JPH0413887A - Production of rainbow-colored worked articles - Google Patents

Production of rainbow-colored worked articles

Info

Publication number
JPH0413887A
JPH0413887A JP2116278A JP11627890A JPH0413887A JP H0413887 A JPH0413887 A JP H0413887A JP 2116278 A JP2116278 A JP 2116278A JP 11627890 A JP11627890 A JP 11627890A JP H0413887 A JPH0413887 A JP H0413887A
Authority
JP
Japan
Prior art keywords
metal
rainbow
fine
fine irregularities
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2116278A
Other languages
Japanese (ja)
Other versions
JPH089794B2 (en
Inventor
Itsuo Nagata
永田 伍雄
Daiki Miyamoto
大樹 宮本
Kosuke Moriwaki
森脇 耕介
Ichiro Oshima
大島 市郎
Tokihiko Oshima
大島 時彦
Shigekazu Hirata
平田 繁一
Yoshikazu Okano
岡野 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Prefecture
Osaka Fuji Corp
Original Assignee
Osaka Prefecture
Osaka Fuji Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Prefecture, Osaka Fuji Corp filed Critical Osaka Prefecture
Priority to JP2116278A priority Critical patent/JPH089794B2/en
Publication of JPH0413887A publication Critical patent/JPH0413887A/en
Publication of JPH089794B2 publication Critical patent/JPH089794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To produce worked articles exhibiting a rainbow-like beautiful reflected luster by irradiating the surface of a metal with laser interference light to form fine ruggednesses and reversely transferring the fine ruggednesses to a thick plating layer. CONSTITUTION:The interference light B1 of a laser beam is focused by a working condensing lens L, and the surface of the metallic sheet M is scanned by the focused light B2 to successively form a fine rugged part U1 having several hundred recessed lines I corresponding to the bright part of the interference fringes of an interference pattern. The sheet M provided with the fine rugged part U1 is used as a matrix, a thick plating layer P (most preferably of copper) is provided on the sheet M surface through a release coating film S, and then the plating layer P is released from the sheet M. Consequently, a rainbow- colored worked article P' consisting of the thick plating layer P having a fine rugged part U2 reverse to the fine rugged part U1 is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、表面の全体ないし一部の&!様等とし7色合
いが虹色様に多彩に変化する美麗な反射光沢を示す虹色
発色加工物の製造方法に関するもので、例えば金属製装
飾品、金属製家庭電化用品、金属製工業用品等として上
記反射光沢を有するものを量産するのに利用される。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a method for applying &! This article relates to a method for producing a rainbow-colored processed product that exhibits a beautiful reflective luster in which seven different hues change in a rainbow-like manner.For example, it can be used as metal ornaments, metal home appliances, metal industrial products, etc. It is used to mass produce products with the above-mentioned reflective gloss.

(従来の技術) 金属表面に可視光の波長域に近い1μm程度あるいはそ
れ以下といった微細な凹凸を密に形成した場合、該表面
が回折格子と同様に作用して入射光を分光して反射する
ため、反射光沢の色合いが入射光の方向や見る角度によ
って虹色様に多彩に変化することになる。従って、この
ような微細凹凸加工は、金属表面に塗装や化学的着色で
は不可能な美麗な多色可変発色を与える加飾手段として
極めて有望である。
(Prior art) When fine irregularities of about 1 μm or less, which are close to the wavelength range of visible light, are densely formed on a metal surface, the surface acts like a diffraction grating to separate and reflect incident light. Therefore, the hue of the reflective gloss changes in a rainbow-like manner depending on the direction of the incident light and the viewing angle. Therefore, such fine unevenness processing is extremely promising as a means of decorating metal surfaces with beautiful multicolor variable coloring that is impossible with painting or chemical coloring.

しかるに、近年において金属の各種加工に多用されてい
る通常のレーザビームによる加二[手段では、一般に集
光レンズにて収束可能な最小スボノ[・径が数μm〜1
0μm程度であるため、−ヒ述のような1μm以下とい
った微細な凹凸は形成不能−Cある。また仮に上記スポ
ット径を1μm程度に絞り込めたとしても、−回の走査
で一木の溝を形成でき°るだけであるから、凹凸部分を
肉眼で見える幅あるいは面状に形成するには膨大な加工
時間を要することになる。
However, in recent years, conventional laser beam laser beams, which have been widely used in various types of metal processing, generally have a diameter of several μm to 1 μm.
Since the thickness is approximately 0 μm, it is impossible to form minute irregularities of 1 μm or less as described in -C. Furthermore, even if the spot diameter could be narrowed down to about 1 μm, it would only be possible to form one groove in - times of scanning, so it would take a huge amount of time to form the uneven part to a width or surface that can be seen with the naked eye. This will require a considerable amount of processing time.

そこで、本発明者らは先に、特願平1−84326号お
よび特願平1−229567号として、レーザの干渉光
の照射によって金属表面に該干渉光の干渉縞の強度分布
に対応した微細凹凸を形成するという画期的な手段を提
案している。すなわち、これら提案手段によれば、レー
ザ光の強さを干渉縞の明部で金属が溶融、蒸発するエネ
ルギー密度に設定することにより、金属表面に該明部を
凹、暗部を凸とした凹凸が形成されるため、1回の走査
で相互の間隔が1μm程度あるいはそれ以下といった微
細な数百本もの凹凸条を一挙に形成できる。
Therefore, the present inventors have previously proposed, in Japanese Patent Application No. 1-84326 and No. 1-229567, a fine pattern corresponding to the intensity distribution of interference fringes of the interference light on a metal surface by irradiation with laser interference light. We are proposing an innovative method of forming unevenness. In other words, according to these proposed means, by setting the intensity of the laser beam to an energy density that melts and evaporates the metal in the bright areas of the interference fringes, the metal surface is made uneven with concave areas in the bright areas and convex areas in the dark areas. , so that hundreds of fine uneven lines with mutual spacing of about 1 μm or less can be formed at once in one scan.

(発明が解決しようとする課題) しかしなから、上記提案手段では、微細凹凸を1本ずつ
形成するのに比べて加工時間を数百分の−に短縮できる
が、−回の走査で形成される凹凸領域の幅つまりスポッ
ト径は通常のレーザ加工機では数百μm程度であるため
、虹色発色部を広面積に形成したり緻密な模様に構成す
る場合には加工に相当な時間がかかり、特に量産品の加
飾加工には製造効率およびコストの面で適用しにくいと
いう問題があった。
(Problem to be Solved by the Invention) However, although the proposed means described above can reduce the processing time to several hundred times compared to forming fine irregularities one by one, it is possible to reduce the processing time by several hundred times. The width of the concavo-convex region, that is, the spot diameter, is about several hundred micrometers with a normal laser processing machine, so it takes a considerable amount of time to process if the rainbow-colored part is formed over a wide area or in a precise pattern. In particular, there was a problem that it was difficult to apply to decoration processing of mass-produced products in terms of manufacturing efficiency and cost.

本発明は、上述の事情に鑑み、虹色発色加工物の量産容
易な製造方法を提供することを目的としている。
In view of the above-mentioned circumstances, the present invention aims to provide a manufacturing method that facilitates mass production of rainbow-colored processed products.

(課題を解決するための手段) 本発明に係る虹色発色加工物の製造方法は、上記目的を
達成する手段として、金属表面にレーザの干渉光を照射
してその干渉縞の強度分布に対応した微細凹凸を形成し
、この微細凹凸を有する金属材を母型として該微細凹凸
の面上に厚肉メッキを施す電鋳を行い、形成された厚肉
メッキ層を母型から剥離して上記微細凹凸が反転転写さ
れた金属板を得、該金属板を工具電極とした電解加工に
より金属ワークの表面に上記微細凹凸を再反転転写にて
形成することを特徴とする構成を採用するものである。
(Means for Solving the Problems) A method for producing a rainbow colored processed product according to the present invention, as a means to achieve the above object, irradiates a metal surface with laser interference light and adjusts the intensity distribution of the interference fringes. Electroforming is performed to form fine irregularities on the surface of the fine irregularities using the metal material having the fine irregularities as a matrix, and the formed thick plating layer is peeled off from the matrix. The present invention employs a configuration characterized in that a metal plate on which fine irregularities have been reversely transferred is obtained, and the fine irregularities are formed on the surface of a metal workpiece by reversal transfer by electrolytic processing using the metal plate as a tool electrode. be.

また、本発明では、上記製造方法において、電鋳の母型
となる金属材がステンレス鋼であり、電鋳のメッキ金属
が銅である請求項(1)の構成を好適態様としている。
Further, in the present invention, in the above-mentioned manufacturing method, a preferred embodiment is the configuration of claim (1), in which the metal material serving as the matrix for electroforming is stainless steel, and the plating metal for electroforming is copper.

(作 用) 本発明方法は、基本的にはレーザ加工工程と電鋳工程と
電解加工工程の3工程よりなる。
(Function) The method of the present invention basically consists of three steps: a laser processing step, an electroforming step, and an electrolytic processing step.

しかして、最初のレーザ加工工程では、レーザの干渉光
の照射により、その干渉縞の強度分布に対応した微細凹
凸、つまり干渉縞の明部を凹、暗部を凸とする微細凹凸
が形成される。ここで、上記の干渉縞は相互の間隔が可
視光の波長域に近い1μm程度あるいはそれ以下といっ
た微細な数百本もの明暗縞にて構成されるため、これに
対応する微細凹凸は回折格子と同様に作用して入射光を
分光して該入射光の方向や見る角度によって色合いが多
彩に変化する反射光沢つまり虹色発色を表出するものと
なる。
Therefore, in the first laser processing process, by irradiation with laser interference light, fine irregularities corresponding to the intensity distribution of the interference fringes are formed, in other words, fine irregularities are formed in which the bright parts of the interference fringes are concave and the dark parts are convex. . Here, the interference fringes mentioned above are composed of hundreds of fine light and dark fringes with mutual spacing of about 1 μm or less, which is close to the wavelength range of visible light, so the corresponding fine irregularities are called diffraction gratings. In a similar manner, incident light is divided into spectra to produce reflective luster, i.e., iridescent coloring, whose hue varies depending on the direction of the incident light and viewing angle.

2番目の電鋳工程では、上記の微細凹凸を形成した金属
材を母型として該微細凹凸の面上に厚肉メッキが施され
るため、このメッキ層を母型から剥離した金属板の剥離
面には上記微細凹凸の反転した微細凹凸が形成されるこ
とになる。
In the second electroforming process, thick plating is applied on the surface of the micro-asperities using the metal material with the above-mentioned micro-asperities as a matrix, so that the metal plate that has been peeled off from this plated layer from the matrix is peeled off. Fine irregularities, which are the inverse of the above-mentioned fine irregularities, are formed on the surface.

最後の電解加工工程では、前工程のメッキ層からなる金
属板を陰極側の工具電極として近接する陽極側の金属ワ
ークとの間で電解加工を行うため、該金属ワークの表面
が工具電極の面形状に対応して溶出浸食され、結果とし
て該金属ワークの表面に工具電極の前記微細凹凸が転写
される。しかして転写された微細凹凸は、電鋳の母型か
らの再反転により、該母型つまり最初のレーザ加工にて
形成したものと同じ凹凸関係にある。また陰極側の工具
電極表面は溶出による損耗がなく、かつ電解液の更新に
よって金属の析出堆積も阻止される。
In the final electrolytic machining process, electrolytic machining is performed between the metal plate made of the plating layer from the previous process as the tool electrode on the cathode side and the metal workpiece on the adjacent anode side, so that the surface of the metal workpiece is the surface of the tool electrode. The metal workpiece is eluted and eroded according to its shape, and as a result, the fine irregularities of the tool electrode are transferred to the surface of the metal workpiece. The transferred fine irregularities are re-inverted from the electroforming master mold, so that they have the same irregularity relationship as those formed by the master mold, that is, the first laser processing. Further, the surface of the tool electrode on the cathode side is not worn out due to elution, and metal precipitation is also prevented by renewing the electrolyte.

従って、この工具電極を繰り返し使用して電解加工を反
復することにより、多数の金属ワークの表面に虹色発色
を行う同一の微細凹凸を転写形成できる。
Therefore, by repeatedly using this tool electrode and repeating electrolytic processing, it is possible to transfer and form the same fine irregularities that produce rainbow colors on the surfaces of a large number of metal workpieces.

(実施例) 以下、本発明を図示実施例に基づいて具体的に説明する
(Example) Hereinafter, the present invention will be specifically described based on illustrated examples.

第1図はレーザ加工工程を示しており、XY子テーブル
lに母型金属板Mが載置され、その上方に設けた加工用
集光レンズ■、によってレーザビームの干渉光B1が収
束されて該レンズLの焦点よりも遠い位置で金属板Mの
表面に照射される。従って、XY子テーブルをX方向に
移動させることにより金属板Mの表面が収束された干渉
光B2にて走査されるから、この−回の走査終了ごとに
XY子テーブルをY方向に移動させることによって平行
線状あるいは面状の走査パターンが得られる。
Figure 1 shows the laser processing process, in which a master metal plate M is placed on an XY child table l, and the interference light B1 of the laser beam is focused by a processing condensing lens (2) installed above it. The surface of the metal plate M is irradiated at a position farther than the focal point of the lens L. Therefore, by moving the XY child table in the X direction, the surface of the metal plate M is scanned with the converged interference light B2, so the XY child table must be moved in the Y direction every time this scan is completed. A parallel linear or planar scanning pattern can be obtained.

しかして、−回の走査ごとに金属板Mの表面には、照射
スポット径の幅内に第1図の仮想線円内に示す拡大図の
ように干渉パターンの干渉縞の明部に対応した数百本の
凹条Iが形成される。
Therefore, for each - scan, on the surface of the metal plate M, within the width of the irradiation spot diameter, as shown in the enlarged view within the imaginary line circle in Fig. Several hundred grooves I are formed.

ここで、干渉光B、は、既述の特願平1−84326号
に開示されるように低次のマルチモードのレーザビーム
における明パターン成分相互の重なり、もしくは単一の
レーザビームより分割された複数本のビー1、相互の重
なりによって構成するか、あるいは同しく既述の特願平
1−229567号に開示されるように、レーザビーム
の一部を横ずれ変位させて元のビーム成分に重ねること
によって構成すればよい。しかして、これら干渉光B1
を生じさせるだめの具体的な装置構成についても、上記
両特許出願にて開示されている。
Here, the interference light B is formed by overlapping bright pattern components in a low-order multimode laser beam or by being split from a single laser beam, as disclosed in the aforementioned Japanese Patent Application No. 1-84326. A plurality of laser beams 1 can be constructed by overlapping each other, or, as disclosed in Japanese Patent Application No. 1-229567 mentioned above, a part of the laser beam can be laterally displaced to form the original beam component. It can be configured by overlapping. However, these interference lights B1
Specific device configurations for producing this are also disclosed in both of the above patent applications.

なお、XY子テーブルのXY両方向の移動を連動制御す
るか、あるいは干渉光B、の光軸方向をXYスキャナー
等の光学制御機構にて変化させることにより、走査線を
曲線状としたり複雑な模様をなす軌跡を描くように設定
でき、更にZ方向変位手段の組み合わせによって曲面等
の三次元形状の金属表面に対する微細凹凸加工も可能と
なる。
In addition, by controlling the movement of the XY child table in both the X and Y directions, or by changing the optical axis direction of the interference light B using an optical control mechanism such as an XY scanner, it is possible to make the scanning line curved or create a complex pattern. Furthermore, by combining the Z-direction displacement means, it is possible to perform fine unevenness machining on a three-dimensional metal surface such as a curved surface.

また干渉光B2の照射位置はレンズLの焦点Fよりも浅
い位置に設定してもよい。しかして干渉光B1の収束手
段には凹面鏡も利用できる。
Further, the irradiation position of the interference light B2 may be set at a position shallower than the focal point F of the lens L. A concave mirror can also be used as a converging means for the interference light B1.

母型金属板Mの素材は限定されないが、金属表面加工に
汎用されるYAGレーザ加工機等による加工性と、次の
電鋳における母型としての耐久性および転写性等より、
特にステンレス鋼が好適である。
The material of the matrix metal plate M is not limited, but it is suitable for machinability using a YAG laser processing machine commonly used for metal surface processing, durability as a matrix for the next electroforming, transferability, etc.
Stainless steel is particularly suitable.

上記のレーザ加工により第2図の如く表面に密な多数の
凹条Iにて構成される微細凹凸部U、を設けた母型金属
板Mは、次の電鋳工程における母型として使用される。
The matrix metal plate M, which has been provided with fine irregularities U consisting of a large number of dense grooves I on its surface as shown in Fig. 2 by the laser processing described above, is used as a matrix in the next electroforming process. Ru.

なお、図では模式的に示しているが、各微細凹凸部U1
の四条■は実際には既述のように数百本である。
Although shown schematically in the figure, each fine unevenness U1
There are actually several hundred pieces of Shijo ■, as mentioned above.

この電鋳工程では、第3図で示すように、母型金属板M
の微細凹凸部U1を有する表面上に剥離被膜Sを介して
厚肉メンキ層Pを設けた後、このメッキ層Pを母型金属
板Mから剥離するが、その一連の操作および電鋳条件は
常法に準じればよい。
In this electroforming process, as shown in FIG.
After providing a thick plated layer P via a release film S on the surface having fine unevenness U1, this plated layer P is peeled off from the mother metal plate M, but the series of operations and electroforming conditions are as follows. Just follow the usual law.

例えばメッキ層Pの剥離を容易にするだめの剥離被膜S
としては、クロム酸塩、酸化物、硫化物等の化学的に形
成する被膜や、ろう、グリース、コロイド状黒鉛等の機
械的に付着させる被膜のように、耐久型母型の剥離用と
して知られるものを母型金属板Mの材質に応して選択す
ればよい。なお、該金属板Mがステンレス鋼である場合
、クロム酸塩の剥離被膜が、該金属板Mを10g/ρ濃
度程度のクロム酸水溶液に瞬間的に漬けるだけで形成で
きることから好適である。
For example, a release coating S that facilitates the peeling of the plating layer P
It is known for stripping durable matrices, such as chemically formed coatings such as chromates, oxides, and sulfides, and mechanically applied coatings such as waxes, greases, and colloidal graphite. What is necessary is to select the material that can be used depending on the material of the master metal plate M. When the metal plate M is made of stainless steel, it is preferable that the chromate peeling film can be formed by simply immersing the metal plate M in a chromic acid aqueous solution having a concentration of about 10 g/ρ.

またメッキ金属としては、特に限定されないが、次の電
解加工における電極としての適用性の点で銅が最も好ま
しい。この銅電鋳浴には硫酸銅浴が最も一般的である。
Further, the plating metal is not particularly limited, but copper is most preferable in view of its applicability as an electrode in the subsequent electrolytic processing. The most common copper electroforming bath is a copper sulfate bath.

上記電鋳にて得られた厚肉メッキ層Pからなる金属板P
゛は、母型金属板Mからの剥離面に該金属板Mの微細凹
凸部U1の反転した微細凹凸部U2、つまり前者の凹状
Iに対応する多数の凸条0にて構成される微細凹凸部U
2が転写されたものとなる。しかして、この厚内メッキ
層Pの金属板P゛は次の電解加工乙こおける工具電極に
使用する。
Metal plate P consisting of thick plated layer P obtained by the above electroforming
゛ is a fine unevenness U2 which is an inversion of the fine unevenness U1 of the metal plate M on the peeled surface from the matrix metal plate M, that is, a fine unevenness composed of a large number of protrusions 0 corresponding to the former concave shape I. Department U
2 is transcribed. Therefore, the metal plate P' with this thick plating layer P is used as a tool electrode in the next electrolytic machining step B.

電解加」−は、第4図で示すように、金属板P“を陰極
とし、陽極に製品とする金属ワークWを配置して、金属
板P“の微細凹凸部U2を有する表面と該ワークWの被
加工面とを電解液中において接近させた状態で両極間に
直流電圧を印加することによって行う。しかして、上記
電解液としては−船釣な硝酸ナトリウムや塩化ナトリウ
ムの水溶液が使用されるが、電解中に陰極側へ金属が析
出堆積するのを防止するために、常法に準して電解液を
ポンプにて高速で流すと共に、回収電解液中の溶出金属
より生成した酸化物や水酸化物を遠心分離等で除去して
再生使用することは言うまでもない。
As shown in FIG. 4, the electrolytic application is carried out by placing the metal plate P'' as a cathode and placing the metal workpiece W as the product on the anode, and then connecting the surface of the metal plate P'' with the fine irregularities U2 and the workpiece. This is performed by applying a DC voltage between the two electrodes while the surface of the W to be processed is brought close to the surface of the W in the electrolytic solution. As the above electrolyte, an aqueous solution of sodium nitrate or sodium chloride is used; Needless to say, the liquid is pumped at high speed, and oxides and hydroxides generated from eluted metals in the recovered electrolyte are removed by centrifugation or the like for reuse.

このような電解加工により、金属ワークWの工具電極に
対向する表面が溶出浸食されるが、この浸食速度は工具
電極との距離が近いほど大きくなるため、工具電極の金
属板P“の微細凹凸U2を構成する各凸条0に対応して
金属ワークW側に四条Iが形成され、その結果として該
ワークWの表面に金属板P°の微細凹凸部U2を反転し
た形の微細凹凸部U3が転写形成されることになる。こ
の微細凹凸部U3は、母型金属板Mより2回の反転を経
て転写されたものであるから、該金属板Mの微細凹凸部
UIと同パターンであり、入射光の角度や見る方向によ
って色合いが虹色様に多彩に変化する反射光沢を表出す
る。従って、この微細凹凸部U3を設けた金属ワークW
は目的とする虹色発色加工物である。
Through such electrolytic machining, the surface of the metal work W facing the tool electrode is eroded by elution, but this erosion rate increases as the distance from the tool electrode becomes shorter. Four strips I are formed on the metal workpiece W side corresponding to each of the protrusions 0 constituting U2, and as a result, a fine unevenness U3 is formed on the surface of the workpiece W in a shape that is an inversion of the fine unevenness U2 of the metal plate P°. This fine unevenness U3 is transferred from the master metal plate M after being reversed twice, so it has the same pattern as the fine unevenness UI of the metal plate M. , a reflective luster whose hue changes in a rainbow-like manner depending on the angle of incident light and the viewing direction is produced.Therefore, the metal workpiece W provided with this fine unevenness U3.
is the desired iridescent colored processed product.

しかして、工具電極の金属板P1は、表面の損耗ならび
に金属の析出堆積がな(安定した表面形状を保持するた
め、これを多数の金属ワークWに対する虹色発色加工に
反復使用できる。
Therefore, the metal plate P1 of the tool electrode is free from surface wear and metal deposition (maintains a stable surface shape), so it can be repeatedly used for rainbow coloring processing on a large number of metal workpieces W.

(発明特有の効果) 本発明方法によれば、入射光の角度や見る方向によって
色合いが虹色様に多彩に変化する美麗な反射光沢を示す
虹色発色加工物を製造するに際し、上記虹色発色に必要
となるレーザの干渉縞に対応した微細凹凸を母型の金属
表面のみにレーザ加工にて形成するだけで、該母型を基
にした微細凹凸の転写によって同一の上記加工物を容易
に量産できる。
(Effects Unique to the Invention) According to the method of the present invention, when producing an iridescent colored processed product exhibiting a beautiful reflective luster whose hue varies in a rainbow-like manner depending on the angle of incident light and viewing direction, By simply forming fine irregularities corresponding to the laser interference fringes necessary for color development only on the metal surface of the matrix by laser processing, the same workpiece can be easily produced by transferring the fine irregularities based on the matrix. Can be mass-produced.

また、本発明の請求項(2)は構成によれば、上記母型
から電鋳を経て電解加工に供する転写用の工具電極を容
易に精度よく製作できるという利点がある。
Further, according to the structure of claim (2) of the present invention, there is an advantage that a transfer tool electrode to be used for electrolytic machining can be easily and precisely manufactured from the master mold through electroforming.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明方法の一実施例を示すものであって、第1
図はレーザ加工による微細凹凸の形成工程の概略斜視図
、第2図は微細凹凸を形成した母型の断面図、第3図は
電鋳によるメッキ層形成状態の断面図、第4図は電解加
工を示す概略断面図、第5図は製造した虹色発色加工物
の断面図である。 Bl、B2・・・レーザの干渉光、M・・・母型金属板
、P・・・厚肉メッキ層、P“・・・金属板、U+ 、
UzU3・・・微細凹凸部、W・・・金属ワーク。 第1図
The drawings show one embodiment of the method of the present invention.
The figure is a schematic perspective view of the process of forming fine irregularities by laser processing, Figure 2 is a cross-sectional view of the mother mold on which fine irregularities are formed, Figure 3 is a cross-sectional view of the plated layer formed by electroforming, and Figure 4 is electrolytic. A schematic cross-sectional view showing the processing, and FIG. 5 is a cross-sectional view of the manufactured rainbow colored processed product. Bl, B2...Laser interference light, M...Made metal plate, P...Thick plated layer, P"...Metal plate, U+,
UzU3...fine unevenness, W...metal work. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)、金属表面にレーザの干渉光を照射してその干渉
縞の強度分布に対応した微細凹凸を形成し、この微細凹
凸を有する金属材を母型として該微細凹凸の面上に厚肉
メッキを施す電鋳を行い、形成された厚肉メッキ層を母
型から剥離して上記微細凹凸が反転転写された金属板を
得、該金属板を工具電極とした電解加工により金属ワー
クの表面に上記微細凹凸を再反転転写にて形成すること
を特徴とする虹色発色加工物の製造方法。
(1) A metal surface is irradiated with laser interference light to form fine irregularities corresponding to the intensity distribution of the interference fringes, and a metal material having fine irregularities is used as a matrix to form a thick wall on the surface of the fine irregularities. Electroforming is performed to apply plating, and the formed thick plating layer is peeled off from the matrix to obtain a metal plate on which the above-mentioned fine irregularities have been reversely transferred.The surface of the metal workpiece is then processed by electrolytic processing using the metal plate as a tool electrode. A method for producing a rainbow-colored processed product, characterized in that the fine irregularities are formed by re-inversion transfer.
(2)、電鋳の母型となる金属材がステンレス鋼であり
、電鋳のメッキ金属が銅である請求項(1)記載の虹色
発色加工物の製造方法。
(2) The method for producing a rainbow-colored workpiece according to claim (1), wherein the metal material serving as a matrix for electroforming is stainless steel, and the plating metal for electroforming is copper.
JP2116278A 1990-05-02 1990-05-02 Manufacturing method of rainbow colored products Expired - Lifetime JPH089794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2116278A JPH089794B2 (en) 1990-05-02 1990-05-02 Manufacturing method of rainbow colored products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2116278A JPH089794B2 (en) 1990-05-02 1990-05-02 Manufacturing method of rainbow colored products

Publications (2)

Publication Number Publication Date
JPH0413887A true JPH0413887A (en) 1992-01-17
JPH089794B2 JPH089794B2 (en) 1996-01-31

Family

ID=14683116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2116278A Expired - Lifetime JPH089794B2 (en) 1990-05-02 1990-05-02 Manufacturing method of rainbow colored products

Country Status (1)

Country Link
JP (1) JPH089794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102909A (en) * 2009-11-11 2011-05-26 Nikkiso Co Ltd Method for manufacturing morpho-structural color developing body
JP4720088B2 (en) * 2004-02-02 2011-07-13 セイコーエプソン株式会社 Gradation correction circuit, image display device, and image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720088B2 (en) * 2004-02-02 2011-07-13 セイコーエプソン株式会社 Gradation correction circuit, image display device, and image processing method
JP2011102909A (en) * 2009-11-11 2011-05-26 Nikkiso Co Ltd Method for manufacturing morpho-structural color developing body

Also Published As

Publication number Publication date
JPH089794B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
CN105974767B (en) Process for decorating timepiece components and timepiece components obtained by this process
US5327825A (en) Seamless holographic transfer
CN101016634B (en) Method of preparing metal roller with surface relief microstructure
CN109986212A (en) A kind of laser color marking system and its method
CN101470342A (en) Method for making pattern on curved metal surface
JPH0747232B2 (en) Laser processing method for metal surface
US6800190B1 (en) Method to obtain a variety of surface colors by electroplating zinc nickel and nickel alloy oxides
JPH06212451A (en) Method for ornamenting metallic surface
JP2002059700A (en) Rainbow color developing working method
JPH0413887A (en) Production of rainbow-colored worked articles
JPH0745111B2 (en) Iridescent metal ornaments
JPH07148583A (en) Laser beam processing method of metallic surface
JPH0491874A (en) Rainbow color developing method for metallic surface
JPH04259600A (en) Production of iridescence-forming workpiece
JPH04284299A (en) Method for processing decoration on metal surface
Seo et al. Mass printing of colored natural patterns on Al plate by roll imprinting and thin film deposition
JPS6220898A (en) Method for drawing pattern on valve metal
RU2194427C2 (en) Jewelry and decorative article manufacture method
JPS63256207A (en) Roll for rolling
KR900001327B1 (en) Process for preparing decoration board
Carey et al. Laser-surface ornamentation
KR101691988B1 (en) A method for making hologram design on metal plating layer and plated material with hologram design on the surface
CN1084291A (en) Producing method of laser holographic interference image
KR101046948B1 (en) Image metal panel and manufacturing method thereof
CN117799352A (en) Copper ware surface decoration process