JPH0414103A - Hybrid process controller - Google Patents

Hybrid process controller

Info

Publication number
JPH0414103A
JPH0414103A JP11804890A JP11804890A JPH0414103A JP H0414103 A JPH0414103 A JP H0414103A JP 11804890 A JP11804890 A JP 11804890A JP 11804890 A JP11804890 A JP 11804890A JP H0414103 A JPH0414103 A JP H0414103A
Authority
JP
Japan
Prior art keywords
manipulated variable
fuzzy
control
ratio
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11804890A
Other languages
Japanese (ja)
Inventor
Yumi Saito
ゆみ 齊藤
Tsutomu Ishida
勉 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP11804890A priority Critical patent/JPH0414103A/en
Publication of JPH0414103A publication Critical patent/JPH0414103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To omit a parameter setting job and to secure the excellent control performance at the time of both starting and adjusting a state by performing the control with a fuzzy inference and based on a fuzzy manipulated variable in the starting state and then performing the control with a PI operation and based on a linear manipulated variable after the adjustment state. CONSTITUTION:A gain setter 18 multiplies the output gain Kp by a manipulated variable Pi supplied from a PI control part 10 and produces a linear manipulated variable Upi to output this to a ratio adding arithmetic means 20. A fuzzy inference part 12 inputs a control deviation (e) to perform a fuzzy inference and supplies the inference output (f) to a gain setter 22. The setter 22 multiplies the fuzzy output gain Kf by the output (f) and produces a fuzzy manipulated variable Uf to output this to a ratio adding arithmetic means 24. Both means 20 and 24 receive a linear control ratio alphaand a fuzzy control ratio 1-alpha decided by a manipulated variable ratio changing means 26 from the storage means 28 and 30 respectively. The means 20 multiplies the variable Upi received from the setter 18 by the ratio alpha and outputs a linear manipulated variable alpha.Upi undergone a weighting operation to an adder 32. Meanwhile the means 24 multiplies the variable Uf by the ratio 1-alpha and outputs (1-alpha) Uf to the adder 32 respectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、温度調整制御等のプロセス制御を行う制御装
置に関し、特にPI副制御如き線形制御とファジィ制御
とを含むハイブリッドプロセス制御装置に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a control device that performs process control such as temperature adjustment control, and particularly to a hybrid process control device that includes linear control such as PI sub-control and fuzzy control. It is.

(従来の技術) 温度調整制御等のプロセス制御を行うプロセス制御装置
として、PI制御装置の如く、任意に定められる制御目
標値と制御対象よりの制御量との制御偏差に基いて、比
例操作量と積分操作量とを含む操作量を決定する型式の
プロセス制御装置は従来よりよく知られている。このプ
ロセス:FilJ御装置は、線形のホ制御特性を存し、
温度等を所定の、!制御目標値に保っ定値制御に用いら
れている。
(Prior art) As a process control device that performs process control such as temperature adjustment control, a PI control device uses a proportional manipulated variable based on a control deviation between an arbitrarily determined control target value and a controlled variable from a controlled object. Process control devices of the type that determine manipulated variables, including integral manipulated variables, are well known in the art. This process: The FilJ control device has a linear E control characteristic,
Predetermined temperature, etc.! It is used for constant value control to maintain the control target value.

上述の如きプロセス制御装置に於ては、整定時間が短く
、しかもオーバシュートか小さく、整定後に於て大きい
ハンチングを生じず、安定性に優れていること、即ち立
上り時の過渡特性と整定後の静特性とが共に優れている
ことが要求される。
The above-mentioned process control equipment must have a short settling time, small overshoot, no large hunting after settling, and excellent stability. It is required to have excellent static properties as well.

このことに対し、従来は、出力ゲインを立上り時と整定
時とて切換設定するゲイン切換型のPI制御装置が考え
られている。
In response to this, conventionally, a gain switching type PI control device has been considered in which the output gain is switched and set at the time of rise and at the time of settling.

(発明が解決しようとする課題) ゲイン切換型のPI制御装置に於ては、立上り時と整定
時とで出力ゲインが各々個別に設定されることから、立
上り時と整定時との制御性能が各々向上するが、しかし
この場合には複数組の出力ゲインを個々に設定しなけれ
ばならず、ゲイン調整作業が厄介なものになる。又この
場合には立上り時と整定時とで出力ゲインがオン−オフ
式に二段階に切換えられるから、立上り時の出力ゲイン
と整定時の出力ケインとを各々適正値に厳格に設定する
必要が生じ、また立」二つ時と整定時とのゲイン切換条
件の設定も厳格に行う必要があり、これらの最適設定作
業か非常に難しいきいう問題点がある。
(Problem to be Solved by the Invention) In a gain switching type PI control device, the output gain is set separately for startup and settling, so the control performance at startup and settling is different. However, in this case, multiple sets of output gains must be set individually, making the gain adjustment work cumbersome. In addition, in this case, the output gain is switched in two stages in an on-off manner at rise and settling, so it is necessary to strictly set the output gain at rise and the output gain at settling to appropriate values. It is also necessary to strictly set the gain switching conditions for generation, rise, rise, and settling, and there is a problem in that it is extremely difficult to set these optimal settings.

本発明は、上述の如き従来のプロセス制御装置に於ける
上述の如き問題点に着目してなされたものであり、難し
いパラメータ設定作業を必要とすることなく、立上り時
と整定時との両方に於て優れた制御性能を示すハイブリ
ッドプロセス制御装置を提供することを目的としている
The present invention has been made by focusing on the above-mentioned problems in conventional process control devices, and it is possible to control both startup and settling times without the need for difficult parameter setting work. The purpose of the present invention is to provide a hybrid process control device that exhibits excellent control performance.

(課題を解決するための手段) 上述の如き目的は、本発明によれば、制御目標値と制御
量との制御偏差に基いて比例操作量と積分操作量とを含
む線形操作量を決定する線形操作量決定手段と、前記制
御偏差に応じてファジィ推論によりファジィ操作量を決
定するファジィ操作量決定手段と、前記線形操作量決定
手段により決定された線形操作量と前記ファジィ操作量
決定手段により決定されたファジィ操作量とを所定比率
をもって重畳して制御対象に与える総合操作量を決定す
る総合操作量決定手段と、前記制御偏差が大きい時には
前記ファジィ操作量が前記総合操作量の決定に与える比
率を大きくし且つ前記線形操作量か前記総合操作量の決
定に与える比率を小さくし、前記制御偏差が小さい時に
は前記ファジィ操作量か前記総合操作量の決定に与える
比率を小さくし且つ前記線形操作量が前記総合操作量の
決定に与える比率を大きくする操作量比率変更手段とを
有していることを特徴とするハイブリッドプロセス制御
装置によって達成される。
(Means for Solving the Problem) According to the present invention, the above object is to determine a linear manipulated variable including a proportional manipulated variable and an integral manipulated variable based on a control deviation between a control target value and a controlled variable. a linear manipulated variable determining means, a fuzzy manipulated variable determining means that determines a fuzzy manipulated variable by fuzzy inference according to the control deviation, and a linear manipulated variable determined by the linear manipulated variable determining means and the fuzzy manipulated variable determining means. a total manipulated variable determining means for determining a total manipulated variable to be applied to a controlled object by superimposing the determined fuzzy manipulated variable at a predetermined ratio; and when the control deviation is large, the fuzzy manipulated variable is applied to determine the total manipulated variable; The ratio is increased and the ratio given to the determination of the linear manipulated variable or the total manipulated variable is made small, and when the control deviation is small, the ratio given to the determination of the fuzzy manipulated variable or the total manipulated variable is made small and the linear manipulated variable is This is achieved by a hybrid process control device characterized in that it has a manipulated variable ratio changing means for increasing the ratio of the amount given to the determination of the total manipulated variable.

(作用) 上述の如き構成によれは、ファジィ操作量と線形操作量
とが各々総合操作量の決定に与える比率、換言すれば重
み付けが制御偏差に応じて定量的に変化し、立上り時は
主にファジィ推論によるファジィ操作量によって制御が
行われ、整定後は主にPI操作による線形操作量によっ
て制御が行われるようになり、立上り時の制御性能は主
にファジィ操作量の出力ゲインの調整により決まり、整
定時の制御性能は主に線形操作量の出力ゲインの調整に
より決まるようになる。
(Function) According to the above configuration, the ratio of the fuzzy manipulated variable and the linear manipulated variable to the determination of the total manipulated variable, in other words, the weighting changes quantitatively according to the control deviation, and at the time of startup, the main At first, control is performed using fuzzy manipulated variables based on fuzzy inference, and after settling, control is mainly performed using linear manipulated variables based on PI operation, and control performance at startup is mainly determined by adjusting the output gain of fuzzy manipulated variables. The control performance during settling is determined mainly by adjusting the output gain of the linear manipulated variable.

(実施例) 以下に添付の図を参照して本発明を実施例について詳細
に説明する。
(Example) The present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明によるハイブリッドプロセス制御装置の
基本的構成を示している。本発明によるハイブリッドプ
ロセス制御装置は、線形操作量決定手段としてのPI制
御部10と、ファジィ操作量決定手段としてのファジィ
推論部12とを灯している。
FIG. 1 shows the basic configuration of a hybrid process control device according to the present invention. The hybrid process control device according to the present invention includes a PI control section 10 as a linear operation amount determination means and a fuzzy inference section 12 as a fuzzy operation amount determination means.

PI制御部10は、周知の構造のものであってよく、制
御対象14よりの制御量Yと制御目標値Rとの制御偏差
eを加え合せ点16より与えられ、この制御偏差eに基
いて比例操作量と積分操作量とを演算し、その合計の操
作量Piをゲイン設定器18へ出力するようになってい
る。
The PI control unit 10 may have a well-known structure, and is given a control deviation e between the control amount Y from the controlled object 14 and the control target value R from a summation point 16, and based on this control deviation e. The proportional manipulated variable and the integral manipulated variable are calculated, and the total manipulated variable Pi is output to the gain setter 18.

ゲイン設定器18は、所定の比例出力ケインKpを定め
られ、PI制御部10よりの操作量Piに比例出力ケイ
ンKpを乗算することによって線形操作量Upiを発生
し、これを比率付は演算手段20へ出力するようになっ
ている。
The gain setter 18 is set with a predetermined proportional output cane Kp, and generates a linear manipulated variable Upi by multiplying the manipulated variable Pi from the PI control section 10 by the proportional output cane Kp, and calculates the linear manipulated variable Upi with a ratio. It is designed to output to 20.

ゲイン設定器18の比例出力ケインKpの設定はオーバ
シュート無して整定時間最小のCHR法等により定めら
れればよい。
The proportional output cane Kp of the gain setter 18 may be set by the CHR method or the like, which eliminates overshoot and minimizes the settling time.

ファジィ推論部12は、加え合せ点16より制御偏差e
を与えられ、これを人力要件として第2図に示されてい
る如きファジィルールに従ってファジィ推論を行い、フ
ァジィ推論出力fを発生するようになっている。この場
合の人力要件である制御偏差eの入力メンバーシップ関
数の一例が第3図に示されており、またファジィ推論出
力fの出力メンバーシップ関数の一例が第4図に示され
ている。
The fuzzy inference unit 12 calculates the control deviation e from the addition point 16.
is given, fuzzy inference is performed according to the fuzzy rules as shown in FIG. 2 using this as a human resource requirement, and fuzzy inference output f is generated. An example of the input membership function of the control deviation e, which is the human labor requirement in this case, is shown in FIG. 3, and an example of the output membership function of the fuzzy inference output f is shown in FIG.

尚、第2図に示されたファジィルールに於ては、言語情
報として、NL、NS、ZRSPS、PLが用いられて
おり、NLは負に大きい、NSは負に小さい、ZRはお
およそ零、PSは正に小さい、PLは正に大きいことを
示すファジィラベルである。
In addition, in the fuzzy rule shown in FIG. 2, NL, NS, ZRSPS, and PL are used as linguistic information, where NL is negatively large, NS is negatively small, ZR is approximately zero, PS is a fuzzy label indicating that it is positively small, and PL is a fuzzy label that indicates that it is positively large.

第3図及び第4図に示されたメンバーシップ関数は、制
御対象14が、例えば75℃の湯水を供給する給湯器で
ある場合を想定しており、この場合には制御偏差eは理
論的には最大で±75℃変化するが、通常、水温が0°
Cということはあり得ないので、人力メンバーシップ関
数は第3図に示されている如く設定されればよい。制御
偏差eの入力メンバーシップ関数は、オーバシュートの
抑制の観点から、第3図に示されている如く、制御偏差
eの負側に於て、中央に偏倚した形態をなしている。
The membership functions shown in FIGS. 3 and 4 assume that the controlled object 14 is, for example, a water heater that supplies hot water at 75°C, and in this case, the control deviation e is theoretically The water temperature can vary up to ±75°C, but usually when the water temperature is 0°
Since C is impossible, the manual membership function may be set as shown in FIG. From the viewpoint of suppressing overshoot, the input membership function of the control deviation e is biased toward the center on the negative side of the control deviation e, as shown in FIG.

ファジィ推論部12のファジィ推論出力fはゲイン設定
器22に与えられ、ゲイン設定器22は予め定められた
ファジィ出力ゲインKfとファジィ推論出力fとを乗算
してファジィ操作量Ufを発生し、これを比率付は演算
手段24へ出力するようになっている。
The fuzzy inference output f of the fuzzy inference unit 12 is given to a gain setter 22, and the gain setter 22 multiplies a predetermined fuzzy output gain Kf and the fuzzy inference output f to generate a fuzzy operation amount Uf. with a ratio is output to the calculation means 24.

比率付は演算手段20及び24は、操作量比率変更手段
26により定められた線形制御比率(線形制御重み付は
係数)αとファジィ制御比率(ファジィ制御重み付は係
数)1−αとを記憶手段28.30の各々より与えられ
、比率付は演算手段20はゲイン設定器18よりの線形
操作量Upiに線形制御比率αを乗算して重み付は演算
後の線形操作量α・Upiを加え合せ点32へ出力し、
もう一つの比率付は演算手段24はゲイン設定器22よ
りのファジィ操作量UfにファジィilJ御比率(1−
α)を乗算して重み付は演算後のファジィ操作量(1−
α)Ufを加え合せ点32へ出力するようになっている
The ratio calculating means 20 and 24 store the linear control ratio (linear control weighting is a coefficient) α and the fuzzy control ratio (fuzzy control weighting is a coefficient) 1−α determined by the manipulated variable ratio changing means 26. The calculation means 20 multiplies the linear operation amount Upi from the gain setter 18 by the linear control ratio α, and the weighting adds the linear operation amount α·Upi after the calculation. Output to matching point 32,
For the other ratio, the calculating means 24 applies a fuzzy control ratio (1-
The weighting is calculated by multiplying the fuzzy operation amount (1-
α) Uf is output to the summing point 32.

加え合せ点32は、重み付は演算後の線形操作量α・U
piと重み付は演算後のファジィ操作量(1−α)Uf
とを互いに加え合せ、その合計値よりなる総合操作量U
を制御対象14に与えるようになっている。
The addition point 32 is weighted by the linear operation amount α・U after calculation.
pi and weighting are fuzzy manipulated variables (1-α) Uf after calculation
are added to each other, and the total operation amount U is made up of the total value.
is given to the controlled object 14.

操作量比率変更手段26は、制御偏差e及びファジィ推
論部12よりe=ZRの適合度に関する情報を与えられ
、これに応じて制御偏差eが大きい時にはこれが小さい
時に比して線形制御比率αを小さくし、これに対し制御
偏差eが小さい時にはこれが大きい時に比して線形制御
比率αを大きくするようになっている。ファジィ制御比
率は、(1−α)であるから、αの増大に応じて逆数を
もって減少し、αの減少に応じて逆数をもって増大する
。即ち、線形制御比率α+ファジィ制御比率(1−α)
=1の関係が保たれる。
The manipulated variable ratio changing means 26 is given information regarding the control deviation e and the degree of adaptation of e=ZR from the fuzzy inference unit 12, and accordingly changes the linear control ratio α when the control deviation e is large compared to when it is small. On the other hand, when the control deviation e is small, the linear control ratio α is made larger than when it is large. Since the fuzzy control ratio is (1-α), it decreases with an inverse number as α increases, and increases with an inverse number as α decreases. That is, linear control ratio α + fuzzy control ratio (1-α)
The relationship =1 is maintained.

これにより制御偏差eが大きい時、即ち立−1−り時に
はファジィ操作量Ufが総合操作量Uの決定に′jえる
比率が大きくなり、線形操作量Upiか総合操作量Uの
決定に与える比率が小さくなり、これに対し制御偏差e
か小さい時、即ち整定時にはファジィ操作量Ufが総合
操作量Uの決定にり。
As a result, when the control deviation e is large, that is, when the control deviation e is rising, the ratio of the fuzzy manipulated variable Uf to the determination of the total manipulated variable U increases, and the ratio of the linear manipulated variable Upi to the determination of the total manipulated variable U increases. becomes smaller, whereas the control deviation e
When it is small, that is, when it is settling, the fuzzy manipulated variable Uf determines the total manipulated variable U.

える比率か小さくなり線形操作量Upiか総合操作量U
の決定に与える比率か大きくなる。
The ratio that increases decreases, and the linear manipulated variable Upi or the total manipulated variable U
The ratio given to the decision of will increase.

このことにより立上り時は主にファジィ操作量Ufによ
って制御が行オ〕れ、整定時は主に線形操作量Upiに
よって制御されるようになる。
As a result, during startup, control is performed primarily by the fuzzy manipulated variable Uf, and during settling, control is performed primarily by the linear manipulated variable Upi.

」二連の如き構成よりなる制御装置に於ては、立」−り
速度を速くしたい時には、ファジィ出力ケインKfか大
きくされれはよ(、これに対し立1−り時に操作量か飽
和することから、立」−り時の操作量を減少されたい時
には、ファジィ出力ケインKfが小さくされればよい。
In a control device with a configuration such as a double series, when it is desired to increase the vertical speed, the fuzzy output cane Kf should be increased (on the other hand, when the manipulated variable is saturated during the vertical phase), Therefore, when it is desired to reduce the amount of operation during the standing position, the fuzzy output cane Kf may be made smaller.

整定後の性能については、制御目標値達成後にオーバシ
ュートが大きく生じ、振動的である場合には、比例出力
ゲインKpが小さくされれはよく、これに対し制御目標
値に達するまでに時間が掛かり過ぎる場合には、比例出
力ゲインKpが大きくされればよく、このゲイン調整に
よって制御目標値付近での性能が調整されるようになる
Regarding the performance after settling, if a large overshoot occurs after the control target value is achieved and it is oscillatory, the proportional output gain Kp may be reduced, but on the other hand, it may take a long time to reach the control target value. If it is too high, the proportional output gain Kp may be increased, and by adjusting the gain, the performance near the control target value can be adjusted.

上述の如き手法が用いられることにより、立上り時の特
性と整定後の特性とが各々個別に調整され得るようにな
る。
By using the method described above, the characteristics at the time of rising and the characteristics after settling can be adjusted individually.

次に実際の調整手順の一例について説明する。Next, an example of an actual adjustment procedure will be explained.

パラメータ調整手順の例として、次に示す制御対象を想
定する。この制御対象は、給湯器であって、最大入水量
が9リットル、最小操作量4000キロ力ロリー/時間
のステップ応答より同定しており、この伝達関数Gp、
(s)は次のように表わされる。
As an example of the parameter adjustment procedure, the following control target is assumed. The object to be controlled is a water heater, which is identified from the step response with a maximum water input of 9 liters and a minimum operation amount of 4000 kilograms/hour, and this transfer function Gp,
(s) is expressed as follows.

Gpl(s) −(0,36/ (1+2.88s) 
l  e −85前記制御対象のPiゲインを調整し、
Kf=1.0としてシミュレーションすると、操作量及
び制御量は第5図に示されている如く変化する。第5図
によって、管点火(給湯器のバーナを点火する時、点火
を確認するまでガスを一定流量流し続ける状態を表わす
)の終了直後の操作量が整定操作量に比して非常に大き
いことがわかる。このことからファジィ操作量の出力ゲ
インKfを1.0から0.36へ変更する。
Gpl(s) −(0,36/ (1+2.88s)
l e -85 Adjust the Pi gain of the controlled object,
When a simulation is performed with Kf=1.0, the manipulated variable and controlled variable change as shown in FIG. Figure 5 shows that the amount of operation immediately after the end of pipe ignition (represents the state in which gas continues to flow at a constant flow rate until ignition is confirmed when igniting the burner of a water heater) is extremely large compared to the settling amount of operation. I understand. From this, the output gain Kf of the fuzzy manipulated variable is changed from 1.0 to 0.36.

このファジィ出力ゲイン変更後のシミュレーション結果
は第6図に示されている。第6図に於ては、制御目標温
度付近にて制御量が激しく変動していることか分かる。
The simulation results after changing this fuzzy output gain are shown in FIG. In FIG. 6, it can be seen that the control amount fluctuates rapidly near the control target temperature.

ここで、Kpケインを3.985から3.00へ変更す
る。
Here, Kp Cain is changed from 3.985 to 3.00.

Kpゲイン変更後のシミュレーション結果は第7図に示
されている。第7図に於ては、Kpケイン変更前に比し
て振動の振幅がかなり小さく、Kpゲインを小さくした
効果が表われていることが分かる。しかしまだ振動が残
っているので、更にKpゲインを3.00から2.50
に変更する。
The simulation results after changing the Kp gain are shown in FIG. In FIG. 7, it can be seen that the amplitude of the vibration is considerably smaller than before the Kp gain was changed, indicating the effect of reducing the Kp gain. However, since there is still some vibration, I further increased the Kp gain from 3.00 to 2.50.
Change to

Kpゲインを2,50にした時のシミュレーション結果
は第8図に示されている。この時には立上りが速く、し
かも制御目標付近で振動が少ない制御か行われているこ
とか分かる。
The simulation results when the Kp gain was set to 2.50 are shown in FIG. At this time, it can be seen that the control is being performed with a fast rise and less vibration near the control target.

(発明の効果) 以」二の説明から理解される如く、本発明によるハイブ
リッドプロセス制御装置によれは、ファジィ操作量と線
形操作量とが各々総合操作量の決定に与える比率、換言
すれは重み付けが制御偏差に応じて定量的に変化し、立
上り時の制御性能は主にファジィ操作量の出力ケインの
調整により決まり、整定時の制御性能は主に線形操作量
の出力ケインの調整により決まるようになることから、
難しいパラメータ設定作業を必要とすることなく立」二
つ時と整定時との両方に優れた制御性能か得られるよう
になる。
(Effects of the Invention) As can be understood from the following explanation, the hybrid process control device according to the present invention uses the ratio of the fuzzy manipulated variable and the linear manipulated variable to determine the total manipulated variable, in other words, the weighting. changes quantitatively according to the control deviation, and the control performance during startup is mainly determined by adjusting the output cane of the fuzzy manipulated variable, and the control performance during settling is mainly determined by adjusting the output cane of the linear manipulated variable. Because it becomes
Excellent control performance can be obtained both during standing and settling times without the need for difficult parameter setting work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるハイブリットプロセス制御装置の
一つの実施例を示す概略構成図、第2図は本発明による
ハイブリッドプロセス制御装置に用いられるファジィ推
論のファジィルールを示すルールテーブル図、第3図は
入力メンバーシップ関数を示すグラフ、第4図は出力メ
ンバーシップ関数を示すグラフ、第5図乃至第8図はh
々パラメータ調整過程に於ける操作量及び制御量の経時
的変化を示す時系列グラフである。 10・・PI制御部 12・・・ファジィ推論部 18.22・・ケイン設定器 20.24・・比7伺は演算手段 26・・・操作量比率変更手段 特 許 出 願人 オムロン株式会社
FIG. 1 is a schematic configuration diagram showing one embodiment of a hybrid process control device according to the present invention, FIG. 2 is a rule table diagram showing fuzzy rules for fuzzy inference used in the hybrid process control device according to the present invention, and FIG. 3 is a graph showing the input membership function, FIG. 4 is a graph showing the output membership function, and FIGS. 5 to 8 are h
3 is a time-series graph showing changes over time in manipulated variables and controlled variables in each parameter adjustment process. 10...PI control unit 12...Fuzzy inference unit 18.22...Kane setting device 20.24...Ratio 7 is calculation means 26...Operation amount ratio changing means Patent Applicant: OMRON Corporation

Claims (1)

【特許請求の範囲】 1、制御目標値と制御量との制御偏差に基いて比例操作
量と積分操作量とを含む線形操作量を決定する線形操作
量決定手段と、 前記制御偏差に応じてファジィ推論によりファジィ操作
量を決定するファジィ操作量決定手段と、前記線形操作
量決定手段により決定された線形操作量と前記ファジィ
操作量決定手段により決定されたファジィ操作量とを所
定比率をもって重畳して制御対象に与える総合操作量を
決定する総合操作量決定手段と、 前記制御偏差が大きい時には前記ファジィ操作量が前記
総合操作量の決定に与える比率を大きくし且つ前記線形
操作量が前記総合操作量の決定に与える比率を小さくし
、前記制御偏差が小さい時には前記ファジィ操作量が前
記総合操作量の決定に与える比率を小さくし且つ前記線
形操作量が前記総合操作量の決定に与える比率を大きく
する操作量比率変更手段と、 を有していることを特徴とするハイブリッドプロセス制
御装置。
[Scope of Claims] 1. Linear manipulated variable determining means for determining a linear manipulated variable including a proportional manipulated variable and an integral manipulated variable based on a control deviation between a control target value and a controlled variable; A fuzzy manipulated variable determination means that determines a fuzzy manipulated variable by fuzzy inference, and a linear manipulated variable determined by the linear manipulated variable determining means and a fuzzy manipulated variable determined by the fuzzy manipulated variable determiner are superimposed at a predetermined ratio. a total manipulated variable determining means for determining a total manipulated variable to be applied to the controlled object based on the control deviation; When the control deviation is small, the ratio of the fuzzy manipulated variable to the determination of the total manipulated variable is decreased, and the ratio of the linear manipulated variable to the determination of the total manipulated variable is increased. A hybrid process control device comprising: a manipulated variable ratio changing means for changing a manipulated variable ratio;
JP11804890A 1990-05-08 1990-05-08 Hybrid process controller Pending JPH0414103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11804890A JPH0414103A (en) 1990-05-08 1990-05-08 Hybrid process controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11804890A JPH0414103A (en) 1990-05-08 1990-05-08 Hybrid process controller

Publications (1)

Publication Number Publication Date
JPH0414103A true JPH0414103A (en) 1992-01-20

Family

ID=14726736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11804890A Pending JPH0414103A (en) 1990-05-08 1990-05-08 Hybrid process controller

Country Status (1)

Country Link
JP (1) JPH0414103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06348307A (en) * 1992-11-12 1994-12-22 Daimler Benz Ag Method of evaluation for linguistic control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06348307A (en) * 1992-11-12 1994-12-22 Daimler Benz Ag Method of evaluation for linguistic control

Similar Documents

Publication Publication Date Title
JP3555609B2 (en) Control device, temperature controller and heat treatment device
JPH11513148A (en) How to incorporate independent feedforward control into a multivariable prediction controller
KR920004079B1 (en) Process controller and method
JPH02132502A (en) Working method and adjusting device for fuzzy control device
JP2003330504A (en) Control apparatus
JPH0414103A (en) Hybrid process controller
JPH0736504A (en) Control constant controller for pid controller
JP2721186B2 (en) Fuzzy control method
JPS61109104A (en) Pid controller
JPH0561504A (en) Fuzzy feedback controller
JPH0424801A (en) Hybrid process controller
JPS638902A (en) Automatic adjusting method for control constant of pid controller
JPS63126002A (en) Controller
JP5342435B2 (en) Adaptive controller
JPS61244286A (en) Feedback speed control system for motor
JP2517616B2 (en) Parameter adaptation method in fuzzy feedback control.
JPH08320705A (en) Controller of feedback control unit
JP2915220B2 (en) Process control equipment
JPH06274203A (en) Imc controller
JPH0713607A (en) Controller
JPH07152406A (en) Two degree of freedom controller device
JPH0373889B2 (en)
JPH10124104A (en) Control method for semiconductor manufacturing equipment
Liu The Design of Fuzzy PID Delay Networked Control Systems Based on Genetic Algorithms
JPH04124701A (en) Fuzzy controller