmetric deformation of the lens, and in particular, relates to a lens barrel that can be stored and held while effectively preventing rotationally asymmetric deformation of the lens. The present invention relates to a lens barrel suitable for application to optical devices that require high optical performance.

(従来の技術) 光学装置の高性能化に伴い、光学系特にレンズの組立に
要求される性能は益々厳しくなってきている。従来より
、レンズ鏡筒内におけるレンズの支持は第4図、第5図
のようなレンズ鏡筒構造で行われている。第4図は鏡筒
11にレンズ10を組込み、上から押さえ環40によっ
てレンズ10を固定する方式を示している。又、第5図
は鏡筒11のレンズ10との接触部に接着剤50を充填
し、該レンズ10を固定する方法を示したものである。
(Prior Art) As the performance of optical devices increases, the performance required for optical systems, especially lens assemblies, is becoming increasingly strict. Conventionally, a lens within a lens barrel has been supported by a lens barrel structure as shown in FIGS. 4 and 5. FIG. 4 shows a method of incorporating the lens 10 into the lens barrel 11 and fixing the lens 10 from above using a retaining ring 40. Further, FIG. 5 shows a method of fixing the lens 10 by filling the adhesive 50 into the contact portion of the lens barrel 11 with the lens 10.

(発明が解決しようとしている課題) しかしなから、光学系に要求される性能の高精度化に伴
い、求められている性能を従来の支持方法のみで実現す
るのは困難であることが判明してきた。レンズ10は鏡
811によって保持される場合、自重変形により面形状
が変化することが知られている。鏡筒11のレンズ支持
面が完全に平坦なリンク状に形成されており、その上に
レンズが密着して保持されるのであれば、このときの面
形状変化は回転対称なものとなる。回転対称な変形が光
学系の性能の劣化に与える影響は小さいため、支持面の
高精度加工が実施された場合の問題は少ない。
(Problem to be solved by the invention) However, as the performance required of optical systems becomes more precise, it has become clear that it is difficult to achieve the required performance using only conventional support methods. Ta. It is known that when the lens 10 is held by the mirror 811, the surface shape changes due to deformation due to its own weight. If the lens support surface of the lens barrel 11 is formed into a completely flat link shape, and the lens is held in close contact with the surface, the surface shape change at this time will be rotationally symmetrical. Since rotationally symmetrical deformation has a small effect on deterioration of the performance of the optical system, there are few problems when high-precision machining of the support surface is performed.

このような高精度加工が簡単に実現することができれば
問題ないのであるが、実際には光学系に対する要求性能
に伴う組立精度の高度化で、回転非対称な変形をレンズ
10に与える鏡筒11の製造誤差の影響は無視すること
が困難なのが現実である。
There would be no problem if such high-precision machining could be easily realized, but in reality, as the assembly precision increases due to the required performance of optical systems, it is necessary to change the lens barrel 11 to give rotationally asymmetrical deformation to the lens 10. The reality is that it is difficult to ignore the effects of manufacturing errors.

光学系の性能は最終的には組上がった光学部品の配置精
度とレンズ面精度によって定まるか、支持部分の加工精
度そのままが反映されるレンズ10の面形状の問題は従
来調整ができないたけに困難な問題であった。特に大口
径で高い光学性能が要求される光学系で、レンズ10の
回転非対称な変形が与える影響は深刻である。
The performance of an optical system is ultimately determined by the placement accuracy of the assembled optical components and the lens surface accuracy, or the problem of the surface shape of the lens 10, which reflects the machining accuracy of the support part, is difficult because it cannot be adjusted conventionally. It was a serious problem. Particularly in optical systems that require a large aperture and high optical performance, rotationally asymmetric deformation of the lens 10 has a serious effect.

また近年、光学系の全透過率を向上させる、或は軽量化
するという目的のために光学系の各々のレンズ厚を薄く
するという傾向がみられる。このような場合、レンズ1
0は容易に変形を受けやすくなり、鏡筒11のレンズ支
持部の製造誤差か回転非対称な変形に、より直接的に影
響するという結果を招いてしまう。
Furthermore, in recent years, there has been a tendency to reduce the thickness of each lens in an optical system for the purpose of improving the total transmittance of the optical system or reducing its weight. In such a case, lens 1
0 is easily susceptible to deformation, resulting in a more direct effect on manufacturing errors or rotationally asymmetric deformation of the lens support portion of the lens barrel 11.

本発明はレンズ面形状の変形を少なくしつつ収納保持す
ることかてきるレンズ鏡筒の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lens barrel that can be stored and held while minimizing deformation of the lens surface shape.

(課題を解決するための手段) 本発明は従来、部品加工精度によって定まり、調整か困
難とされていたレンズの面形状変化の補正を可能とする
ため、レンズ鏡筒のレンズ支持部分に複数個、少なくと
も3個以上の微小変位可能な支持点を取り付け、個々の
支持点を夫々独立に制御可能としたことを特徴としてい
る。
(Means for Solving the Problem) The present invention makes it possible to correct changes in the surface shape of a lens, which was conventionally determined by component processing accuracy and difficult to adjust. , is characterized in that at least three or more support points capable of minute displacement are attached, and each support point can be independently controlled.

この結果、自重による回転非対称な変形が補正されると
ともに、レンズ自体の製造誤差も軽減しようというもの
である。
As a result, rotationally asymmetric deformation due to its own weight is corrected, and manufacturing errors in the lens itself are also reduced.

(実施例) 第1図(A)は本発明の第一実施例を示すレンズ鏡筒の
平面図、第1図(B)は第1図(A)のA−A ′断面
図である。図中10はレンズ、11は鏡筒、12はレン
ズ10を支持する圧電アクチュエータである。圧電アク
チュエータ12はレンズ鏡筒11のレンズ支持部に沿っ
て等間隔に、ここでは6個取り付けられている。レンズ
10は該圧電アクチュエータ12に接着されて支持が行
われる。
(Embodiment) FIG. 1(A) is a plan view of a lens barrel showing a first embodiment of the present invention, and FIG. 1(B) is a sectional view taken along line AA' in FIG. 1(A). In the figure, 10 is a lens, 11 is a lens barrel, and 12 is a piezoelectric actuator that supports the lens 10. Here, six piezoelectric actuators 12 are attached at equal intervals along the lens support portion of the lens barrel 11. The lens 10 is bonded to the piezoelectric actuator 12 for support.

このように構成されたレンズ鏡筒で補正を行うためには
、実際にレンズが組み込まれた状態でレンズ10の面形
状を測定する必要がある。第3図はこの目的で構成され
たフィゾー型干渉計の光学系10の一例である。図中3
0はHe−Neレーザ、31はハーフミラ−132はコ
リメータレンズ、33はTSレンズ、36は干渉計の撮
像素子である。このように構成された干渉計に対して被
検物である本発明のレンズ鏡筒34は同図に示すような
形でセットされている。
In order to perform correction with a lens barrel configured in this manner, it is necessary to measure the surface shape of the lens 10 with the lens actually assembled. FIG. 3 shows an example of an optical system 10 of a Fizeau interferometer constructed for this purpose. 3 in the diagram
0 is a He-Ne laser, 31 is a half mirror, 132 is a collimator lens, 33 is a TS lens, and 36 is an image pickup element of an interferometer. The lens barrel 34 of the present invention, which is an object to be inspected, is set in the interferometer configured as described above in the form shown in the figure.

また、37は撮像素子36から得られた干渉縞を画像処
理してレンズ10の面形状の高低の状況を数値化する画
像処理部、38は画像処理部1゜による出力結果をレン
ズ面の高低図として出力するためのTVモニタ、35は
鏡筒内の圧電アクチュエータ12を制御するコントロー
ラーである。
Further, 37 is an image processing unit that processes the interference fringes obtained from the image sensor 36 to quantify the height status of the surface shape of the lens 10, and 38 is an image processing unit that converts the output result from the image processing unit 1° A TV monitor 35 is used to output the image as a diagram, and 35 is a controller that controls the piezoelectric actuator 12 in the lens barrel.

次に組み立て時のレンズの回転非対象な面形状補正法に
ついて述へる、圧電アクチュエータ12に接着されたレ
ンズ10の面形状はフィゾー型干渉計により干渉縞とし
て撮像素子36に撮像される。その干渉縞は画像処理さ
れてレンズ10の面形状の高低として数値化される。こ
の数値が図化され、回転非対称な変形がTVモニターに
確認されると、その結果はすぐに演算されてコントロー
ラ35に送られ、6カ所に取り付けられた制御可能な圧
電アクチュエータ12の駆動が行なわれる。
Next, a method for correcting the rotationally asymmetric surface shape of the lens during assembly will be described.The surface shape of the lens 10 bonded to the piezoelectric actuator 12 is imaged by the Fizeau interferometer as interference fringes on the image pickup element 36. The interference fringes are image-processed and digitized as heights of the surface shape of the lens 10. When this value is plotted and rotationally asymmetric deformation is confirmed on the TV monitor, the result is immediately calculated and sent to the controller 35, which drives the controllable piezoelectric actuators 12 attached at six locations. It can be done.

測定はレンズ鏡筒を干渉計にセットさえすればすぐに行
うことができ、駆動の確認もリアルタイムで行うことか
できる。干渉計による測定結果にはレンズ10の自重に
よる変形とレンズ10自体の製造誤差による回転非対称
な変形とかある。
Measurements can be made as soon as the lens barrel is set on the interferometer, and drive can be checked in real time. The measurement results obtained by the interferometer include deformation due to the lens 10's own weight and rotationally asymmetric deformation due to manufacturing errors of the lens 10 itself.

本発明の手法では自重による回転非対称な変形を補正し
レンズ自体の製造誤差を軽減することかできる。
The method of the present invention can correct rotationally asymmetric deformation due to its own weight and reduce manufacturing errors of the lens itself.

又、今回の説明では組み立て時の調整のことのみ述へた
か、このレンズ鏡筒は実際に光学系を使用する際の微調
手段としても用いることができる。
Also, in this explanation, only the adjustment during assembly has been described, but this lens barrel can also be used as a fine adjustment means when actually using the optical system.

特に高性能光学系では大気圧、或は重力の方向の変化と
いった使用環境の僅かな変化で、性能が変化することか
ある。補正量が予め分かっていれば各々のレンズか制御
できることを利用して光学性能を維持することが可能で
あり、又、測定を行えばその場で容易に調整し直すこと
も可能である。
Particularly in high-performance optical systems, slight changes in the operating environment, such as changes in atmospheric pressure or the direction of gravity, can cause changes in performance. If the amount of correction is known in advance, it is possible to maintain optical performance by taking advantage of the ability to control each lens, and it is also possible to easily readjust it on the spot if measurements are performed.

第2図(A)は本発明の第2実施例のレンズ鏡筒の平面
図、第2図(B)は第2図(A)の八−A′断面図であ
る。第1図の実施例と共通の部材に関しては同一の符号
かつけられており、1oかレンズ、11か鏡筒を示して
いる。第2図が第1図と異なるのはレンズの支持の仕方
で、図中水されているように、レンズ1oは支持部に沿
って等間隔に6箇所取り付けられた支持棒20によって
支持か行われている。支持棒20の各々は圧電アクチュ
エータ21に取り付けられており、光軸方向への移動か
可能となっている。又、22はレンズ10及び支持棒2
0を固定するための接着剤を注入するための注入孔であ
る。
FIG. 2(A) is a plan view of a lens barrel according to a second embodiment of the present invention, and FIG. 2(B) is a sectional view taken along line 8-A' in FIG. 2(A). Components common to those in the embodiment shown in FIG. 1 are given the same reference numerals, and 1o indicates a lens, and 11 indicates a lens barrel. The difference between Fig. 2 and Fig. 1 is the way the lens is supported.As shown in the figure, the lens 1o is supported by support rods 20 attached at six equal intervals along the support portion. It is being said. Each of the support rods 20 is attached to a piezoelectric actuator 21, and can be moved in the optical axis direction. Further, 22 indicates the lens 10 and the support rod 2.
This is an injection hole for injecting adhesive for fixing 0.

このように構成されたレンズ支持装置は第1実施例と同
じようにフィゾー干渉計に組み込まれる。干渉計での測
定結果は圧電アクチュエータ21に伝えられ、その結果
、支持棒20か駆動されて自重による回転非対称なレン
ズ面変形やしさズの製造誤差が補正、軽減される。補正
が完了すると、鏡筒には接着剤注入孔22より接着剤が
注入され、レンズ10と支持棒20が同時に鏡筒11に
対して固定される。接着剤が固化した時点で圧電アクチ
ュエータ21を支持棒20から取り外しても良い。
The lens support device configured in this manner is incorporated into a Fizeau interferometer in the same manner as in the first embodiment. The measurement results from the interferometer are transmitted to the piezoelectric actuator 21, and as a result, the support rod 20 is driven to correct and reduce manufacturing errors due to rotationally asymmetric lens surface deformation due to its own weight. When the correction is completed, adhesive is injected into the lens barrel from the adhesive injection hole 22, and the lens 10 and support rod 20 are fixed to the lens barrel 11 at the same time. The piezoelectric actuator 21 may be removed from the support rod 20 once the adhesive has solidified.

これによれば、別のレンズ支持装置の調整に用いること
かできる。本実施例は接着剤の固化の途中にレンズ面形
状のモニターを行うことも可能であり、又、同し圧電ア
クチュエータを繰り返し使用できることに伴うコストの
削減効果も大きい (発明の効果) 以上説明したように、本発明ではレンズ鏡筒のレンズ支
持部の対応部分に複数個、少なくとも3個以上の支持点
を設け、該支持点を微小変位可能で且つ独立に制御可能
なように構成したことにより、従来組み立て時に補正困
難であったレンズの回転非対称なレンズ面変形を補正し
、同時にレンズの製造誤差をも補正可能とした。又本発
明によればレンズ支持部に要求されている高度な加工精
度の点から従来製造上問題となっていた問題点を解決し
、高精度な光学系の安定した製造を可能としたレンズ鏡
筒を達成することができる。
According to this, it can be used for adjusting another lens support device. In this embodiment, it is possible to monitor the lens surface shape during the solidification of the adhesive, and the same piezoelectric actuator can be used repeatedly, resulting in a large cost reduction effect (effects of the invention) As explained above. As such, in the present invention, a plurality of, at least three, support points are provided in the corresponding portions of the lens support portion of the lens barrel, and the support points are configured to be able to be minutely displaced and independently controlled. , the rotationally asymmetric lens surface deformation of the lens, which was previously difficult to correct during assembly, can be corrected, and at the same time, it is also possible to correct lens manufacturing errors. Furthermore, according to the present invention, there is provided a lens mirror that solves the conventional manufacturing problems in terms of the high processing precision required for the lens support part, and makes it possible to stably manufacture high-precision optical systems. tube can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、(B)は本発明の第1実施例のレンズ鏡
筒の平面図及び断面図、第2図(A)。 (B)は本発明の第2実施例のレンズ鏡筒の平面図及び
断面図、第3図は本発明のレンズ鏡筒をフィゾー型干渉
計に組み込んだ概略図、第4図及び第5図は従来のレン
ズ鏡筒構造を示す説明図、である。 図中、10はレンズ、11は鏡筒、12は圧電アクチユ
エータ、20は支持棒、21は圧電アクチュエータ、2
2は接着剤注入孔、30はHe−Neレーザ、31はハ
ーフミラ−132はコリメータレンズ、33はTSレン
ズ、34はレンズセル構造、35はコントローラ、36
は撮像素子、37は画像処理部、38はTVモニタ、4
0は押さえ環、50は接着剤、である。
1A and 1B are a plan view and a sectional view of a lens barrel according to a first embodiment of the present invention, and FIG. 2A is a sectional view of the lens barrel according to a first embodiment of the present invention. (B) is a plan view and a sectional view of the lens barrel of the second embodiment of the present invention, FIG. 3 is a schematic diagram of the lens barrel of the present invention incorporated into a Fizeau type interferometer, and FIGS. 4 and 5. is an explanatory diagram showing a conventional lens barrel structure. In the figure, 10 is a lens, 11 is a lens barrel, 12 is a piezoelectric actuator, 20 is a support rod, 21 is a piezoelectric actuator, 2
2 is an adhesive injection hole, 30 is a He-Ne laser, 31 is a half mirror, 132 is a collimator lens, 33 is a TS lens, 34 is a lens cell structure, 35 is a controller, 36
is an image sensor, 37 is an image processing unit, 38 is a TV monitor, 4
0 is a holding ring, and 50 is an adhesive.

Claims (2)

【特許請求の範囲】[Claims] (1)レンズをレンズ支持部で支持し、収納するレンズ
鏡筒において、前記レンズを少なくとも3個以上の複数
個の支持点で支持するとともに、該支持点が互いに独立
に前記レンズの光軸方向に微小変位可能となっているこ
とを特徴とするレンズ鏡筒。
(1) In a lens barrel in which a lens is supported by a lens support part and housed, the lens is supported by at least three or more support points, and the support points are independently arranged in the optical axis direction of the lens. A lens barrel characterized by being capable of minute displacement.
(2)該複数個の支持点が各々独立に制御可能であるこ
とを特徴とする請求項1記載のレンズ鏡筒。
(2) The lens barrel according to claim 1, wherein each of the plurality of support points can be independently controlled.
JP26593490A 1990-10-03 1990-10-03 Lens barrel Pending JPH04142505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26593490A JPH04142505A (en) 1990-10-03 1990-10-03 Lens barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26593490A JPH04142505A (en) 1990-10-03 1990-10-03 Lens barrel

Publications (1)

Publication Number Publication Date
JPH04142505A true JPH04142505A (en) 1992-05-15

Family

ID=17424112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26593490A Pending JPH04142505A (en) 1990-10-03 1990-10-03 Lens barrel

Country Status (1)

Country Link
JP (1) JPH04142505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401127C (en) * 2005-06-17 2008-07-09 索尼株式会社 Shifting mechanism, and shifting mechanism-mounted image capturing apparatus
JP2011158526A (en) * 2010-01-29 2011-08-18 Hoya Corp Optical element adjustment structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401127C (en) * 2005-06-17 2008-07-09 索尼株式会社 Shifting mechanism, and shifting mechanism-mounted image capturing apparatus
JP2011158526A (en) * 2010-01-29 2011-08-18 Hoya Corp Optical element adjustment structure

Similar Documents

Publication Publication Date Title
JP2704734B2 (en) Stage positioning correction method and apparatus
US7368846B2 (en) Microactuator with displacement sensing function and deformable mirror including the microactuator
JP4357117B2 (en) Optical system, especially microlithographic projection exposure apparatus
US20160209752A1 (en) Optical device having a deformable optical element
EP1277071A2 (en) Apparatus, system and method for precision positioning and alignment of a lens in an optical system
EP1901101A1 (en) Optical element unit and method of supporting an optical element
US9829702B2 (en) Adjustable, deformable mirror for compensating irregularities of a beam
JP6033849B2 (en) Optical module with measuring device
JP2006113414A (en) Optical element holding apparatus, lens barrel, exposure apparatus, and method for manufacturing micro device
JP2010237250A (en) Imaging apparatus
KR20140124325A (en) Mirror unit and exposure apparatus
US20190193648A1 (en) Method and system of camera focus for advanced driver assistance system (adas)
KR20160003541A (en) Optical imaging arrangement with multiple metrology support units
JPS61278141A (en) Compensator for projection magnification
JP7036171B2 (en) Mobile device, moving method, exposure device, exposure method, manufacturing method of flat panel display, and device manufacturing method
JP2022550776A (en) sensor assembly
JPH04142505A (en) Lens barrel
EP3933509A1 (en) Compensation of creep effects in an imaging device
KR102193387B1 (en) Holding device, projection optical system, exposure device, and article manufacturing method
US8253947B2 (en) Device and method for measuring lithography masks
JPS6235620A (en) Optical magnifying power correcting device
JP2903958B2 (en) Positioning device and method of manufacturing semiconductor device using the same
US7564636B2 (en) Device for preventing the displacement of an optical element
JPH02141712A (en) Reduction rate compensating mechanism
US9784966B1 (en) Deformable mirror for efficient correction of large aberrations