JPH0414157B2 - - Google Patents

Info

Publication number
JPH0414157B2
JPH0414157B2 JP58080751A JP8075183A JPH0414157B2 JP H0414157 B2 JPH0414157 B2 JP H0414157B2 JP 58080751 A JP58080751 A JP 58080751A JP 8075183 A JP8075183 A JP 8075183A JP H0414157 B2 JPH0414157 B2 JP H0414157B2
Authority
JP
Japan
Prior art keywords
slag
thermal conductivity
tap hole
coal
gasifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58080751A
Other languages
Japanese (ja)
Other versions
JPS59206487A (en
Inventor
Shuntaro Koyama
Toshio Yahagi
Jinichi Tomuro
Atsushi Morihara
Shunsuke Nokita
Takao Hishinuma
Yoshiki Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP8075183A priority Critical patent/JPS59206487A/en
Publication of JPS59206487A publication Critical patent/JPS59206487A/en
Publication of JPH0414157B2 publication Critical patent/JPH0414157B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は特に溶けた石炭灰を円滑に炉外に排出
する石炭のガス化炉に関する。 〔発明の背景〕 石炭ガス化炉には固定層,流動層,噴流層及び
溶融層方式があるが、石炭灰の溶融点以上の温度
でガス化する噴流層,溶融層方式は、石炭の大部
分を水素、一酸化炭素に転化でき、また灰をスラ
グとして排出できるため、化学原料,燃料,水素
等石炭ガスの用途拡大、石炭転換設備の環境への
適合性が大きい等の利点がある。この方式の運転
上の課題は、溶けた石炭灰(以後溶融スラグ)を
いかに安定に炉外に排出するかであり、特に溶融
スラグを冷却する際、固化により溶融スラグの通
路を閉塞させないことにある。 通常、溶融スラグはガス化室から冷却水で満た
されたスラグ冷却室へ落下させるが、ガス化室か
らの出口即ちスラグ流出孔(以下スラグタツプ孔
と称す)で固化し易い。このため、スラグタツプ
孔を閉塞させないために、例えば特開昭51−
76302号公報に示されるようなスラグタツプ孔を
バーナによつて加熱したり、あるいは特開昭57−
172986号公報に示されるごとく電気によつて加熱
するものがある。また、この他にガス化炉内へ添
加物を加えて溶融スラグの流動性をよくしたり、
更にはスラグタツプ孔からの輻射熱損失を防いだ
り、種々の方法が提案されている。 しかしながら、スラグタツプ孔を加熱するもの
は加熱するためにその分余計にエネルギーを必要
とし、好ましくない。また、添加物を加えるもの
は添加物を投入したり排出したりする煩雑さが伴
い、しかも炭種によつて添加量を調節する必要が
ある。更にまた、スラグタツプ孔の輻射熱損失を
防ぐためには構造が複雑になる欠点がある。 ガス化炉の機能としては、これらの手段を用い
なくても流下させられるのが理想であるが、これ
まで試みられた多くの方法でその困難さが示され
ている。スラグタツプ孔付近の温度はガス化反応
に伴う発生熱量、溶融スラグの持込む熱量と伝熱
及びスラグの持出す熱量を合せた損失熱量のバラ
ンスによつて決定される。ガス化炉の処理量が増
大すれば熱損失量の割合が減少し、スラグタツプ
孔付近の温度は高くなるので、溶融スラグの安定
流下に対して有利になるが、現状ではその規模の
ガス化炉は存在しない。またガス化方式、例えば
ガス化剤に酸素を用いるか空気を用いるか、常圧
で行うか加圧にしてコンパクトな炉にするか等に
より、また使用する石炭種により、同じ処理量で
もある場合にはスラグタツプ孔が閉塞することが
考えられる。いずれにしてもガス化炉としてはス
ラグ流下手段を有することが必要であるが、ガス
化炉の運転制御性、ガス化効率を損なわないよ
う、前記短所をできるかぎり軽減する必要があ
る。 〔発明の目的〕 本発明は上記欠点を改善しようとしてなされた
もので、その目的とするところは、特別な構造を
付加することなくガス化方式、石炭種が変つた場
合でもスラグを確実に流下できるガス化炉を提供
することにある。 〔発明の概要〕 即ち、本発明の特徴は、石炭を石炭灰の溶融温
度以上でガス化するガス化反応室と、このガス化
反応室で生じた溶融スラグをスラグ冷却室へ落下
させるスラグ流出孔を有するガス化炉において、
前記スラグ流出孔を形成するスラグタツプ部を熱
伝導率の異なる少なくとも2種類の材料で構成す
ると共に、該スラグ流出孔周辺のスラグと接触す
る部分を熱伝導率の大きい材料で形成し該熱伝導
率の大きい材料の外側を囲むように熱伝導率の小
さい材料を配し、かつ該熱伝導率の大きい材料は
前記ガス化反応室に面する面積を前記スラグ冷却
室に面する面積よりも大きくした石炭のガス化炉
にある。 〔発明の実施例〕 本発明の実施例の説明の前に、噴流層ガス化炉
における溶融スラグの固化について第1図及び第
2図を用いて説明する。 微粉炭2は窒素ガス、空気等で搬送され、バー
ナ3からガス化炉9のガス化室4に吹き込まれ
る。ガス化剤1(酸素又は空気)は同様にバーナ
3を通して供給され、バーナ3の先端で微粉炭と
混合される。ガス化炉9はガス化室4、スラグ冷
却室6等よりなり、耐火断熱壁8でおおわれてい
る。微粉炭はガス化剤とガス化室4で反応し、水
素,一酸化炭素に豊むガスに転化される。生成ガ
ス5はガス化室4を出た後、排熱回収室又は水冷
却室(いずれも図示せず)に導かれる。一方、ガ
ス化室4で溶融した石炭灰はガス化炉内壁を伝わ
り、スラグタツプ孔7を通つてスラグ冷却室6に
落下し、さらにスラグ水冷容器(図示せず)に入
る。11はスラグタツプ孔7から溶融スラグが流
れる様子をテレビカメラ(図示せず)等により観
察する観察窓である。次にスラグタツプ孔7から
スラグが流れる様子の一例を第2図に示す。溶融
スラグ10はスラグタツプ孔7のガス化室4側か
らいきおいよく流れてくるが、スラグタツプ孔7
の中間12付辺で流れが弱まり、スラグタツプ孔
7を離れる時には動きが鈍くなつた状態で滴下す
る。ガス化条件、スラグタツプ孔形状を種々変化
させてスラグの流れる様子を調べた結果、スラグ
の流下、固化はスラグタツプ孔7のスラグ冷却室
側6の温度T2に支配されることが明らかとなつ
た。太平洋炭(北海道炭)の場合、T2が1400℃
以下になると、スラグタツプ孔7のスラグ冷却室
6側から固化が始まる。この場合でも、ガス化室
4からは溶融スラグが流れ込んでくることから、
T2が1400℃以下でも、スラグタツプ孔7のガス
化室4側の温度T1は常にスラグが流れる条件を
満たしている。1400℃という温度は太平洋炭の溶
融スラグの粘度を200〜250ポアズにする温度であ
る。すなわち、溶融スラグを流すためにはその粘
度を常に200ポアズ以下になるような温度に保つ
ことが必要である。 以上の結果から次のことが明らかになる。 (1) 溶融スラグをガス化室からスラグ冷却室空間
に落下させるには、溶融スラグが接触している
スラグタツプ部のうち、溶融スラグが最後にタ
ツプ部をはなれる場所の温度TSTを低下させな
いことが必要である。 (2) TSTは溶融スラグの粘度を200ポイズ以下に
する温度である。 前記(1)が達成できない最大の原因はスラグタツ
プ孔7からの伝熱による放熱量が、スラグタツプ
孔7への伝熱量に比べて相対的に多いためであ
る。スラグタツプ孔7への伝熱はガス化室4の高
温ガスからの輻射及び溶融スラグ10からの伝導
によるもので、両者は石炭処理量、ガス化温度が
定まれば決定される。したがつてスラグタツプ孔
7の温度を低下させないためにはスラグタツプ孔
7からの放熱量を抑えることである。スラグタツ
プ孔7からの放熱はスラグタツプ孔7から耐火断
熱壁8への伝導、スラグ冷却室6への熱伝達によ
つて発生する。したがつて、これらの放熱を抑え
るような手段が必要であり、本発明ではスラグタ
ツプ孔のうち、溶融スラグが空間へまさに離れん
とする部分のみを、熱伝導率の高い材質とし、そ
れ以外のタツプ部は熱伝導率の低い材質としたも
のである。 次に本発明の一実施例を第3図によつて説明す
る。ガス化室4及びスラグ冷却室6の形状は第2
図と同様であるがスラグタツプ孔7を熱伝導率の
大きい高熱伝導性部12と高熱伝導性部12より
熱伝導率の小さい低熱伝導性部13に分けて構成
し、高熱伝導性部12のガス化室4に面する面積
をスラグ冷却室6に面する面積より大きくなるよ
うに低熱伝導性部13で高熱伝導性部12を支持
している。高熱伝導性部12に使用する材料はセ
ラミツクス,耐火レンガ金属材料、あるいはセラ
ミツクスと金属材料の複合材料で熱伝導率の高い
ものである。セラミツクスはアルミナ系(Al2O3
≧99%)が好適である。例えばAl2O3=99%のセ
ラミツクスの1000℃における熱伝導率は14〜
18kcal/m・h・℃である。炭化ケイ素系は熱伝
導率はアルミナ系の約3〜4倍大きいが、酸化雰
囲気では溶融する場合があるので、アルミナ系の
セラミツクスで表面をコーテイングする必要があ
る。耐火レンガではアルミナ−クロム系やアルミ
ナ−クロム−マグネシア系が好適である。これら
の熱伝導率は3〜6kcal・m・h・℃とアルミナ
セラミツクスより小さいが、溶融スラグに対する
耐侵食性に優れる。炭化ケイ素系の耐火レンガは
やはり酸化雰囲気に弱い。金属材料の場合は高融
点物質が前程条件となり、タングステン,モリブ
デン等が好適である。これらの熱伝導率は前記非
金属材料の10倍以上であるが、ガス,溶融スラグ
による腐食,侵食防止のためセラミツクスによる
コーテイングが必要である。 一方低熱伝導性部に使用する材料はセラミツク
ス,断熱レンガで熱伝導率の低いものである。セ
ラミツクスはジルコニア系が好適である。例えば
ZrO2=90%のセラミツクスは熱伝導率は1〜
2kcal・m・h・℃である。断熱レンガではアル
ミナ−シリカ系で0.5〜0.8kcal・m・h・℃のも
のがあるが、耐熱性が弱く、1500℃以上では変質
してもろくなる。 第3図の構造で高熱伝導性部にAl2O3=99.5%
のセラミツクス、低熱伝導部にZrO2=91%のセ
ラミツクスを用いた場合とそれぞれ単独を用いた
場合のスラグタツプ孔付近温度とスラグ流下状態
の関係を表に示す。なおガス化炉本体の耐火断熱
壁8はAl2O3=95%の流し込み耐火キヤスタブル
とAl2O3=43%,SiO2=47%の流し込み断熱キヤ
スタブルで整形した。
[Field of Application of the Invention] The present invention particularly relates to a coal gasifier that smoothly discharges melted coal ash out of the furnace. [Background of the Invention] There are fixed bed, fluidized bed, spouted bed, and fused bed methods for coal gasifiers, but the spouted bed and fused bed methods, which gasify coal ash at a temperature higher than its melting point, Since the coal gas can be converted into hydrogen and carbon monoxide, and the ash can be discharged as slag, it has the advantage of expanding the use of coal gas as a chemical raw material, fuel, hydrogen, etc., and making coal conversion equipment highly compatible with the environment. The challenge in operating this system is how to discharge the molten coal ash (hereinafter referred to as molten slag) out of the furnace in a stable manner.In particular, when cooling the molten slag, it is necessary to avoid clogging the molten slag passage due to solidification. be. Usually, molten slag is dropped from the gasification chamber into a slag cooling chamber filled with cooling water, but it tends to solidify at the outlet from the gasification chamber, that is, at the slag outlet hole (hereinafter referred to as slag tap hole). For this reason, in order to prevent the slug tap hole from being blocked, for example,
The slug tap hole is heated with a burner as shown in Japanese Patent Publication No. 76302, or
There is one that heats with electricity, as shown in Japanese Patent No. 172986. In addition, additives are added to the gasifier to improve the fluidity of the molten slag.
Furthermore, various methods have been proposed to prevent radiant heat loss from the slug tap holes. However, a device that heats the slug tap hole requires extra energy for heating, which is not preferable. Further, in the case of adding additives, it is complicated to add and discharge the additives, and furthermore, it is necessary to adjust the amount added depending on the type of coal. Furthermore, there is a drawback that the structure becomes complicated in order to prevent radiant heat loss through the slug tap hole. Ideally, the gasifier would be able to flow down without using these means, but many of the methods tried so far have shown difficulties. The temperature near the slag tap hole is determined by the balance between the amount of heat generated during the gasification reaction, the amount of heat brought in by the molten slag, and the amount of heat lost, which is the sum of the amount of heat transferred and the amount of heat taken out by the slag. If the throughput of the gasifier increases, the rate of heat loss will decrease and the temperature near the slag tap hole will increase, which will be advantageous for stable flow of molten slag, but at present, a gasifier of that scale will does not exist. In addition, the throughput may be the same depending on the gasification method, for example, whether oxygen or air is used as the gasifying agent, whether it is carried out at normal pressure or pressurized in a compact furnace, and the type of coal used. It is possible that the slug tap hole becomes clogged. In any case, it is necessary for the gasifier to have a slag flowing means, but it is necessary to alleviate the above-mentioned disadvantages as much as possible so as not to impair the operational controllability and gasification efficiency of the gasifier. [Object of the Invention] The present invention was made to improve the above-mentioned drawbacks, and its purpose is to ensure that slag flows down even when the gasification method or coal type changes without adding any special structure. Our goal is to provide a gasifier that can. [Summary of the Invention] That is, the features of the present invention include a gasification reaction chamber that gasifies coal at a temperature higher than the melting temperature of coal ash, and a slag outflow that causes molten slag produced in the gasification reaction chamber to fall into a slag cooling chamber. In a gasifier with holes,
The slag tap portion forming the slag outflow hole is made of at least two types of materials with different thermal conductivities, and the portion that contacts the slag around the slag outflow hole is formed of a material with high thermal conductivity. A material with a low thermal conductivity is arranged so as to surround the outside of the material with a high thermal conductivity, and the area of the material with a high thermal conductivity facing the gasification reaction chamber is larger than the area facing the slag cooling chamber. Located in a coal gasifier. [Embodiments of the Invention] Before describing embodiments of the present invention, solidification of molten slag in a spouted bed gasifier will be explained using FIGS. 1 and 2. The pulverized coal 2 is transported by nitrogen gas, air, etc., and is blown into the gasification chamber 4 of the gasification furnace 9 from the burner 3. Gasifying agent 1 (oxygen or air) is likewise fed through burner 3 and is mixed with the pulverized coal at the tip of burner 3. The gasification furnace 9 includes a gasification chamber 4, a slag cooling chamber 6, etc., and is covered with a refractory heat insulating wall 8. The pulverized coal reacts with the gasification agent in the gasification chamber 4 and is converted into a gas rich in hydrogen and carbon monoxide. After the generated gas 5 leaves the gasification chamber 4, it is guided to an exhaust heat recovery chamber or a water cooling chamber (neither of which is shown). On the other hand, the coal ash melted in the gasification chamber 4 travels along the inner wall of the gasifier, passes through the slag tap hole 7, falls into the slag cooling chamber 6, and further enters the slag water cooling container (not shown). Reference numeral 11 denotes an observation window for observing the flow of molten slag from the slag tap hole 7 using a television camera (not shown) or the like. Next, an example of how the slag flows from the slag tap hole 7 is shown in FIG. The molten slag 10 flows smoothly from the gasification chamber 4 side of the slag tap hole 7;
The flow weakens near the middle 12, and when it leaves the slug tap hole 7, it drips with slow movement. As a result of investigating the flow of slag by variously changing the gasification conditions and the shape of the slag tap hole, it became clear that the flow of slag and solidification is controlled by the temperature T 2 of the slag cooling chamber side 6 of the slag tap hole 7. . In the case of Pacific coal (Hokkaido coal), T2 is 1400℃
When the temperature becomes below, solidification starts from the slag cooling chamber 6 side of the slag tap hole 7. Even in this case, since molten slag flows from the gasification chamber 4,
Even if T 2 is below 1400° C., the temperature T 1 of the gasification chamber 4 side of the slag tap hole 7 always satisfies the condition for slag flow. The temperature of 1400°C is the temperature that makes the viscosity of Pacific coal molten slag 200 to 250 poise. That is, in order to flow the molten slag, it is necessary to maintain the temperature at such a level that the viscosity of the molten slag is always below 200 poise. From the above results, the following becomes clear. (1) In order to allow the molten slag to fall from the gasification chamber to the slag cooling chamber space, the temperature TST of the slag tap where the molten slag is in contact with the slag where it finally leaves the tap must not be lowered. It is necessary. (2) T ST is the temperature at which the viscosity of the molten slag is 200 poise or less. The main reason why (1) cannot be achieved is that the amount of heat dissipated by heat transfer from the slug tap hole 7 is relatively large compared to the amount of heat transferred to the slug tap hole 7. Heat transfer to the slag tap hole 7 is due to radiation from the high temperature gas in the gasification chamber 4 and conduction from the molten slag 10, both of which are determined once the coal throughput and gasification temperature are determined. Therefore, in order to prevent the temperature of the slug tap hole 7 from decreasing, it is necessary to suppress the amount of heat dissipated from the slug tap hole 7. Heat radiation from the slag tap hole 7 is generated by conduction from the slag tap hole 7 to the fireproof insulation wall 8 and heat transfer to the slag cooling chamber 6. Therefore, a means for suppressing these heat radiations is required, and in the present invention, only the part of the slag tap hole where the molten slag will leave the space is made of a material with high thermal conductivity, and the other parts are made of a material with high thermal conductivity. The tap portion is made of a material with low thermal conductivity. Next, one embodiment of the present invention will be described with reference to FIG. The shape of the gasification chamber 4 and the slag cooling chamber 6 is the second
Although it is similar to the figure, the slug tap hole 7 is divided into a high thermal conductive part 12 having a high thermal conductivity and a low thermal conductive part 13 having a lower thermal conductivity than the high thermal conductive part 12. The high thermal conductivity section 12 is supported by the low thermal conductivity section 13 so that the area facing the slag cooling chamber 4 is larger than the area facing the slag cooling chamber 6. The material used for the high thermal conductivity portion 12 is ceramic, firebrick metal material, or a composite material of ceramic and metal material with high thermal conductivity. Ceramics are alumina-based (Al 2 O 3
≧99%) is preferred. For example, the thermal conductivity of ceramics with Al 2 O 3 = 99% at 1000℃ is 14~
It is 18kcal/m・h・℃. Silicon carbide has a thermal conductivity about 3 to 4 times higher than alumina, but it may melt in an oxidizing atmosphere, so it is necessary to coat the surface with alumina ceramic. For refractory bricks, alumina-chromium type and alumina-chromium-magnesia type are suitable. Their thermal conductivity is 3 to 6 kcal·m·h·°C, which is lower than that of alumina ceramics, but they have excellent corrosion resistance against molten slag. Silicon carbide firebricks are still susceptible to oxidizing atmospheres. In the case of metal materials, a high melting point substance is the prerequisite, and tungsten, molybdenum, etc. are suitable. Although the thermal conductivity of these materials is ten times higher than that of the non-metallic materials mentioned above, coating with ceramics is required to prevent corrosion and erosion caused by gas and molten slag. On the other hand, the materials used for the low thermal conductivity parts are ceramics and insulating bricks, which have low thermal conductivity. Zirconia-based ceramics are preferred. for example
Ceramics with ZrO 2 = 90% have a thermal conductivity of 1~
It is 2 kcal・m・h・℃. Some insulating bricks are made of alumina-silica and have a resistance of 0.5 to 0.8 kcal・m・h・℃, but they have poor heat resistance and deteriorate and become brittle at temperatures above 1500℃. In the structure shown in Figure 3, Al 2 O 3 = 99.5% in the high thermal conductivity part.
The table shows the relationship between the temperature near the slag tap hole and the slag flowing state when ceramics with ZrO 2 =91% are used in the low thermal conductivity part and when each ceramic is used alone. The refractory and insulating wall 8 of the gasifier main body was shaped with a poured refractory castable containing 95% Al 2 O 3 and a poured insulating castable containing 43% Al 2 O 3 and 47% SiO 2 .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、特別な構造を付加することな
くスラグタツプ孔における溶融スラグの固化が防
止でき、このためスラグを確実に流下できるので
石炭ガス化炉の安定操業が行える。
According to the present invention, solidification of molten slag in the slag tap hole can be prevented without adding any special structure, and the slag can therefore be reliably flowed down, allowing stable operation of the coal gasifier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は石炭ガス化炉の説明図、第2図はガス
化炉スラグタツプ部の断面とスラグ流下の概念を
示す図、第3図乃至第5図は本発明なるスラグタ
ツプ部の各実施例における断面図を示すものであ
る。 1……ガス化剤、2……石炭、4……ガス化
室、6……スラグ冷却室、7……スラグタツプ
孔、12……高熱伝導性部、13……低熱伝導性
部。
Fig. 1 is an explanatory diagram of a coal gasifier, Fig. 2 is a diagram showing a cross section of a gasifier slag tap part and the concept of slag flowing down, and Figs. 3 to 5 are illustrations of each embodiment of the slag tap part of the present invention. It shows a cross-sectional view. 1...Gasifying agent, 2...Coal, 4...Gasification chamber, 6...Slag cooling chamber, 7...Slag tap hole, 12...High thermal conductivity section, 13...Low thermal conductivity section.

Claims (1)

【特許請求の範囲】[Claims] 1 石炭を石炭灰の溶融温度以上でガス化するガ
ス化反応室と、このガス化反応室で生じた溶融ス
ラグをスラグ冷却室へ落下させるスラグタツプ孔
を有するガス化炉において、前記スラグタツプ孔
を形成するスラグタツプ部を熱伝導率の異なる少
なくとも2種類の材料で構成すると共に、該スラ
グタツプ孔周辺のスラグと接触する部分を熱伝導
率の大きい材料で形成し該熱伝導率の大きい材料
の外側を囲むように熱伝導率の小さい材料を配
し、かつ該熱伝導率の大きい材料は前記ガス化反
応室に面する面積が前記スラグ冷却室に面する面
積よりも大きくなるようにしたことを特徴とする
石炭のガス化炉。
1. In a gasifier having a gasification reaction chamber for gasifying coal at a temperature equal to or higher than the melting temperature of coal ash, and a slag tap hole for allowing molten slag produced in the gasification reaction chamber to fall into a slag cooling chamber, the slag tap hole is formed. The slug tap part is made of at least two types of materials with different thermal conductivities, and the part around the slug tap hole that contacts the slag is made of a material with high thermal conductivity, and the outside of the material with high thermal conductivity is surrounded. A material having a low thermal conductivity is arranged, and an area of the material having a high thermal conductivity facing the gasification reaction chamber is larger than an area facing the slag cooling chamber. coal gasifier.
JP8075183A 1983-05-11 1983-05-11 Gasifier for coal Granted JPS59206487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8075183A JPS59206487A (en) 1983-05-11 1983-05-11 Gasifier for coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8075183A JPS59206487A (en) 1983-05-11 1983-05-11 Gasifier for coal

Publications (2)

Publication Number Publication Date
JPS59206487A JPS59206487A (en) 1984-11-22
JPH0414157B2 true JPH0414157B2 (en) 1992-03-11

Family

ID=13727105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8075183A Granted JPS59206487A (en) 1983-05-11 1983-05-11 Gasifier for coal

Country Status (1)

Country Link
JP (1) JPS59206487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124590A1 (en) * 2011-03-15 2012-09-20 新日鉄エンジニアリング株式会社 Coal gasification method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206657U (en) * 1985-06-14 1986-12-27
CN102041098B (en) * 2010-12-30 2013-01-23 云南煤化工集团有限公司 Fixed bed slag gasification furnace
KR102641684B1 (en) * 2023-08-08 2024-02-28 에스오씨기술지주 주식회사 A slag discharge device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124590A1 (en) * 2011-03-15 2012-09-20 新日鉄エンジニアリング株式会社 Coal gasification method
JP2012193247A (en) * 2011-03-15 2012-10-11 Nippon Steel Engineering Co Ltd Method for gasifying coal

Also Published As

Publication number Publication date
JPS59206487A (en) 1984-11-22

Similar Documents

Publication Publication Date Title
US4707163A (en) Gasification of coal dust
EP0301763B1 (en) Continuous casting furnace and die system of modular design
KR20090095651A (en) Method of and apparatus for conveying molten metals while providing heat thereto
US7090707B1 (en) Combustion chamber design for a quench gasifier
CN113286868B (en) Reactor and method for gasifying and/or melting a feedstock
JPH0414157B2 (en)
US9181503B2 (en) Method for the heat treatment of material in a reactor having a wall acting as self-crucible
JP4723893B2 (en) Method for preventing oxidation of working surface of silicon carbide castable refractories in waste melting furnace
JP5027861B2 (en) Refractory structure of waste melting furnace
CA1178051A (en) Gas-blast pipe for feeding reaction agents into metallurgical melts
US4644557A (en) Process for the production of calcium carbide and a shaft furnace for carrying out the process
JP3975024B2 (en) Low quality fuel combustion and gasification furnace
JPH05106826A (en) Melting furnace for waste
JPS58194986A (en) Multi-stage spouted bed gasification furnace
JP2007231203A (en) Method for gasifying carbonaceous raw material
US5058126A (en) Silicon carbide beam as refractory in an open-arc furnace
JPS58110981A (en) Water cooling type refractory furnace
JPS61197690A (en) Coal gasifying equipment
JPS61117180A (en) Thermocouple protection tube for jet stream coal gasficationfurnace
GB2205634A (en) Treating furnace slag
JPH043437B2 (en)
JPS61235493A (en) Slag discharging apparatus for gasifying oven
JP2002122313A (en) Combusting/gasifying furnace for low quality fuel
JP2002356725A (en) FLASH REDUCTION FURNACE FOR SMELTING Zn-Pb, AND OPERATING METHOD THEREOF
JPS6123251B2 (en)