JPH0414116A - Pressure pulsation controller for fluid pipeline system - Google Patents

Pressure pulsation controller for fluid pipeline system

Info

Publication number
JPH0414116A
JPH0414116A JP11785190A JP11785190A JPH0414116A JP H0414116 A JPH0414116 A JP H0414116A JP 11785190 A JP11785190 A JP 11785190A JP 11785190 A JP11785190 A JP 11785190A JP H0414116 A JPH0414116 A JP H0414116A
Authority
JP
Japan
Prior art keywords
pressure
pulsation
flow velocity
fluid
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11785190A
Other languages
Japanese (ja)
Other versions
JP2804600B2 (en
Inventor
Hidekazu Kojima
小嶋 英一
Shigeki Murayama
茂樹 村山
Mitsuru Muto
満 武藤
Hideki Kitsuu
秀樹 木通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2117851A priority Critical patent/JP2804600B2/en
Publication of JPH0414116A publication Critical patent/JPH0414116A/en
Application granted granted Critical
Publication of JP2804600B2 publication Critical patent/JP2804600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To reduce the pulsation component in a pressure pulsation controller of a fluid pipeline system by driving an actuator with use of an accurate traveling wave component. CONSTITUTION:The outputs P1 and P2 of pressure sensors 7 and 8 undergo the detection of the pressure fluctuation component by an HPF 11 and then the elimination of noises by an LPF 12. Then these outputs P1 and P2 are inputted to a flow velocity computing element 13. The element 13 computes the flow velocity pulsation (u) at the middle position between both sensors 7 and 8 and at the time t+DELTAt. The pulsation (u) is inputted to a traveling wave computing element 14 together with the pressure pulsation P3 given from a pressure sensor 9. Thus the element 14 computes a traveling wave F1 (t) of the flow velocity pulsation, and the wave F1 (t) is inputted to an actuator/pipeline dynamic characteristic compensator 15 and then to an actuator 6 after amplification. Then the wave F1 (t) is moved to the radius direction of a fluid pipeline 1 along a movable wall 5. Thus the fluid pressure and the flow rate fluctuation can be deleted out of the pipe 1 at the downstream side 3 of the wall 5. Meanwhile the wall 5 is actuated and a pressure sensor of an upstream side 2 detects the reverse transmission of the wave F1 (t) to the side 2. Thus it is possible to prevent the howling which becomes unstable as a control loop.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流体管路内を流れる流体の脈動を吸収するよ
うにした流体管路系の圧力脈動制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure pulsation control device for a fluid pipeline system that absorbs pulsations in fluid flowing within the fluid pipeline.

[従来の技術] 抄紙機原料輸送配管等の液体輸送配管の脈動吸収、配管
ダクトの消音等を行なう流体管路系の圧力脈動制御装置
においては、従来流体管路系に2個の圧力センサを設け
て一方の圧力センサに遅延回路を挿入し、2個の圧力セ
ンサの出力を演算することによって脈動を検出し、流体
管路の管壁に設けた可動壁をアクチュエータによって流
体管路の径方向に移動させて脈動を吸収していた。
[Prior Art] In a pressure pulsation control device for a fluid piping system that absorbs pulsations in liquid transport piping such as paper machine raw material transport piping, silences piping ducts, etc., conventionally two pressure sensors are installed in the fluid piping system. A delay circuit is inserted into one of the pressure sensors, and pulsation is detected by calculating the outputs of the two pressure sensors. It was moved to absorb the pulsation.

[発明が解決しようとする課題] 従来の遅延回路を挿入した装置では、基本的に進行波を
検出していることにはならず、従って可動壁からの逆転
は波の影響を完全に消すことはできなかった。
[Problem to be solved by the invention] A conventional device with a delay circuit inserted basically does not detect traveling waves, and therefore, reversing from a movable wall completely eliminates the influence of waves. I couldn't.

本発明はこのような従来の欠点を除去し、正確な進行波
成分を用いてアクチュエータを駆動することにより、脈
動成分を減少させることができるようにした流体管路系
の圧力脈動制御装置を提供することを目的とするもので
ある。
The present invention eliminates such conventional drawbacks and provides a pressure pulsation control device for a fluid pipeline system that can reduce pulsation components by driving an actuator using accurate traveling wave components. The purpose is to

[課題を解決するための手段] 本発明の流体管路系の圧力脈動制御装置は、流体管路の
管壁に設けた可動壁と、該可動壁に連結され且つ該可動
壁を前記流体管路の径方向へ移動させるアクチュエータ
と、前記流体管路の可動壁上流側に設けられ前記流体管
路内の流速変動を検出する圧力センサおよび前記流体管
路内の圧力変動を検出する圧力センサと、前記可動壁近
傍に設けられ前記流体管路内の圧力変動を検出する圧力
センサと、前記流速変動を検出する圧力センサの出力か
ら流速脈動を演算する流速演算器と、該流速演算器の出
力と圧力変動を検出する圧力センサの出力とから進行波
変動成分を演算する進行波演算器と、該進行波演算器の
出力を受け前記可動壁近傍の圧力センサの圧力信号によ
り補償して前記アクチュエータの駆動信号を出力するア
クチュエータ動特性、管路動特性補償器とを備えたこと
を特徴とするものである。
[Means for Solving the Problem] A pressure pulsation control device for a fluid pipe system according to the present invention includes a movable wall provided on a pipe wall of a fluid pipe, and a movable wall connected to the movable wall and connected to the fluid pipe. an actuator that moves in the radial direction of the fluid pipe; a pressure sensor that is provided on the upstream side of a movable wall of the fluid pipe that detects flow velocity fluctuations in the fluid pipe; and a pressure sensor that detects pressure fluctuations in the fluid pipe. , a pressure sensor provided near the movable wall to detect pressure fluctuations in the fluid pipeline, a flow velocity calculator that calculates flow velocity pulsation from the output of the pressure sensor that detects the flow velocity fluctuations, and an output of the flow velocity calculator. and an output of a pressure sensor that detects pressure fluctuations, and a traveling wave calculator that calculates a traveling wave fluctuation component from the output of a pressure sensor that detects pressure fluctuations; The present invention is characterized in that it includes an actuator dynamic characteristic compensator and a pipe dynamic characteristic compensator that outputs a drive signal.

[作   用〕 可動壁の上流側で流体管路内の圧力変動を検出すると同
時に流量変動を検出し、圧力変動と流量変動から演算し
た正確な進行波成分を用いてアクチュエータを制御し、
脈動成分を減少させることになる。
[Function] Detects pressure fluctuations in the fluid pipe on the upstream side of the movable wall and detects flow rate fluctuations at the same time, controls the actuator using accurate traveling wave components calculated from pressure fluctuations and flow rate fluctuations,
This will reduce the pulsating component.

[実 施 例コ 以下、本発明の実施例を図面を参照して説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図中、■は抄紙機原料配管等の流体管路で、左が上
流2、右が下流3であって、抄紙原料等の流体は、流体
管路1内を左から右へ流れるようになっている。流体管
路1の一部には流体管路1の径方向外方に突設したシリ
ンダ4かあって、シリンダ4内にはピストン状の可動壁
5が嵌合されており、可動壁5は外部のアクチュエータ
6によって流体管路lの径方向に移動されるようになっ
ている。
In Fig. 1, ■ indicates a fluid pipe such as a paper machine raw material pipe, where the left is the upstream 2 and the right is the downstream 3, so that the fluid such as the paper machine raw material flows from left to right in the fluid pipe 1. It has become. A part of the fluid conduit 1 has a cylinder 4 projecting outward in the radial direction of the fluid conduit 1, and a piston-shaped movable wall 5 is fitted into the cylinder 4. It is adapted to be moved in the radial direction of the fluid conduit l by an external actuator 6.

流体管路lの可動壁5の上流2側には、流体管路l内の
流速変動を検出する2個の圧力センサ7,8が距離Ax
をおいて取付けられている。
On the upstream 2 side of the movable wall 5 of the fluid pipe l, two pressure sensors 7 and 8 for detecting flow velocity fluctuations in the fluid pipe l are mounted at a distance Ax.
It is installed with the

また圧力センサ7,8から距離IJ x / 2をおい
た中間には圧力センサ9が、可動壁5の近傍には圧力セ
ンサlOが、それぞれ取付けられている。
Further, a pressure sensor 9 is installed at a distance IJ x /2 from the pressure sensors 7 and 8, and a pressure sensor 1O is installed near the movable wall 5, respectively.

圧力センサ7,8.9.10の出力は変動成分検出用バ
イパスフィルタ11に入力されて流体管路l内の圧力の
変動成分が検出され、変動成分検出用バイパスフィルタ
11の出力はノイズ除去用ローパスフィルタ12に入力
されてノイズが除去されるようになっている。そして圧
力センサ7の出力P1と圧力センサ8の出力P2とは、
流速演算器13に人力されるようになっている。
The outputs of the pressure sensors 7, 8, 9, and 10 are input to the fluctuation component detection bypass filter 11 to detect the fluctuation component of the pressure in the fluid pipe l, and the output of the fluctuation component detection bypass filter 11 is used for noise removal. The signal is input to a low-pass filter 12 to remove noise. The output P1 of the pressure sensor 7 and the output P2 of the pressure sensor 8 are
The flow velocity calculator 13 is operated manually.

U :圧力センサ7,8の中間位置における断面平均流
速の脈動(以下、「流速脈動」と記す。) t:時間 At:サンプリング周期(−1/fs)fs :サンプ
リング周波数 Rf :管路流れの抵抗係数(−8ν/r’0)ν :
流体の動粘度 ro :管路の内半径 とするとき、流速演算器13においては、時刻t+At
における流速変動を次の式から演算する。
U: Pulsation of cross-sectional average flow velocity at the intermediate position between pressure sensors 7 and 8 (hereinafter referred to as "flow velocity pulsation") t: Time At: Sampling period (-1/fs) fs: Sampling frequency Rf: Pipe flow rate Resistance coefficient (-8ν/r'0)ν:
When fluid kinematic viscosity ro is the inner radius of the pipe, in the flow velocity calculator 13, time t+At
The flow velocity fluctuation at is calculated from the following formula.

u  (t+At)− fPl(t) −P2 (t) +P1(t+、6t)
−P2 (t+ff1t))このように流速演算器13
においては、圧力センサ7の出力P1と圧力センサ8の
出力P2とから、圧力センサ7,8の中間位置における
流速脈動Uを演算する。
u (t+At) − fPl(t) −P2 (t) +P1(t+, 6t)
-P2 (t+ff1t)) In this way, the flow velocity calculator 13
, the flow velocity pulsation U at the intermediate position between the pressure sensors 7 and 8 is calculated from the output P1 of the pressure sensor 7 and the output P2 of the pressure sensor 8.

流速演算器13て演算された流速脈動Uは進行波演算器
14に入力される。進行波演算器14には、圧力センサ
9の検出した圧力脈動P3も入力され、 F+(t):圧力センサ9の位置における流速脈動の進
行波 C:流体管路1内流体中の音速 とするとき、進行波演算器14においては、次の式から
流速脈動の進行波F+(t)を演算する。
The flow velocity pulsation U calculated by the flow velocity calculator 13 is input to the traveling wave calculator 14. The pressure pulsation P3 detected by the pressure sensor 9 is also input to the traveling wave calculator 14, and F+(t): Traveling wave of flow velocity pulsation at the position of the pressure sensor 9 C: Sound velocity in the fluid in the fluid pipe 1. At this time, the traveling wave calculator 14 calculates the traveling wave F+(t) of the flow velocity pulsation from the following equation.

進行波演算器14て演算された進行波F+(t)はアク
チュエータ動特性、管路動特性補償器15に人力され、
次に説明する補償か行なわれた後、増幅器16で増幅さ
れてアクチュエータ6に入力され、アクチュエータ6に
よって可動壁5を流体管路1の径方向へ移動させる。シ
リンダ4と流体管路1の内径が等しい場合、可動壁5の
移動は、流体管路1を伝わって来た流速脈動F+  (
を−τ)に対し大きさか2倍で位相が1806異なる一
2f+  (t−τ)の進行波になっていて、この進行
波は第2図に示すように流体管路1内の流体に加えられ
て進行波 F、(を−τ)を吸収し、可動壁5より下流の位置での
流速脈動の進行波を零にする。シリンダ4と流体管路l
の内径か異なる場合は、2Ap/Ac F+  (t−
r)の進行波とすればよい(Ap :流体管路1の断面
積、 ACニジリンダ断面積)。τはP3からP4へ進
行波の伝達時間を示し、アクチュエータ動特性、管路動
特性補償器15によって決定する。
The traveling wave F+(t) calculated by the traveling wave calculator 14 is manually inputted to the actuator dynamic characteristic compensator 15 and the pipe dynamic characteristic compensator 15.
After the compensation described below is performed, the signal is amplified by the amplifier 16 and input to the actuator 6, and the actuator 6 moves the movable wall 5 in the radial direction of the fluid conduit 1. When the inner diameters of the cylinder 4 and the fluid pipe 1 are equal, the movement of the movable wall 5 is caused by the flow velocity pulsation F+ (
It is a traveling wave of -2f+ (t-τ) which is twice the magnitude or 1806 times different in phase from -τ), and this traveling wave is added to the fluid in the fluid pipe 1 as shown in Fig. 2. The movable wall 5 absorbs the traveling wave F, (-τ), and makes the traveling wave of flow velocity pulsation at a position downstream of the movable wall 5 zero. Cylinder 4 and fluid pipe l
2Ap/Ac F+ (t-
r) (Ap: cross-sectional area of fluid pipe line 1, cross-sectional area of AC cylinder). τ indicates the propagation time of the traveling wave from P3 to P4, and is determined by the actuator dynamic characteristic and pipe dynamic characteristic compensator 15.

可動壁5の近傍に設けである圧力センサ10は可動壁5
による一2F+  (を−τ)の進行波が加えられた流
体管路1内の圧力変動P4を検出し、変動成分検出用バ
イパスフィルタ11、ライス除去用ローパスフィルタ1
2を通してアクチュエータ動特性、管路動特性補償器1
5に入力し、可動壁5近傍での圧力変動が零とならない
場合に、進行波演算器14からの入力を補償して下流3
側の脈動が零となるように可動壁5を制御する。
A pressure sensor 10 provided near the movable wall 5 is connected to the movable wall 5.
The pressure fluctuation P4 in the fluid pipe 1 to which the traveling wave of -2F+ (-τ) is applied is detected, and the fluctuation component detection bypass filter 11 and the Rice removal low-pass filter 1 are applied.
Actuator dynamic characteristics through 2, pipe dynamic characteristics compensator 1
5, and when the pressure fluctuation near the movable wall 5 does not become zero, the input from the traveling wave calculator 14 is compensated and the downstream
The movable wall 5 is controlled so that the side pulsation becomes zero.

[発明の効果コ 本発明は、可動壁より下流側の流体管路内の流体の圧力
、流量変動を除去することかできる。
[Effects of the Invention] The present invention can eliminate fluid pressure and flow rate fluctuations in the fluid pipeline downstream of the movable wall.

また可動壁を作動させることによって、上流側に伝ばす
る適任は波を上流側の圧力センサか検出し、制御ループ
として不安定となるハウリングが防止できる効果かある
In addition, by operating the movable wall, the wave propagating upstream is detected by the upstream pressure sensor, which has the effect of preventing howling, which would make the control loop unstable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は動作説明
図である。 図中、1は流体管路、2は上流、3は下流、5は可動壁
、6はアクチュエータ、7,8,9.10は圧力センサ
、13は流速演算器、14は進行波演算器、15はアク
チュエータ動特性、管路動特性補償器を示す。
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is an operational diagram. In the figure, 1 is a fluid pipe, 2 is an upstream, 3 is a downstream, 5 is a movable wall, 6 is an actuator, 7, 8, 9.10 is a pressure sensor, 13 is a flow velocity calculator, 14 is a traveling wave calculator, 15 indicates an actuator dynamic characteristic compensator and a pipe dynamic characteristic compensator.

Claims (1)

【特許請求の範囲】[Claims] 1)流体管路の管壁に設けた可動壁と、該可動壁に連結
され且つ該可動壁を前記流体管路の径方向へ移動させる
アクチュエータと、前記流体管路の可動壁上流側に設け
られ前記流体管路内の流速変動を検出する圧力センサお
よび前記流体管路内の圧力変動を検出する圧力センサと
、前記可動壁近傍に設けられ前記流体管路内の圧力変動
を検出する圧力センサと、前記流速変動を検出する圧力
センサの出力から流速脈動を演算する流速演算器と、該
流速演算器の出力と圧力変動を検出する圧力センサの出
力とから進行波変動成分を演算する進行波演算器と、該
進行波演算器の出力を受け前記可動壁近傍の圧力センサ
の圧力信号により補償して前記アクチュエータの駆動信
号を出力するアクチュエータ動特性、管路動特性補償器
とを備えたことを特徴とする流体管路系の圧力脈動制御
装置。
1) A movable wall provided on a pipe wall of a fluid pipe, an actuator connected to the movable wall and moving the movable wall in the radial direction of the fluid pipe, and an actuator provided on the upstream side of the movable wall of the fluid pipe. a pressure sensor that detects a flow velocity variation in the fluid pipeline, a pressure sensor that detects a pressure variation in the fluid pipeline, and a pressure sensor that is provided near the movable wall and detects a pressure variation in the fluid pipeline. a flow velocity calculator that calculates flow velocity pulsation from the output of the pressure sensor that detects the flow velocity fluctuation; and a traveling wave that computes a traveling wave fluctuation component from the output of the flow velocity calculator and the output of the pressure sensor that detects the pressure fluctuation. comprising a computing unit, and an actuator dynamic characteristic and pipe dynamic characteristic compensator that receives the output of the traveling wave computing unit, compensates it with a pressure signal from a pressure sensor near the movable wall, and outputs a drive signal for the actuator. A pressure pulsation control device for a fluid piping system characterized by:
JP2117851A 1990-05-08 1990-05-08 Pressure pulsation control device for fluid line system Expired - Lifetime JP2804600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2117851A JP2804600B2 (en) 1990-05-08 1990-05-08 Pressure pulsation control device for fluid line system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2117851A JP2804600B2 (en) 1990-05-08 1990-05-08 Pressure pulsation control device for fluid line system

Publications (2)

Publication Number Publication Date
JPH0414116A true JPH0414116A (en) 1992-01-20
JP2804600B2 JP2804600B2 (en) 1998-09-30

Family

ID=14721857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2117851A Expired - Lifetime JP2804600B2 (en) 1990-05-08 1990-05-08 Pressure pulsation control device for fluid line system

Country Status (1)

Country Link
JP (1) JP2804600B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520185A (en) * 2008-04-22 2011-07-14 ローズマウント インコーポレイテッド Industrial process equipment using piezoelectric transducers
DE102017126690A1 (en) 2016-11-16 2018-05-17 Ckd Corporation air filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279415A (en) * 1986-05-28 1987-12-04 Ishikawajima Harima Heavy Ind Co Ltd Controlling method for pulsating flow in tube
JPS6338069U (en) * 1986-08-27 1988-03-11

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279415A (en) * 1986-05-28 1987-12-04 Ishikawajima Harima Heavy Ind Co Ltd Controlling method for pulsating flow in tube
JPS6338069U (en) * 1986-08-27 1988-03-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520185A (en) * 2008-04-22 2011-07-14 ローズマウント インコーポレイテッド Industrial process equipment using piezoelectric transducers
US9921120B2 (en) 2008-04-22 2018-03-20 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
DE102017126690A1 (en) 2016-11-16 2018-05-17 Ckd Corporation air filter
DE102017126690B4 (en) 2016-11-16 2023-07-20 Ckd Corporation air filter

Also Published As

Publication number Publication date
JP2804600B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
JP3129121B2 (en) Pipe line obstruction detector
FI88209C (en) Method and apparatus for acoustic current measurement to assure the performance
JPH10512966A (en) Ultrasonic flow measurement method
WO2004109239A3 (en) Apparatus for measuring velocity and flow rate of a fluid having a non-negligible axial mach number using an array of sensors
JPH0351955B2 (en)
CN101836090A (en) Triple redundancy vortex flowmeter system
JP4476540B2 (en) Pipe blockage detection device
JPH0414116A (en) Pressure pulsation controller for fluid pipeline system
JP2575810B2 (en) Valve leak monitoring device
US4372167A (en) Flowmeter system with improved loop gain
JP3121735B2 (en) Bidirectional flow measurement method and device
JPH0682282A (en) Measuring equipment for flow rate
JP3147275B2 (en) Differential pressure detector diagnostic device
KR20210124364A (en) Flow control device, flow control method, control program of flow control device
JP2935944B2 (en) Ultrasonic flow meter unit
JPH02107924A (en) Two-phase flow ultrasonic type flow rate measuring method and apparatus
JPH04328435A (en) Connecting pipe for differential pressure transmitter
JP2885861B2 (en) Active control silencer
JP3180182B2 (en) Piping abnormality detection method
JP3586374B2 (en) Plate thickness control device
JPH0777478A (en) Detecting method and detecting device for leakage position of pipe
SE0003348D0 (en) Apparatus and method for measuring the flow in a fluid
SU1428922A2 (en) Liquid flowmeter
JPH05231885A (en) Fluidic flowmeter
JPH04119291A (en) Pressure pulsation damping device