JPH0413879A - Preparation of solution containing cerium (iv) ion - Google Patents

Preparation of solution containing cerium (iv) ion

Info

Publication number
JPH0413879A
JPH0413879A JP90112285A JP11228590A JPH0413879A JP H0413879 A JPH0413879 A JP H0413879A JP 90112285 A JP90112285 A JP 90112285A JP 11228590 A JP11228590 A JP 11228590A JP H0413879 A JPH0413879 A JP H0413879A
Authority
JP
Japan
Prior art keywords
anode
solution containing
current density
cathode
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP90112285A
Other languages
Japanese (ja)
Other versions
JP2524419B2 (en
Inventor
Yasushi Fujii
靖士 藤井
Noriaki Ikeda
憲明 池田
Noboru Sugishima
昇 杉島
Makoto Kawanami
川並 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2112285A priority Critical patent/JP2524419B2/en
Publication of JPH0413879A publication Critical patent/JPH0413879A/en
Priority to CN93119122A priority patent/CN1046245C/en
Application granted granted Critical
Publication of JP2524419B2 publication Critical patent/JP2524419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prepare a solution containing cerium (IV) ions at high current efficiency by oxidizing an aq. acid soln. containing cerium (III) salt by an electrolysis using no membrane at a specified cathode current density and under specified conditions of electrolytic temp., anode current density, and electrolyte flow rate. CONSTITUTION:An aq. soln. of acid containing cerium (III) salt such as sulfate, nitrate, and methanesulfonate is oxidized by electrolysis to prepare an aq. soln. of cerium (IV) salt. In this process of preparing the soln. containing cerium (IV) ion, the electrolytic oxidation is carried out without using a membrane under such conditions that the current density in the cathode is made 2-20 times as much as that of the anode and that the electrolytic temp. T (K), anode current density A (A/dm<2>), and electrolyte line velocity L (cm/sec) satisfy the relation 100<=TL/A<=2000. It is preferable that the current density of the anode is 5-50A/dm<2> and the cerium (III) concn. in the acid soln. is >=0.05mol/l. The maximum/minimum distance ratio of electrodes is preferably <=3. the anode is made of Pb, Pt, Ir, Ta, etc., and the cathode is made of Zr, W, Tl, etc.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は有用な酸化剤である第2セリウムイオンを含む
溶液の製造法に関する。特に芳香族炭化水素化合物、ア
ルデヒド類、カルボン酸類、キノン類等の含酸素化合物
やピリジン等の含窒素化合物など、有機合成の広い分野
で酸化剤として第2セリウムイオンを循環再使用する際
に、消費したセリウムイオンを再生する方法として有用
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for preparing a solution containing ceric ions, which are useful oxidizing agents. In particular, when ceric ions are recycled and reused as an oxidizing agent in a wide range of organic synthesis fields, such as aromatic hydrocarbon compounds, aldehydes, carboxylic acids, quinones, and other oxygen-containing compounds, and pyridine and other nitrogen-containing compounds, This method is useful as a method to regenerate consumed cerium ions.

第2セリウムイオンを含む溶液はナフタリンから1,4
−ナフトキノンのような芳香族化合物から対応するキノ
ン類への酸化; トルエンからベンズアルデヒドのよう
な芳香族化合物側鎖置換基の酸化;シクロアルカンの開
環; オキシムのカルボニル化など有機合成の広い分野
で酸化剤として用いられる。
The solution containing ceric ions is 1,4 from naphthalene.
- Oxidation of aromatic compounds such as naphthoquinone to the corresponding quinones; Oxidation of side chain substituents of aromatic compounds such as benzaldehyde from toluene; Ring opening of cycloalkanes; Carbonylation of oximes, etc. in a wide range of organic synthesis fields. Used as an oxidizing agent.

[従来の技術]      ′ 前記第2セリウムイオンを含む溶液の原料としてよく用
いられる第2セリウム塩としては、硫酸第2セリウムC
e (S Oa ) 2、硝酸第2セリウムアンモニウ
ム(N H4)2[Ce(N O3)6]、過塩素酸第
2セリウム H2Ce(CQ O4) t、などが知ら
れている。
[Prior Art] ' As a ceric salt often used as a raw material for a solution containing ceric ions, ceric sulfate C
e (S Oa ) 2, ceric ammonium nitrate (N H4) 2 [Ce(N O3) 6], ceric perchlorate H2Ce(CQ O4) t, and the like are known.

第2セリウム塩を用いて有機化合物を酸化すると第2セ
リウム塩は第1セリウム塩に還元されるが、セリウム化
合物は高価であるので、工業的にはこれを回収・酸化し
て第2セリウムに再生して再利用する必要がある。この
ため有機化合物の酸化反応工程と回収した第1セリウム
を電気化学的に第2セリウムに酸化・再生する工程とを
組み合わせて行う間接電解法がよく行われる。
When an organic compound is oxidized using a ceric salt, the ceric salt is reduced to a cerous salt. However, since cerium compounds are expensive, they are industrially recovered and oxidized to produce ceric salt. It needs to be recycled and reused. For this reason, an indirect electrolysis method is often used in which a step of oxidizing an organic compound is combined with a step of electrochemically oxidizing and regenerating recovered cerium to ceric.

該第1セリウム塩の電解再生には、通常、陽極と陰極の
間に隔膜を有する隔膜式電解槽が用いられている(例え
ば特公昭45−41561)。これは隔膜がないと陽極
にて一旦生成した第2セリウムイオンの一部が陰極にお
いて再び第1セリウムイオンに還元きれる□ため第2セ
リウムイオン再生のための電流効率が極端に低下するた
めである。
For the electrolytic regeneration of the cerium salt, a diaphragm type electrolytic cell having a diaphragm between an anode and a cathode is usually used (for example, Japanese Patent Publication No. 45-41561). This is because without the diaphragm, a portion of the ceric ions once generated at the anode would be reduced back to cerous ions at the cathode, resulting in an extremely low current efficiency for regenerating ceric ions. .

しかしながら本発明者らが隔膜式電解槽を用いた第1セ
リウム塩を含む酸水溶液の電解による第2セリウム塩を
含む酸水溶液の製造法について検討を加えたところ、電
解槽構造が複雑で装置や隔膜のコストおよびメンテナン
スのためのコストが高くつき、また隔膜の電気抵抗によ
り電解電圧が上昇する等の問題を生ずることが認められ
た。更に、陽極液に有機物が含まれている場合、陰極液
が着色したり陽極に於ける電流効率が低下したり電解電
圧が上昇するなどの問題が生じた。これは有機物が隔膜
を通して陽極液から陰極液に移動し、陰極に於いて還元
反応を受けたためと考えら札 そのような有機物が逆に
陽極液に混入することにより陽極での電流効率を低下さ
せたり隔膜の抵抗を増大させ電解電圧の上昇を招いたの
ではないがと考えられる。このような問題は特に芳香族
炭化水素、中でもアルデヒドやケトンなどの含酸素芳香
族化合物やピリジン等の含窒素芳香族化合物において顕
著に認められた。このように工業的見地がらすれば隔膜
法による運転は多くの問題を有していることが判明した
However, when the present inventors investigated a method for producing an acid aqueous solution containing a ceric salt by electrolyzing an acid aqueous solution containing a cerous salt using a diaphragm electrolytic cell, they found that the electrolytic cell structure was complicated, and the equipment and It has been recognized that the cost of the diaphragm and the cost for maintenance are high, and that the electrical resistance of the diaphragm causes problems such as an increase in electrolytic voltage. Furthermore, when the anolyte contains organic matter, problems such as coloration of the catholyte, decrease in current efficiency at the anode, and increase in electrolytic voltage arise. This is thought to be because organic matter migrates from the anolyte to the catholyte through the diaphragm and undergoes a reduction reaction at the cathode.Conversely, such organic matter mixes into the anolyte, reducing the current efficiency at the anode. It is thought that this may have increased the resistance of the diaphragm, leading to an increase in electrolytic voltage. Such problems have been particularly noticeable in aromatic hydrocarbons, especially oxygen-containing aromatic compounds such as aldehydes and ketones, and nitrogen-containing aromatic compounds such as pyridine. Thus, from an industrial standpoint, it has been found that operation by the diaphragm method has many problems.

一方、無隔膜電解槽を用いた電解法として、100〜4
00 mA/cm2の陽極電流密度に対して陰極の電流
密度を100 C)〜4500n+A/am2と陽極よ
り高く設定し、激しく攪拌しながら電解を実施する方法
が提案きれている(米国特許第4683038号)。し
かしながら本発明者らがこの方法について検討を加えた
ところ、激しい攪拌をするためにかなり大きな動力費を
必要とし、動力費増加分が電解特性向上によるコスト減
少の数倍にも達して工業化には非現実的な結果が得られ
た。また、電解電圧が通常の電解電圧よりもかなり高く
なり、かつ期待された電流効率も得られなかった。更に
は、高電流密度条件下では陰極上に樹脂状の粘着物が析
出して電解を長期間継続することは不可能テアった。特
に電解液に有機物が含まれている場合、陰極で水素発生
や第2セリウムイオンの還元反応以外の有機化合物が関
与した電極反応が起こり、その生成物による電解液の汚
染が電解復液の分析により認められた。また電流効率の
低下も認められた。このように単に激しい攪拌下陰極電
流密度を陽極電流密度より高くして電解を行なうだけで
は満足な結果は得られなかった。
On the other hand, as an electrolytic method using a non-diaphragm electrolytic cell,
For an anode current density of 00 mA/cm2, a method has been proposed in which the current density of the cathode is set higher than that of the anode at 100 C) to 4500 n+A/am2, and electrolysis is carried out with vigorous stirring (US Pat. No. 4,683,038). ). However, when the inventors investigated this method, they found that it required a considerable amount of power to perform vigorous stirring, and the increase in power cost was several times the cost reduction due to improved electrolytic properties, making it impractical for industrialization. The results were unrealistic. Furthermore, the electrolysis voltage was considerably higher than the normal electrolysis voltage, and the expected current efficiency was not obtained. Furthermore, under high current density conditions, a resinous sticky substance was deposited on the cathode, making it impossible to continue electrolysis for a long period of time. In particular, when the electrolyte contains organic substances, electrode reactions involving organic compounds other than hydrogen generation and the reduction reaction of ceric ions occur at the cathode, and the electrolyte is contaminated by these products. Approved by. A decrease in current efficiency was also observed. As described above, it has not been possible to obtain satisfactory results simply by carrying out electrolysis under vigorous stirring with the cathode current density higher than the anode current density.

[発明が解決しようとする課題] 本発明の目的は、従来の方法では解決できなかった前述
の欠点を解消し、有機化合物共存下での第1セリウム塩
の酸水溶液電解における工業的に有利な無隔膜電解方法
を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned drawbacks that could not be solved by conventional methods, and to provide an industrially advantageous method for acid aqueous electrolysis of cerous salts in the coexistence of organic compounds. An object of the present invention is to provide a diaphragmless electrolysis method.

[課題を解決するための手段] 本発明者らは、前記の無隔膜電解法における欠点を克服
するために最適な電解条件について鋭意検討を加えたと
ころ、単に陽極電流密度と陽極陰極電流密度との比だけ
でなく、陽極と陰極の相対位置関係、電解液の線速、電
解温度および電解液中の第1セリウム塩濃度がお互いに
密接に関係し合って電解特性に影響を与えていることを
見いだし、これらの条件を適切に設定することにより上
記問題を解決できることを見いだし、本発明を完成した
。即ち本発明は、有機化合物の共存下に第1セリウム塩
を含む酸水溶液を電解酸化する第2セリウム塩酸水溶液
の製造方法において、陰極の電流密度が陽極の電流密度
の2〜20倍であり、電解温度T(K)、陽極電流密度
A (A/dm2) 、電解槽中の電解液の線速L (
Cm/sec)の間に100≦TL/A≦2000 の関係を満たす条件下、陽極と陰極の間に隔膜を有しな
い無隔膜電解槽を用いて電解酸化を行なうことを要旨と
する第2セリウムイオンを含む溶液の製造方法である。
[Means for Solving the Problems] In order to overcome the drawbacks of the above-mentioned membraneless electrolysis method, the present inventors conducted extensive studies on the optimal electrolytic conditions, and found that they simply determined that the anode current density and the anode-cathode current density In addition to the ratio, the relative positional relationship between the anode and cathode, the linear velocity of the electrolyte, the electrolysis temperature, and the cerous salt concentration in the electrolyte are closely related to each other and influence the electrolytic characteristics. The inventors have discovered that the above problems can be solved by appropriately setting these conditions, and have completed the present invention. That is, the present invention provides a method for producing a ceric hydrochloric acid aqueous solution in which an acid aqueous solution containing a cerous salt is electrolytically oxidized in the coexistence of an organic compound, in which the current density at the cathode is 2 to 20 times the current density at the anode, Electrolysis temperature T (K), anode current density A (A/dm2), linear velocity L of electrolyte in the electrolytic cell (
Cm/sec) under conditions satisfying the relationship 100≦TL/A≦2000, using a diaphragmless electrolytic cell that does not have a diaphragm between the anode and the cathode to perform electrolytic oxidation. This is a method for producing a solution containing ions.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

陰極の電流密度を陽極より大きくすることによって陽極
で生成した第2セリウムイオンが陰極で再び還元される
のを防ぐことができるが、陰極の電流密度が陽極の電流
密度に比べてそれほど高くないと第2セリウムイオンの
再還元を十分に抑制できずに電流効率の低下を招き、ま
た、高すぎると電解電圧が上昇したり陰極で有機物が還
元されたり陰極上に樹脂状の粘着物の析出が起こったり
する。本発明においては、陰極の電流密度を陽極の電流
密度の2〜20倍、より好ましくは3〜9倍の範囲で電
解を実施する。
By making the current density at the cathode higher than that at the anode, it is possible to prevent the ceric ions generated at the anode from being reduced again at the cathode, but unless the current density at the cathode is much higher than that at the anode. Re-reduction of ceric ions cannot be sufficiently suppressed, leading to a decrease in current efficiency, and if it is too high, the electrolysis voltage may increase, organic matter may be reduced at the cathode, and resin-like sticky substances may be deposited on the cathode. It happens. In the present invention, electrolysis is carried out at a cathode current density of 2 to 20 times, more preferably 3 to 9 times, the anode current density.

一方、高い電流密度では電極表面でのガス発生が盛んと
なるためそのガス抜けも悪くなり、更にはその結果とし
て電極電位上昇や抵抗成分の電圧上昇が起こり電流効率
も低下する。また電極電位が上昇することにより電解液
中に含まれている有機化合物の電極反応も起こり易くな
る。これらの欠点は電解液の線速及び電解温度を適切に
選択することにより改善される。すなわち電解液の線速
をあげることにより陽極への第1セリウムイオンの供給
速度が大きくなり、ガスの脱離も速くなるため電圧の上
昇も抑制ざ札 電流効率も改善ざ札有機化合物の電極反
応も抑制される。しかし電解液の線速を上げすぎてもそ
の効果はほとんど変わらず、そのための動力や設備が必
要となる。一方、同様の効果は電解温度を上げることに
よっても得られる。電解温度が高すぎると装置材料の耐
久性などに問題が生じるため好ましくは15〜95℃(
288〜368K)の範囲内で実施されるが、これも陽
極電流密度や電解液の線速と関係して決定きれる。この
ように電解温度T(K)、陽極電流密度A (A/dm
2) 、  電解槽中の電解液の線速L (Cm/se
c)の間に互いに密接な関係があり、本発明においては
100≦TL/A≦20001 好ましくは200≦T
L/A≦1000の関係を満たす条件下で電解を行なう
。TL/A値が小と過ぎると、電圧の上爪 ガス抜は不
良、電流効率低下、含有有機化合物の電極反応などをも
たらす。T L/A値が大き過ぎてもその効果の増加よ
りも装置上の欠点や動力コストの上昇などの問題の方が
大きくなり工業的規模での実施は困難となる。本発明に
よれば、例えば、生産量を上げるために高い電流密度で
電解を実施したいときには電解液の線速もしくは電解温
度を上げて、すなわちTL値を上げて電解特性の悪化を
防ぐことができる。また、装置上の制約から電解液の線
速をあまり上げることができない場合には電解温度を上
げたり陽極電流密度を下げるなどしてTL/A値を制御
することにより優れた電解特性を得ることが可能となる
On the other hand, when the current density is high, gas generation on the electrode surface increases, so gas release becomes difficult, and as a result, the electrode potential increases and the voltage of the resistance component increases, resulting in a decrease in current efficiency. Furthermore, as the electrode potential increases, electrode reactions of organic compounds contained in the electrolytic solution also become more likely to occur. These drawbacks can be improved by appropriately selecting the linear velocity of the electrolyte and the electrolysis temperature. In other words, by increasing the linear velocity of the electrolyte, the rate of supply of cerous ions to the anode increases, and gas desorption becomes faster, which also suppresses voltage increases.Electrode reaction of organic compounds also improves current efficiency. is also suppressed. However, even if the linear velocity of the electrolyte is increased too much, the effect remains almost the same, and power and equipment are required for this purpose. On the other hand, similar effects can also be obtained by increasing the electrolysis temperature. If the electrolysis temperature is too high, problems will occur with the durability of the device material, so it is preferably 15 to 95°C (
288 to 368 K), which can also be determined in relation to the anode current density and the linear velocity of the electrolyte. In this way, the electrolysis temperature T (K), the anode current density A (A/dm
2) Linear velocity L of the electrolyte in the electrolytic cell (Cm/se
There is a close relationship between c), and in the present invention, 100≦TL/A≦20001, preferably 200≦T
Electrolysis is performed under conditions that satisfy the relationship L/A≦1000. If the TL/A value is too small, it will result in poor voltage degassing, reduced current efficiency, and electrode reactions of contained organic compounds. If the T L/A value is too large, problems such as defects in equipment and increase in power cost will outweigh the increase in effectiveness, making it difficult to implement on an industrial scale. According to the present invention, for example, when it is desired to perform electrolysis at a high current density in order to increase production, it is possible to increase the linear velocity of the electrolytic solution or the electrolysis temperature, that is, increase the TL value, thereby preventing deterioration of the electrolytic properties. . In addition, if it is not possible to increase the linear velocity of the electrolyte too much due to equipment limitations, it is possible to obtain excellent electrolytic properties by controlling the TL/A value by increasing the electrolysis temperature or lowering the anode current density. becomes possible.

電解における陽極電流密度は一般に高電流密度条件下で
は単位電解槽あたりの生産量を上げられ→− る反面、電流効率や電解電圧の面では不利になる。
In general, when the anode current density in electrolysis is high, the production per unit electrolytic cell can be increased →-, but on the other hand, it is disadvantageous in terms of current efficiency and electrolysis voltage.

従って、好ましくは5〜50 A/dm”  より好ま
しくは10〜30 A/d+++2の電流密度で実施す
る。
Therefore, it is preferably carried out at a current density of 5 to 50 A/dm'', more preferably 10 to 30 A/d++2.

第1セリウムイオンを含む酸水溶液としては、硫酸第1
セリウムを含む硫酸水溶液、硝酸第1セリウムを含む硝
酸水溶液、メタンスルホン酸第1セリウムを含むメタン
スルホン酸水溶液等が挙げられる。
As an acid aqueous solution containing cerous ions, cerous sulfuric acid
Examples include a sulfuric acid aqueous solution containing cerium, a nitric acid aqueous solution containing cerous nitrate, and a methanesulfonic acid aqueous solution containing cerous methanesulfonate.

本発明において、電解液中の第1セリウムイオンの濃度
があまりに低濃度であると生産性が悪いうえに電流効率
の低下をもたらして工業的に不利となる。従って、0.
05モル/リットル以上とすることが好ましく、より・
好ましくは0.05〜10モル/リットルの範囲内とす
る。
In the present invention, if the concentration of cerous ions in the electrolytic solution is too low, productivity is poor and current efficiency is lowered, which is industrially disadvantageous. Therefore, 0.
It is preferable to set it to 05 mol/liter or more, and more.
Preferably it is within the range of 0.05 to 10 mol/liter.

酸性水溶液中の酸濃度については、酸濃度が低すぎると
第2セリウムイオンが不安定になり、酸濃度が高すぎる
と第1セリウムイオンの溶解度が低下したり装置の腐蝕
の面から不利である。従って、酸性水溶液中の酸濃度は
好ましくは0.05〜5モル/リットル、より好ましく
は0.05〜2、 0モル/リットルの範囲内にあるこ
とが望ましい。
Regarding the acid concentration in the acidic aqueous solution, if the acid concentration is too low, the ceric ions become unstable, and if the acid concentration is too high, the solubility of the ceric ions decreases, which is disadvantageous in terms of equipment corrosion. . Therefore, the acid concentration in the acidic aqueous solution is preferably in the range of 0.05 to 5 mol/liter, more preferably 0.05 to 2.0 mol/liter.

電解において用いられる電極としては陽極には従来の隔
膜法と同様の公知の電極材料が使用きれる。例えばイリ
ジウム酸化物被覆チタン、白金イリジウム酸化物被覆チ
タン、二酸化鉛被覆チタンなどの酸化物被覆電極や、白
金メツキチタン、グラファイトおよびグラツシーカーボ
ン等が用いられるが、有機化合物含有条件下での電流効
率や電極耐久性を考慮すると少なくとも鉛、白金、イリ
ジウム、タンタルから選ばれる1種を含む電極であるこ
とが好ましい。陰極としても、公知の電極が用いられる
が、特に有機物含有条件下での電流効率や電極耐久性を
考慮するとジルコニウム、タングステン、タリウムから
なる電極またはそれらのうちから選ばれる1種を基体と
した電線 例えば、白金メツキジルコニウム電極である
ことが特に好ましい。
As the electrode used in electrolysis, known electrode materials similar to those used in the conventional diaphragm method can be used for the anode. For example, oxide-coated electrodes such as iridium oxide-coated titanium, platinum-iridium oxide-coated titanium, and lead dioxide-coated titanium, platinum-plated titanium, graphite, and glassy carbon are used, but the current efficiency under conditions containing organic compounds is In consideration of electrode durability, the electrode preferably contains at least one member selected from lead, platinum, iridium, and tantalum. Known electrodes can be used as the cathode, but in particular, considering current efficiency and electrode durability under conditions containing organic substances, electrodes made of zirconium, tungsten, and thallium, or electric wires made of one selected from these, are recommended. For example, a platinum-plated zirconium electrode is particularly preferred.

本発明においては陰極の電流密度を陽極の電流密度の2
〜20倍にするので、必然的に陽極と陰極の電極の大き
きあるいは形状が異なる。例えば、陰極表面に絶縁性塗
料を格子状に塗る方法、陰極表面をポリプロピレンのよ
うな絶縁性のクロスで被覆する方法、メツシュ又は格子
状の陰極を用いてメツシュ間隔の調整により、その有効
陰極面積を陽極に対し、所定の比率となるようにする方
法等がとられる。一方、陽極としてはメツシュ状、格子
状およびプレート状等種々の形状の電極が使用できる。
In the present invention, the current density of the cathode is set to 2 times the current density of the anode.
Since it is increased by ~20 times, the size or shape of the anode and cathode electrodes are inevitably different. For example, applying insulating paint to the cathode surface in a lattice pattern, covering the cathode surface with an insulating cloth such as polypropylene, using a mesh or lattice cathode and adjusting the mesh spacing, the effective cathode area can be improved. A method is adopted in which a predetermined ratio is set between the anode and the anode. On the other hand, as the anode, electrodes in various shapes such as a mesh shape, a grid shape, and a plate shape can be used.

電解においては、電流分布をできる限り均一にすること
が重要である。本発明において陽極の有効電極上の任意
の点から陰極の有効電極上の最も近い点を結ぶ電極間距
離2を一定にすることは不可能であるが、電極間距離Q
のうち最大電極間距1llIQ   と最小電極間距離
Qminとの比が大きいmax はど電極上での電流分布が不均一となり電流効率の低下
や電解電圧上昇を招き、電極寿命にも悪影響を及ぼすこ
とがわかった。そこで本発明者らは鋭意検討を加えた結
果、最大電極間距離” maxと最小電極間距離” m
inとの比を3以下、好ましくは1゜5以下、特に好ま
しくは1.2以下にすることが望ましいことを見い出し
た。
In electrolysis, it is important to make the current distribution as uniform as possible. In the present invention, it is impossible to make constant the inter-electrode distance 2 connecting any point on the effective electrode of the anode to the nearest point on the effective electrode of the cathode, but the inter-electrode distance Q
If the ratio between the maximum inter-electrode distance 1IlIQ and the minimum inter-electrode distance Qmin is large, the current distribution on the electrodes will be uneven, resulting in a decrease in current efficiency and an increase in electrolytic voltage, which may also have a negative effect on the electrode life. Understood. Therefore, as a result of intensive study, the inventors of the present invention found that the maximum inter-electrode distance "max" and the minimum inter-electrode distance "m"
It has been found that it is desirable to set the ratio to in to 3 or less, preferably 1.5 or less, particularly preferably 1.2 or less.

電解槽の形式としては工業的には一般にフィルタープレ
ス型電解槽や円筒状電解槽が用いられるが、本発明にお
いては特に限定はされない。
As for the type of electrolytic cell, a filter press type electrolytic cell or a cylindrical electrolytic cell is generally used industrially, but there is no particular limitation in the present invention.

かくして本発明によれば、電解液中に有機化合物が共存
している条件下においても、第1セリウム塩の酸水溶液
を電解酸化して第2セリウムイオンを含む溶液を製造す
ることができる。本発明の効果は、特に電解液中に共存
する有機化合物が芳香族炭化水素化合物、アルデヒド類
、カルボン酸類、キノン類等の含酸素化合物やピリジン
等の含窒素化合物である場合において顕著である。
Thus, according to the present invention, a solution containing ceric ions can be produced by electrolytically oxidizing an acid aqueous solution of a cerous salt even under conditions where an organic compound coexists in the electrolytic solution. The effects of the present invention are particularly remarkable when the organic compounds coexisting in the electrolyte are aromatic hydrocarbon compounds, aldehydes, carboxylic acids, oxygen-containing compounds such as quinones, or nitrogen-containing compounds such as pyridine.

(実施例1 以下、実施例により本発明の詳細な説明するが、本発明
はこれに限定されるものではない。
(Example 1 Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited thereto.

尤施■ユ 硫酸第1セリウムCe 2(S 04)3・8 H2O
107gおよびフタル酸1gを10%硫酸水溶液に溶解
して全体を1リツトルとした(従って、この溶液中の第
1セリウムイオンの濃度は0. 3モル/リットルであ
る)。
Cerous sulfate Ce 2 (S 04) 3.8 H2O
107 g and 1 g of phthalic acid were dissolved in a 10% aqueous sulfuric acid solution to make a total of 1 liter (therefore, the concentration of cerous ions in this solution was 0.3 mol/liter).

この溶液を、下記の条件にてフィルタープレス型の無隔
膜電解セルに循環きせて第2セリウムイオン濃度が0.
 2モル/リットルになるまで電解酸化を行なった。
This solution was circulated through a filter press type non-diaphragm electrolytic cell under the following conditions until the ceric ion concentration reached 0.
Electrolytic oxidation was performed until the concentration became 2 mol/liter.

電解温度:  323に 陽極:白金メツキチタンプレート電極 電流密度10A / cl m 2 陰極:ジルコニウムエキスバンド電極 電流密度40A/dm2 電流密度比(陰極/陽極):4.0 線速: 20cm/秒 TL/A: 646 最大電極間距離/最小電極間距離:  1. 08この
ときの電流効率は98%であった。また、電解前後での
フタル酸濃度の変化はみられなかった。
Electrolysis temperature: 323cm Anode: platinum plated titanium plate electrode current density 10A/cl m2 Cathode: zirconium extended band electrode current density 40A/dm2 Current density ratio (cathode/anode): 4.0 Linear speed: 20cm/sec TL/ A: 646 Maximum distance between electrodes/minimum distance between electrodes: 1. 08 The current efficiency at this time was 98%. Furthermore, no change in phthalic acid concentration was observed before and after electrolysis.

実施例1と同様にして電解酸化を行なった。Electrolytic oxidation was performed in the same manner as in Example 1.

電解温度:  313に 陽極二二酸化鉛被覆チタンプレート電極電流密度30A
/dm2 陰極:タリウムエキスバンド電極 電流密度180 A / d m 2 電流密度比(陰極/陽極):6.0 線速’50cm/秒 TL/A、:  522 最大電極間距離/最小電極間距離:1.11このときの
電流効率は96%であった。また、電解前後でのフタル
酸濃度の変化はみられなかった。
Electrolysis temperature: 313 to anode lead dioxide coated titanium plate electrode current density 30A
/dm2 Cathode: Thallium Exband Electrode Current Density 180 A/dm2 Current Density Ratio (Cathode/Anode): 6.0 Linear Speed '50cm/sec TL/A,: 522 Maximum Interelectrode Distance/Minimum Interelectrode Distance: 1.11 The current efficiency at this time was 96%. Furthermore, no change in phthalic acid concentration was observed before and after electrolysis.

実画l汁旦 下記のとおり電極材質および電解条件を変えて実施例1
と同様にして電解酸化を行なった。
Example 1 by changing the electrode material and electrolytic conditions as shown below.
Electrolytic oxidation was performed in the same manner as above.

電解温度:  323に 陽極:酸化イリジウム被覆チタンプレート電極 電流密度25A/dm2 陰極:タングステンエキスバンド電極 電流密度100A/dm2 電流密度比(陰極/陽極):4.0 線速:9cm/秒 TL/A:  116 最大電極間距離/最小電極間距離:  1. 28この
ときの電流効率は87%であった。また、電解前後での
フタル酸濃度の変化はみられなかった。
Electrolysis temperature: 323 Anode: Iridium oxide coated titanium plate electrode Current density 25 A/dm2 Cathode: Tungsten extract band electrode Current density 100 A/dm2 Current density ratio (cathode/anode): 4.0 Linear speed: 9 cm/sec TL/A : 116 Maximum distance between electrodes/minimum distance between electrodes: 1. 28 The current efficiency at this time was 87%. Furthermore, no change in phthalic acid concentration was observed before and after electrolysis.

実」[例Aユ 硝酸第1セリウムCe (N O3h・6 H2086
8gおよび3−ニトロフタル酸2gを13%硝酸水溶液
に溶解して全体を1リツトルとした(従って、この溶液
中の第1セリウムイオンの濃度は2.0モル/リットル
である)。
[Example A Cerous nitrate Ce (N O3h・6 H2086
8 g and 2 g of 3-nitrophthalic acid were dissolved in a 13% aqueous nitric acid solution to make a total of 1 liter (therefore, the concentration of cerous ions in this solution was 2.0 mol/liter).

この溶液を、下記の条件にてフィルタープレス型の無隔
膜電解セルに循環きせて第2セリウムイオン濃度が1.
5モル/リットルになるまで電解酸化を行なった。
This solution was circulated through a filter press type non-diaphragm electrolytic cell under the following conditions until the ceric ion concentration was 1.
Electrolytic oxidation was performed until the concentration became 5 mol/liter.

電解温度:  333に 陽極二酸化イリジウム被覆チタンプレート電極 電流密度50A / cl m 2 陰極: タングステンエキスバンド電極電流密度100
 A / d m 2 電流密度比(陰極/陽極):2.0 線速:100cm/秒 TL/A:  666 最大電極間距離/最小電極間距離:1.15このときの
電流効率は89%であった。また、電解前後での3−ニ
トロフタル酸濃度の変化はみられなかった。
Electrolysis temperature: Anode at 333 iridium dioxide coated titanium plate electrode current density 50 A/cl m2 Cathode: tungsten extract band electrode current density 100
A/d m2 Current density ratio (cathode/anode): 2.0 Linear speed: 100 cm/sec TL/A: 666 Maximum inter-electrode distance/minimum inter-electrode distance: 1.15 The current efficiency at this time is 89%. there were. Further, no change in 3-nitrophthalic acid concentration was observed before and after electrolysis.

支施孤旦 下記のとおり電極材質および電解条件を変えて実施例4
と同様にして電解酸化を行なった。
Example 4 by changing the electrode material and electrolytic conditions as shown below.
Electrolytic oxidation was performed in the same manner as above.

電解温度:  298に 陽極:二酸化鉛被覆チタンプレート電極電流密度4OA
/dm2 陰極:タングステンエキスバンド電極 電流密度240 A / d m 2 電流密度比(陰極/陽極):6.0 線速’30cm/秒 TL/A: 224 最大電極間距離/最小電極間距離:1.’s。
Electrolysis temperature: 298℃ Anode: lead dioxide coated titanium plate electrode current density 4OA
/dm2 Cathode: Tungsten extracted band electrode Current density 240 A / dm2 Current density ratio (cathode/anode): 6.0 Linear speed '30cm/sec TL/A: 224 Maximum inter-electrode distance/minimum inter-electrode distance: 1 .. 's.

このときの電流効率は84%であった。また、電解前後
での3−二トロフタル酸濃度の変化はみられなかった。
The current efficiency at this time was 84%. Further, no change in 3-ditrophthalic acid concentration was observed before and after electrolysis.

Claims (1)

【特許請求の範囲】 (1)第1セリウム塩を含む酸水溶液を電解酸化する第
2セリウム塩酸水溶液の製造方法において、陰極の電流
密度が陽極の電流密度の2〜20倍であり、電解温度T
(K)、陽極電流密度A(A/dm^2)、電解槽中の
電解液の線速L(cm/sec)の間に100≦TL/
A≦2000の関係を満たす条件下、陽極と陰極の間に
隔膜を有しない無隔膜電解槽を用いて電解酸化を行なう
ことを特徴とする第2セリウムイオンを含む溶液の製造
方法。 (2)陽極の電流密度が5〜50A/dm^2の範囲で
ある請求項(1)に記載の方法。(3)第1セリウム塩
を含む酸水溶液が硫酸第1セリウムを含む硫酸水溶液で
ある請求項(1)または(2)に記載の方法。 (4)第1セリウム塩を含む酸水溶液が硝酸第1セリウ
ムを含む硝酸水溶液である請求項(1)または(2)に
記載の方法。 (5)第1セリウム塩を含む酸水溶液がメタンスルホン
酸第1セリウムを含むメタンスルホン酸水溶液である請
求項(1)または(2)に記載の方法。 (6)第1セリウム塩を含む酸水溶液中の第1セリウム
イオン濃度が0.05モル/リットル以上である請求項
(1)〜(5)のいずれかに記載の方法。 (7)陽極の有効電極上の任意の点から陰極の有効電極
上の最も近い点を結ぶ電極間距離lのうち、最大電極間
距離l_m_a_xと最小電極間距離l_m_i_nと
の比が3以下である請求項(1)〜(6)のいずれかに
記載の方法。 (8)陽極が鉛、白金、イリジウムおよびタンタルから
選ばれる少なくとも1種からなる電極でり、陰極がジル
コニウム、タングステンおよびタリウムから選ばれる少
なくとも1種からなる電極である請求項(1)〜(7)
のいずれかに記載の方法。
[Scope of Claims] (1) In a method for producing a ceric hydrochloric acid aqueous solution by electrolytically oxidizing an acid aqueous solution containing a cerous salt, the current density of the cathode is 2 to 20 times that of the anode, and the electrolytic temperature is T
(K), anode current density A (A/dm^2), and linear velocity L (cm/sec) of the electrolyte in the electrolytic cell, 100≦TL/
A method for producing a solution containing ceric ions, characterized in that electrolytic oxidation is carried out using a membraneless electrolytic cell having no diaphragm between an anode and a cathode under conditions satisfying the relationship A≦2000. (2) The method according to claim 1, wherein the current density of the anode is in the range of 5 to 50 A/dm^2. (3) The method according to claim 1 or 2, wherein the acid aqueous solution containing a cerous salt is a sulfuric acid aqueous solution containing cerous sulfate. (4) The method according to claim (1) or (2), wherein the acid aqueous solution containing a cerous salt is a nitric acid aqueous solution containing cerous nitrate. (5) The method according to claim (1) or (2), wherein the acid aqueous solution containing a cerous salt is a methanesulfonic acid aqueous solution containing cerous methanesulfonic acid. (6) The method according to any one of claims (1) to (5), wherein the ceric ion concentration in the acid aqueous solution containing the cerous salt is 0.05 mol/liter or more. (7) Of the inter-electrode distance l connecting any point on the effective electrode of the anode to the nearest point on the effective electrode of the cathode, the ratio of the maximum inter-electrode distance l_m_a_x to the minimum inter-electrode distance l_m_i_n is 3 or less The method according to any one of claims (1) to (6). (8) Claims (1) to (7) wherein the anode is an electrode made of at least one selected from lead, platinum, iridium, and tantalum, and the cathode is an electrode made of at least one selected from zirconium, tungsten, and thallium. )
The method described in any of the above.
JP2112285A 1990-04-28 1990-04-28 Method for producing solution containing second cerium ion Expired - Lifetime JP2524419B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2112285A JP2524419B2 (en) 1990-04-28 1990-04-28 Method for producing solution containing second cerium ion
CN93119122A CN1046245C (en) 1990-04-28 1993-10-11 Module frame work for larger structure, method and device for assembling module frame work and coupler for module frame work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112285A JP2524419B2 (en) 1990-04-28 1990-04-28 Method for producing solution containing second cerium ion

Publications (2)

Publication Number Publication Date
JPH0413879A true JPH0413879A (en) 1992-01-17
JP2524419B2 JP2524419B2 (en) 1996-08-14

Family

ID=14582868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112285A Expired - Lifetime JP2524419B2 (en) 1990-04-28 1990-04-28 Method for producing solution containing second cerium ion

Country Status (1)

Country Link
JP (1) JP2524419B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385648A (en) * 1992-07-28 1995-01-31 Nippon Shokubai Co., Ltd. Process for preparing a ceric ion-containing aqueous acid solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385648A (en) * 1992-07-28 1995-01-31 Nippon Shokubai Co., Ltd. Process for preparing a ceric ion-containing aqueous acid solution

Also Published As

Publication number Publication date
JP2524419B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
Yano et al. Selective electrochemical reduction of CO2 to ethylene at a three-phase interface on copper (I) halide-confined Cu-mesh electrodes in acidic solutions of potassium halides
US3103474A (en) Electrowinning of metals from electrolytes
US4289591A (en) Oxygen evolution with improved Mn stabilized catalyst
CA1271772A (en) Oxidation of organic compounds using ceric ions in aqueous methanesulfonic acid
JPH02197590A (en) Redox reaction method and electrolytic bath for it
US3486992A (en) Process for electrolytic oxidation of thallium or cerium salts
JP2618389B2 (en) Oxidation of organic compounds using cerium ions in aqueous trifluoromethanesulfonic acid
JPH07118886A (en) Method for producing hydrocarbon from carbon dioxide
JPH0211673B2 (en)
JP2633244B2 (en) Oxidation of organic compounds using cerium methanesulfonate in aqueous organic solutions
Vaghela et al. Electrolytic synthesis of succinic acid in a flow reactor with solid polymer electrolyte membrane
JP2588695B2 (en) Method for producing carbonyl group-containing compound
US3329594A (en) Electrolytic production of alkali metal chlorates
JPH0413879A (en) Preparation of solution containing cerium (iv) ion
JPS5845387A (en) Production of alkyl substituted benzaldehyde
US5035778A (en) Regeneration of spent ferric chloride etchants
US4295943A (en) Process for the electrolytic production of manganese dioxide
US5395488A (en) Electrochemical process for reducing oxalic acid to glyoxylic acid
US5679235A (en) Titanium and cerium containing acidic electrolyte
US4061548A (en) Electrolytic hydroquinone process
CN112626547A (en) Method for indirect electrosynthesis of quinone compounds by utilizing ultrasound assistance
US3994788A (en) Electrochemical oxidation of phenol
JP3806181B2 (en) Method for producing naphthalene aldehydes
JPH0349993B2 (en)
US3418224A (en) Preparation of sulfones by electrolytic oxidation