JPH04138994A - Air resistance reducing device - Google Patents

Air resistance reducing device

Info

Publication number
JPH04138994A
JPH04138994A JP26044490A JP26044490A JPH04138994A JP H04138994 A JPH04138994 A JP H04138994A JP 26044490 A JP26044490 A JP 26044490A JP 26044490 A JP26044490 A JP 26044490A JP H04138994 A JPH04138994 A JP H04138994A
Authority
JP
Japan
Prior art keywords
air resistance
air flow
air
aircraft
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26044490A
Other languages
Japanese (ja)
Inventor
Haruhiko Arakawa
治彦 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26044490A priority Critical patent/JPH04138994A/en
Publication of JPH04138994A publication Critical patent/JPH04138994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To enable reduction of air resistance, irrespective of air flow direction, by arranging numerous projections having a specific height, adjacently to each other on the plane of a solid body in contact with air flow. CONSTITUTION:In an aircraft 1, whose air resistance is required to be as small as possible, the surfaces of a fuselage 2, main wings 3, a tail wing 4, etc., which are in contact with air flow are composed of outer panels 5 equipped with air resistance reducing devices. That is to say, each of the outer panels 5 has on its surface numerous projections 6 of about 0.05mm high, arranged at intervals D of about 0.05mm. This arrangement significantly reduces the air resistance of the aircraft 1. Since the numerous projections 6 have no directivity with regard to air flow, they provide such an advantageous effect that air resistance can be always reduced irrespective of air flow direction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は航空機、飛しょう体、ロケット風洞。[Detailed description of the invention] [Industrial application field] The present invention relates to aircraft, flying objects, and rocket wind tunnels.

その他、可及的に小さい空気抵抗を求められる物体の空
気抵抗低減装置に関する。
In addition, the present invention relates to an air resistance reduction device for an object that requires the smallest possible air resistance.

〔従来の技術〕[Conventional technology]

従来、航空機等では乱流境界層の摩擦抵抗を低減する目
的で、第9図に示すような気流方向に平行に7字型の溝
を持つリブレット12を表面に装着している例が知られ
ている。
Conventionally, for the purpose of reducing the frictional resistance of the turbulent boundary layer in aircraft, etc., it has been known that a riblet 12 having a 7-shaped groove parallel to the airflow direction is attached to the surface as shown in Fig. 9. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来のりブレットには解決すべき次の課題があった
The above conventional glue bullet had the following problems to be solved.

即ち、航空機の摩擦抵抗は、巡航時全抵抗の約50%と
大きなウェイトを占め、この抵抗低減は、輸送効率向上
に極めて大きく寄与する。
That is, the frictional resistance of an aircraft accounts for approximately 50% of the total resistance during cruising, and reducing this resistance greatly contributes to improving transportation efficiency.

このため、数多くの研究、試行がなされており、リブレ
ットが有望な装置として実機に装着され、試験されてい
る。
For this reason, numerous studies and trials have been conducted, and the libretto has been installed on actual machines and tested as a promising device.

しかしリブレットには、加工、装着、メンテナンスの費
用1期間が大という欠点があり、かつ気流方向がリブレ
ットの溝方向と10’以上の角度を持つと、効果がなく
なり、巾広い迎角範囲で効果を保つ事ができないという
欠点がある。
However, riblets have the disadvantage of high processing, installation, and maintenance costs per period, and if the airflow direction has an angle of 10' or more with the groove direction of the riblet, they become ineffective and are effective over a wide angle of attack range. The disadvantage is that it is not possible to maintain

本発明は上記従来のりブレットの欠点である加工、装着
を簡単、平明なものとし、費用、製作期間を減少すると
共に、気流の方向性の制約を取り除き、摩擦抵抗の減少
が可能な空気抵抗低減装置を提供することを目的とする
The present invention simplifies processing and installation, which are the drawbacks of the conventional glue bullets, reduces costs and manufacturing time, and also reduces air resistance by removing constraints on the direction of airflow and reducing frictional resistance. The purpose is to provide equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題の解決手段として、可及的に小さい空
気抵抗を求められる物体において、同物体の空気流れに
接した面に相互に近接して設けられほぼ0.055mの
高さを有する多数の突起を具備してなることを特徴とす
る空気抵抗低減装置を提供しようとするものである。
As a means of solving the above problem, the present invention provides an object in which air resistance is required to be as small as possible. An object of the present invention is to provide an air resistance reducing device characterized by comprising a protrusion.

〔作 用] 本発明は上記のように構成されるので次の作用を存する
[Function] Since the present invention is configured as described above, it has the following function.

即ち、乱流境界層内の底部には、粘性底層と呼ばれる領
域があり、この粘性底層内におかれたU字形ノツチ、或
いは粗さ(突起)は第8図に示す如く、粘性底層内の縦
渦11と呼ばれる渦の発達を、ノツチ或いは粗さ(突起
)によ′る渦の効果で抑え、これにより、縦渦11を境
界層底層の低運動量流体域にとじこめ、境界層外層の高
運動量物体との混合を抑制して、壁近傍乱流境界層の運
動量増加を抑制し、これにより**抵抗を低減する。
That is, at the bottom of the turbulent boundary layer, there is a region called the viscous bottom layer, and the U-shaped notches or roughness (protrusions) placed in this viscous bottom layer are as shown in Figure 8. The development of vortices called longitudinal vortices 11 is suppressed by the vortex effect of notches or roughnesses (protrusions), thereby confining the longitudinal vortices 11 in a low momentum fluid region at the bottom of the boundary layer and increasing the height of the outer boundary layer. By suppressing mixing with momentum objects, the increase in momentum of the turbulent boundary layer near the wall is suppressed, thereby reducing drag.

従って本発明の構成の、物体の空気流れに接した面に相
互に近接して設けられた、はぼ0.05mの高さの多数
の突起も全体として、物体表面の粗さを高めるため、上
記粗さと同様、物体の空気**抵抗を低減する。
Therefore, in the structure of the present invention, the large number of protrusions approximately 0.05 m in height that are provided close to each other on the surface of the object in contact with the air flow also increases the roughness of the surface of the object as a whole. Similar to the roughness mentioned above, it reduces the air** resistance of an object.

〔実施例〕〔Example〕

本発明の第1実施例を第1〜第5図により説明する。 A first embodiment of the present invention will be described with reference to FIGS. 1 to 5.

第1図は本実施例に係る外板を表面に備えた航空機の図
で、(a)は平面図、(b)は(a)の側面図、第2図
は第1図に用いられた外板を拡大して示した模式的斜視
図で(a)は外板全体の図、Q))は(a)の囲いbの
拡大図、第3図〜第5図は一例として示した上記外板の
製作工程の説明図である。
Figure 1 is a diagram of an aircraft equipped with the outer skin according to this embodiment on its surface, where (a) is a plan view, (b) is a side view of (a), and Figure 2 is the same figure used in Figure 1. In the schematic perspective view showing the outer panel enlarged, (a) is a view of the entire outer panel, Q)) is an enlarged view of enclosure b in (a), and Figures 3 to 5 are the above-mentioned views shown as examples. FIG. 3 is an explanatory diagram of the manufacturing process of the outer panel.

第1図において、1は航空機、2はその胴体。In Figure 1, 1 is an aircraft and 2 is its fuselage.

3は主翼、4は尾翼である。航空機1は空中を高速飛行
するので、可及的に小さい空気抵抗を求められるもので
、航空機1の空気流れと接する胴体2、主翼32尾翼4
等の表面は本実施例の空気抵抗低減装置を備えた外板5
によって構成されている。
3 is the main wing, and 4 is the tail. Since the aircraft 1 flies at high speed in the air, it is required to have as little air resistance as possible.
The surfaces of the above are the outer panels 5 equipped with the air resistance reducing device of this embodiment.
It is made up of.

外板5はその詳細を第2図に示すようにその表面に相互
の間隔(D)、約0.5m、高さ(h)、約0.05■
の無数の突起6を備えており、後述する通り、航空I!
lの空気抵抗を著しく低減することができる。
As shown in FIG. 2, the outer panel 5 has a mutual distance (D) of about 0.5 m and a height (h) of about 0.05 mm on its surface.
It is equipped with countless protrusions 6, and as described later, Aviation I!
The air resistance of 1 can be significantly reduced.

外板5の空気抵抗低減装置即ち、第2図により説明した
無数の突起6の製作はどのような工程によるも自由であ
るが、その−例を第3図〜第5図により説明する。
Although the air resistance reducing device of the outer panel 5, that is, the countless protrusions 6 explained in FIG. 2, can be manufactured by any process, an example thereof will be explained with reference to FIGS. 3 to 5.

先ず、治具として第3図に示すようなプリント盤7を作
製する。プリント盤7には上記突起6に相当して間隔(
D)0.5m、直径(d)0.05m程度の柱状突起8
が無数に設けられている。この柱状突起8の先端にケミ
カル加工用のマスキング材9を着け、次いで第4図に示
すように航空機1の外板5の母材、即ちまだ突起6を施
されていない表面に、マスキング材9が当接するようプ
リント盤7を押しつけてマスキング材9を転写(マスキ
ング)する。この操作を繰返し、外板5の全表面を無数
の点状にマスキングした後、その裏面側は全面マスキン
グして第5図に示すようにケミカルエツチング用の溶液
10内に外板5を約1時間浸積してエツチングし、マス
キングされた部分が上記突起6として残った外板5を得
る。従って、この場合は突起6の直径はほぼ0.05m
ないしはそれ以下となる。
First, a printing board 7 as shown in FIG. 3 is prepared as a jig. The printed board 7 has an interval (
D) 0.5m, diameter (d) about 0.05m columnar projection 8
are provided in countless numbers. A masking material 9 for chemical processing is applied to the tip of the columnar projection 8, and then, as shown in FIG. The masking material 9 is transferred (masked) by pressing the printing board 7 so that the two are in contact with each other. After repeating this operation and masking the entire surface of the outer panel 5 in the form of countless dots, the back side is completely masked, and as shown in FIG. After time dipping and etching, the outer panel 5 is obtained with the masked portions remaining as the projections 6. Therefore, in this case, the diameter of the protrusion 6 is approximately 0.05 m.
or less.

次に本発明の第2実施例を第6図により説明する。本実
施例は空気抵抗低減装置を風洞の壁の内面(空気流より
見て表面)に施した例で、第6図は飛行機模型を内部に
備えた風洞の斜視的透視図である。図において21は風
洞、22は風洞の横壁。
Next, a second embodiment of the present invention will be described with reference to FIG. This embodiment is an example in which the air resistance reducing device is applied to the inner surface of the wall of the wind tunnel (the surface seen from the air flow), and FIG. 6 is a perspective view of the wind tunnel equipped with an airplane model inside. In the figure, 21 is a wind tunnel, and 22 is a side wall of the wind tunnel.

23は同じく土壁、24は下壁で、それらの内面には図
示を省略した突起6が第2図の要領で施されている。但
し、本実施例の場合、横壁22.上壁23下壁24はす
べて平面であるため、外板5の如く湾曲させる必要はな
い、従って、第3図で説明したプリント盤7を用いるに
しても湾曲の必要はない。
Similarly, 23 is a clay wall, 24 is a lower wall, and projections 6 (not shown) are provided on their inner surfaces as shown in FIG. However, in the case of this embodiment, the side wall 22. Since the upper wall 23 and the lower wall 24 are all flat, they do not need to be curved like the outer panel 5. Therefore, even if the printed board 7 described in FIG. 3 is used, there is no need for them to be curved.

第7図は第1.第2実施例の空気抵抗低減装置、即ち、
第2図に示す構成の突起6と第9図に示す従来例のりブ
レット12との空気抵抗低減効果の比較線図で、突起6
の高さhを、摩擦速度v1と。
Figure 7 is 1. The air resistance reduction device of the second embodiment, that is,
This is a comparison diagram of the air resistance reduction effect between the protrusion 6 having the structure shown in FIG. 2 and the conventional glue bullet 12 shown in FIG.
The height h is the friction velocity v1.

動粘性係数νで無次元化した高さh* −v  11・
h/νが10程度の時、滑面に対し、実施例の突起6で
は5%程度の空気抵抗低減効果があることを示している
Height h* −v 11・dimensionless with kinematic viscosity coefficient ν
It is shown that when h/ν is about 10, the protrusion 6 of the example has an air resistance reducing effect of about 5% compared to a smooth surface.

なお民間輸送機が巡航している状態より、無次元高さh
”=ioに対応する突起の高さはhΦ0.05閣程度と
なる。
In addition, from the state where a civilian transport aircraft is cruising, the non-dimensional height h
The height of the protrusion corresponding to "=io" is approximately hΦ0.05.

5%の抵抗低減は、航空機の輸送効率を直接5%高め、
燃料消費率を抑えると共に最大速度の面からは2.5%
の増加が可能である。航空機のような高度に洗練され、
かつ、あらゆる抵抗低減努力が払われた機体において、
更に5%程度の抵抗低減が得られる効果は画期的なもの
である。
A 5% drag reduction directly increases aircraft transportation efficiency by 5%,
In addition to reducing fuel consumption rate, the maximum speed is reduced by 2.5%.
It is possible to increase Highly sophisticated, like an aircraft
And, in an aircraft in which every effort was made to reduce drag,
The effect of further reducing the resistance by about 5% is revolutionary.

また第2実施例の風洞の例では、駆動パワーの減少、或
いは最大速度の増加に効果がある。
Further, in the wind tunnel example of the second embodiment, it is effective to reduce the driving power or increase the maximum speed.

以上の通り、第1.第2実施例によれば、航空機、風洞
等、可及的に空気抵抗の減少化を要求される対象物の空
気抵抗を著減できるという利点がある。
As mentioned above, 1. According to the second embodiment, there is an advantage that the air resistance of objects such as airplanes and wind tunnels that require the reduction of air resistance as much as possible can be significantly reduced.

また、多数の突起は気流に対し、方向性を持たないので
、気流の向きに関係なく、常に抵抗低減の効果が得られ
るという利点がある。即ち、気流方向と10°以上の角
度になると効果を失う従来例のりプレットに比し、全方
位に同等の効果が得られるという著しい利点がある。
Further, since the many protrusions have no directionality with respect to the airflow, there is an advantage that the effect of reducing resistance can always be obtained regardless of the direction of the airflow. That is, compared to the conventional glue plate, which loses its effectiveness at an angle of 10 degrees or more with respect to the airflow direction, it has a significant advantage in that it can provide the same effect in all directions.

また、加工、装着、メンテナンスを必要とする従来例に
比し、第1.第2実施例の多数の突起はケミカルエツチ
ング(ケミカルミーリング)等で容易に得られ、かつ、
装着や格別のメンテナンスを必要としないという利点が
ある。
In addition, compared to conventional examples that require processing, installation, and maintenance, The large number of protrusions in the second embodiment can be easily obtained by chemical etching (chemical milling), and
It has the advantage of not requiring installation or special maintenance.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されるので次の効果を有する
Since the present invention is configured as described above, it has the following effects.

即ち、気流方向の如何に拘らず、空気抵抗を低減する装
置が得られる。
That is, a device that reduces air resistance regardless of the direction of airflow can be obtained.

また、機械加工、装着、メンテナンス等を必要とした従
来例に比し、ケミカルミーリング等で容易に成形され、
かつ装着や、格別のメンテナンスを必要としない装置が
得られる。
In addition, compared to conventional methods that required machining, installation, maintenance, etc., it can be easily formed using chemical milling, etc.
Moreover, a device that does not require installation or special maintenance can be obtained.

従って、きわめて低廉な装置かえられる。Therefore, the device can be replaced at a very low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る外板を備えた航空機
の図で(a)は平面図、 (b)は側面図、第2図は第
1図に用いられる外板の詳細図で(a)は全体斜視図、
(b)は(a)の囲いbの拡大図、第3図は第2図に示
す外板の突起を成形するためのプリント盤(治具)の説
明図、第4図は第3図のプリント盤を用いて外板にマス
キング材を取付ける作業の説明図、第5図は第4図でマ
スキングした外板のケミカルミーリングの説明図、第6
図は本発明の第2実施例に係る風洞の斜視的透視図、第
7図は本発明の実施例の突起と従来例のリブレットとの
空気抵抗低減効果の比較線図、第8図は従来例のりプレ
ットによる摩擦抵抗低減の作用メカニズムの説明図、第
9図は従来例のりプレットの斜視図である。 l・・・航空機。 4・・・尾翼。 21・・・風洞。 24・・・下壁。 3・・・主翼。 6・・・突起。 23・・・土壁。 2・・・胴体。 5・・・外板。 22・・・横壁。
FIG. 1 is a diagram of an aircraft equipped with a skin panel according to a first embodiment of the present invention, in which (a) is a plan view, (b) is a side view, and FIG. 2 is a detail of the skin panel used in FIG. 1. In the figure, (a) is an overall perspective view,
(b) is an enlarged view of enclosure b in (a), Fig. 3 is an explanatory view of a printing board (jig) for forming the protrusion on the outer panel shown in Fig. 2, and Fig. 4 is an enlarged view of enclosure b in Fig. 3. An explanatory diagram of the work of attaching masking material to the outer panel using a printed board, Figure 5 is an explanatory diagram of chemical milling of the outer panel masked in Figure 4, and Figure 6
The figure is a perspective view of a wind tunnel according to the second embodiment of the present invention, FIG. 7 is a comparison diagram of the air resistance reduction effect between the protrusion of the embodiment of the present invention and the riblet of the conventional example, and FIG. 8 is the conventional example. FIG. 9 is an explanatory view of the working mechanism of frictional resistance reduction by the example glue plets, and is a perspective view of the conventional example glue plets. l...Aircraft. 4...Tail. 21...Wind tunnel. 24...Lower wall. 3... Main wing. 6... Protrusion. 23... Earthen wall. 2...Torso. 5... Outer board. 22...side wall.

Claims (1)

【特許請求の範囲】[Claims] 可及的に小さい空気抵抗を求められる物体において、同
物体の空気流れに接した面に相互に近接して設けられほ
ぼ0.05mmの高さを有する多数の突起を具備してな
ることを特徴とする空気抵抗低減装置。
An object that is required to have as low air resistance as possible is characterized by having a large number of protrusions with a height of approximately 0.05 mm that are provided close to each other on the surface of the object that is in contact with the air flow. Air resistance reduction device.
JP26044490A 1990-10-01 1990-10-01 Air resistance reducing device Pending JPH04138994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26044490A JPH04138994A (en) 1990-10-01 1990-10-01 Air resistance reducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26044490A JPH04138994A (en) 1990-10-01 1990-10-01 Air resistance reducing device

Publications (1)

Publication Number Publication Date
JPH04138994A true JPH04138994A (en) 1992-05-13

Family

ID=17348025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26044490A Pending JPH04138994A (en) 1990-10-01 1990-10-01 Air resistance reducing device

Country Status (1)

Country Link
JP (1) JPH04138994A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008658A1 (en) * 1994-09-16 1996-03-21 Forschungszentrum Jülich GmbH Device for breaking whirls at a surface submerged by a turbulent flow
WO1996008677A1 (en) * 1994-09-14 1996-03-21 Kvaerner Pulping Ab Process for cleaning superheaters and other heat-transferring surfaces in recovery boilers
JP2013519591A (en) * 2010-02-16 2013-05-30 ザ・ボーイング・カンパニー Aerodynamic structure with chevron solar panels and related methods
US9334045B2 (en) 2008-02-29 2016-05-10 Airbus Operations Limited Aerodynamic structure with non-uniformly spaced shock bumps
US9463870B2 (en) 2008-02-29 2016-10-11 Airbus Operations Limited Aerodynamic structure with series of shock bumps
US9896193B2 (en) 2008-02-29 2018-02-20 Airbus Operations Limited Aerodynamic structure with asymmetrical shock bump

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008677A1 (en) * 1994-09-14 1996-03-21 Kvaerner Pulping Ab Process for cleaning superheaters and other heat-transferring surfaces in recovery boilers
WO1996008658A1 (en) * 1994-09-16 1996-03-21 Forschungszentrum Jülich GmbH Device for breaking whirls at a surface submerged by a turbulent flow
US9334045B2 (en) 2008-02-29 2016-05-10 Airbus Operations Limited Aerodynamic structure with non-uniformly spaced shock bumps
US9463870B2 (en) 2008-02-29 2016-10-11 Airbus Operations Limited Aerodynamic structure with series of shock bumps
US9896193B2 (en) 2008-02-29 2018-02-20 Airbus Operations Limited Aerodynamic structure with asymmetrical shock bump
JP2013519591A (en) * 2010-02-16 2013-05-30 ザ・ボーイング・カンパニー Aerodynamic structure with chevron solar panels and related methods

Similar Documents

Publication Publication Date Title
US3834654A (en) Boxplane wing and aircraft
Gad-el-Hak et al. Separation control
US5114099A (en) Surface for low drag in turbulent flow
Glezer Some aspects of aerodynamic flow control using synthetic-jet actuation
US10358208B2 (en) Hybrid flow control method for simple hinged flap high-lift system
JP2001354198A (en) Noise reducing device and eddy current generator for main wing of airplane
JP2009501304A (en) Elements that generate hydrodynamic forces
US20160009364A1 (en) Fluid Boundary Layer Control
Wooler et al. Pressure distribution on a rectangular wing with a jet exhausting normally into an airstream.
US5037044A (en) Aerodynamic or hydrodynamic surfaces
Gad-el-Hak Introduction to flow control
JPH04138994A (en) Air resistance reducing device
Gad-El-hak et al. Status and outlook of flow separation control
Othman et al. Aerial and aquatic biological and bioinspired flow control strategies
US5303882A (en) Corner vortex suppressor
Kato et al. PIV investigation of nacelle chine effects on high-lift system performance
US4582276A (en) Lifting shock wave cancellation module
Hage et al. Yaw angle effects on optimized riblets
Zverkov et al. Transitional flow structure on classic and wavy wings at low Reynolds numbers
Fung et al. Control of a miniducted-fan unmanned aerial vehicle using active flow control
Kumar et al. Analytical testing of vortex generators with an airfoil profile
Kulkarni et al. Understanding boundary layer suction and its e ect on wings-A review
Kondor et al. Active flow control application on a mini ducted fan UAV
CN210391541U (en) Grid rudder with composite material carbon fiber structure
Hage et al. Artificial shark skin on its way to technical application