JPH04137348A - Low-energy neutral-beam doping apparatus and doping method thereof - Google Patents

Low-energy neutral-beam doping apparatus and doping method thereof

Info

Publication number
JPH04137348A
JPH04137348A JP25805290A JP25805290A JPH04137348A JP H04137348 A JPH04137348 A JP H04137348A JP 25805290 A JP25805290 A JP 25805290A JP 25805290 A JP25805290 A JP 25805290A JP H04137348 A JPH04137348 A JP H04137348A
Authority
JP
Japan
Prior art keywords
sample
plasma
doping
low
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25805290A
Other languages
Japanese (ja)
Other versions
JP3170792B2 (en
Inventor
Bunji Mizuno
文二 水野
Noritomo Shimizu
紀智 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25805290A priority Critical patent/JP3170792B2/en
Publication of JPH04137348A publication Critical patent/JPH04137348A/en
Application granted granted Critical
Publication of JP3170792B2 publication Critical patent/JP3170792B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To dope impurity all-over a large area accurately without a sample being electrically charged and without destruction of a device by radiating low-energy neutral beams on the surface of a sample and introducing impurity so that the sample itself is kept to be electrically almost neutral. CONSTITUTION:A gas containing impurity is introduced from a gas feed 14 into a plasma chamber 6 in which the vacuum degree is kept at an order of 10<-5>Pa so as to keep the vacuum degree at an order of 10<-3>Pa. A high-frequency wave and a magnetic field are applied to the chamber 6 to produce plasma. Thus introduced plasma is neutralized inside a neutralizing chamber 18. The neutralized beams and introduced into a reaction chamber 8 in which a solid sample 12 such as a semiconductor substrate, an insulator substrate and the like (liquid may be contained partially) are disposed on a holder 10. In order to eliminate electrically charged particles partially remaining, a suppressor 20 to which an enough potential is applied is disposed. Thus, the purified neutral beams are radiated on a sample 12, so that the desired impurity is introduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζよ 半導体製造分野のうち特に大面積の試料に
高濃度に不純物の導入を行なう低エネルギー中性ビーム
ドーピング装置とそのドーピング方法に関すも 従来の技術 第2図は従来におけるドーピング装置の構成断面図であ
ム この図は本発明者らが既に邑願している特願平2−
53428号公報に開示されているものであa イオン注入機と異なるドーピング装置は 共通にプラズ
マを発生させる構造となっており、第2図ではマイクロ
波発生装置22、マイクロ波導波管24を有し プラズ
マチェンバ26でプラズマを発生させている。このプラ
ズマを生かす形で不純物を導入する方法としてζヨ(1
)バイアスによりイオンの形で引き出してドープするイ
オンジャワと、(2)プラズマ自体の発散を利用して、
例えば第2図に示す反応チェンバ28内に設置されたホ
ルダ20上の試料32 (典型的には固体表面)にドー
プするプラズマドーピングの二つの方法があa いづれ
の場合も荷電粒子が直接固体表面32に照射されも 発明が解決しようとする課題 この様なドーピングの分野で対象とする固体は大面積の
絶縁物(ガラス)である事が多く、荷電粒子によって帯
電する。これが激しくなると荷電粒子を反発して不純物
の導入が不可能となも中性ビームを用いるという考え方
では従来のイオン注入機を利用して行なう方式もある(
特公平2−23021号)。この方法では得られるビー
ムの量がイオン注入機と同じく成る一定の範囲に限定さ
れるた数 前述した大面積の試料に大量のドーピングを
行なう場合には非常に長時間を要しスループット、コス
ト的にも見合わな(℃ 又般的に数10keV以上の高
いエネルギーで注入するので中性ビームといえども2次
電子の発生は抑制できず帯電に関して大きな利点を有し
なくなも 本発明(表 上述の課題に鑑みてなされ 試料に帯電な
く正確に デバイスの破壊なしに大面積にわたって不純
物をドープできる低エネルギー中性ビームドーピング装
置とそのドーピング方法を提供することを目的とすも 課題を解決するための手段 本発明の低エネルギー中性ビームドーピング装置ζよ 
プラズマ自体の発散を利用して試料に不純物をドープす
るプラズマドーピング装置において、荷電粒子を発生す
る構造及び前記荷電粒子を中性化する機構を有するか、
 または中性ビームを発生する構造を保有し 加えて前
記試料を保持する機構を保有し 前記試料表面に中性化
した若しくは中性の低エネルギーの不純物を導入するこ
とを特徴とすム また本発明の低エネルギー中性ビームドーピング方法ζ
戴 プラズマ自体の発散を利用して試料に不純物をドー
プするプラズマドーピング方法において、前記試料表面
に低エネルギーの中性ビームを照射し 前記試料自身が
電気的に中性近傍を保つように不純物を導入することを
特徴とす4作用 本発明4&  上述の構成により試料表面に荷電粒子が
照射されなくなり、前記試料表面の帯電が抑制され さ
らにイオン注入機に比べ低エネルギーの中性ビームを得
ることができるた数 不純物の正確なドーピングが可能
となり、形成されているデバイスの破壊などの心配も無
くなも 又 第1次のイオン、プラズマを輸送する距離
もイオン注入機に比べ極めて短いたべ 高密嵐 大量の
ビムが得られ そのビームを分散することにより大面積
の試料に高濃度にドーピングする際のスループットは極
めて向上すム 実施例 第1図は本発明の一実施例におけるドーピング装置の構
成断面図であム 同図を参照しながら本発明のドーピン
グ装置とそのドーピング方法を併せて説明すも 同図に示すドーピング装置ζよ 前もって荷電粒子を発
生させてから2次的に前述の荷電粒子を中性化させた後
、低エネルギーの中性ビームを固体基板に照射して不純
物をドープさせるものであも以下そのドーピング方法を
説明すも まず真空度を10−’Pa台に保ったプラズ
マチェンバ6にガスフィード14より不純物を含んだガ
ス 例えばASH*、B2H6等を導入し真空度を10
−”Pa程度に保1 このチェンバ6に高周波や磁場を
加えて、プラズマを発生させも 中性化チェンバ18に
引き出すプラズマのエネルギーを所定の値に設定する場
合ζよ このプラズマを引き出しメツシュ16等で引き
出す。メツシュ材料からの汚染が問題となるときにζよ
 前述の磁場を調整してブラズマを発散させれば良1.
Xo  この様にして導かれたプラズマを中性化チェン
バ18内で中性化すも中性化チェンバ18内にはArガ
ス等の機能性のガスを例えばlo−3乗台の真空度で導
入し大半の荷電粒子を中性化する。中性化されたビーム
はホルダ10上の半導体基体、絶縁物基体等の固体試料
12 (一部に液体を含んでも良い)を設置しである反
応チェンバー8に導かれも 一部残っている荷電粒子を
除去するために十分な電位を加えたサプレッサ20を設
置している。この様に純化された中性ビームが試料12
に照射されて、所望の不純物が導入されも メツシュ1
6を用いた場合でビームのエネルギーは高々1〜10k
eVで有り、メツシュ16を用いない場合には数10e
Vから数100eVないl、、1keV程度の低エネル
ギーのビームが得られも また 第1次的にプラズマを用いずに直接中性ビームを
発生させても良しも そのような場合に(表一般的に提
唱されていベ ホット分子ビーム 高速原子線[参考文
献としては超LSIプロセスデータハンドブックpp、
207〜215]等の各方式を用いれば低エネルギーの
中性ビームドーピングが行なえも 発明の効果 以上述べた様く 本発明によれば中性化されたまたは中
性のビームを用いて不純物のドーピングを行なうと、対
象とする試料が絶縁物であっても帯電を最小限に抑える
ことができ、さらにイオン注入機に比べ低エネルギーの
中性ビームを得ることができるた敷 正確かつ安全な不
純物の導入に寄与すム 又 第1次のイオン、プラズマ
を輸送する距離もイオン注入機に比べ極めて短いた取高
密度、大量のビームが得られ そのビームを分散するこ
とにより大面積の試料に高濃度にドーピングする際のス
ルーブツトを極めて向上させることが可能とな4
[Detailed Description of the Invention] Industrial Application Field of the Invention The present invention relates to a low energy neutral beam doping device and its doping method for introducing impurities at a high concentration into a large-area sample, particularly in the field of semiconductor manufacturing. Figure 2 is a cross-sectional view of the structure of a conventional doping device.
This doping device, which is different from the ion implanter, has a structure that generates plasma in common, and in FIG. 2, it has a microwave generator 22 and a microwave waveguide 24. Plasma is generated in a plasma chamber 26. One way to introduce impurities by making use of this plasma is ζyo (1
) By using ion jaws, which are extracted in the form of ions and doped by a bias, and (2) by using the divergence of the plasma itself,
For example, there are two methods of plasma doping in which a sample 32 (typically a solid surface) on a holder 20 installed in a reaction chamber 28 shown in FIG. Problems to be Solved by the Invention in the Field of Doping In this field of doping, the target solid is often a large-area insulator (glass), which is charged by charged particles. If this becomes severe, the charged particles will be repelled, making it impossible to introduce impurities. However, there is a method using a conventional ion implanter based on the idea of using a neutral beam (
Special Publication No. 2-23021). In this method, the amount of beam obtained is limited to a certain range, which is the same as that of the ion implanter.If a large amount of doping is to be performed on a large sample as mentioned above, it takes a very long time, reducing throughput and cost. In addition, since the injection is generally performed at a high energy of several tens of keV or more, the generation of secondary electrons cannot be suppressed even with a neutral beam, and the present invention (Table 1) does not have any significant advantages regarding charging. The purpose of this project was to provide a low-energy neutral beam doping device and its doping method that can accurately dope impurities over a large area without charging the sample and without destroying the device. Means of low energy neutral beam doping device ζ of the present invention
In a plasma doping apparatus that dopes impurities into a sample using the divergence of plasma itself, does it have a structure that generates charged particles and a mechanism that neutralizes the charged particles?
Alternatively, the present invention is characterized in that it has a structure that generates a neutral beam, and also has a mechanism for holding the sample, and introduces neutralized or neutral low-energy impurities into the sample surface. Low energy neutral beam doping method ζ
Dai: In a plasma doping method that uses the divergence of plasma itself to dope impurities into a sample, the surface of the sample is irradiated with a low-energy neutral beam, and impurities are introduced so that the sample itself remains near electrically neutral. 4 Effects of the present invention 4 & The above-described configuration prevents the sample surface from being irradiated with charged particles, suppresses the charging of the sample surface, and also makes it possible to obtain a neutral beam with lower energy than that of an ion implanter. It is possible to dope impurities accurately, and there is no need to worry about destroying the device being formed.Also, the distance to transport the primary ions and plasma is extremely short compared to an ion implanter. By dispersing the beam, the throughput when doping a large area sample at a high concentration is greatly improved.Embodiment Figure 1 is a cross-sectional view of the structure of a doping apparatus in an embodiment of the present invention. The doping apparatus and doping method of the present invention will be explained with reference to the same figure. After that, the solid substrate is irradiated with a low energy neutral beam to dope the solid substrate with impurities.The doping method will be explained below. Gas containing impurities such as ASH*, B2H6, etc. is introduced from the feed 14 and the degree of vacuum is increased to 10
1. Plasma can be generated by applying a high frequency or a magnetic field to this chamber 6. If the energy of the plasma drawn into the neutralization chamber 18 is set to a predetermined value, ζ. This plasma is drawn out and mesh 16 etc. When contamination from the mesh material becomes a problem, it would be a good idea to adjust the magnetic field mentioned above to dissipate the plasma.1.
Xo The plasma guided in this way is neutralized in the neutralization chamber 18, and a functional gas such as Ar gas is introduced into the neutralization chamber 18 at a vacuum level of, for example, lo-3. Neutralizes most charged particles. The neutralized beam is guided to a reaction chamber 8 where a solid sample 12 such as a semiconductor substrate, an insulator substrate, etc. (which may partially contain liquid) is placed on a holder 10, and some residual charges are removed. A suppressor 20 is installed with a sufficient potential applied to remove particles. The neutral beam purified in this way is sample 12.
The mesh 1 can be irradiated to introduce desired impurities.
When using 6, the beam energy is at most 1~10k
eV, and several tens of eV if mesh 16 is not used.
In such cases, it is possible to obtain a low-energy beam of several 100 eV to 1 keV, or to directly generate a neutral beam without using a plasma. Hot molecular beam High-speed atomic beam [References include VLSI Process Data Handbook pp.
207-215], etc., low-energy neutral beam doping can be performed. Effects of the Invention As described above, according to the present invention, impurity doping can be performed using a neutralized or neutral beam. By doing this, even if the target sample is an insulator, charging can be minimized, and it is also possible to obtain a neutral beam with lower energy than an ion implanter. Also, since the distance for transporting the primary ions and plasma is extremely short compared to ion implanters, a high-density, large-volume beam can be obtained, and by dispersing the beam, it can be spread over a large area of the sample with high concentration. It is possible to significantly improve the throughput when doping 4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるドーピング装置の断
面模式図 第2図は従来におけるドーピング装置の断面
模式図であa 6・・・プラズマチェンベ 8・・・反応チェンノ< 
 10・・・ホルダ、 12・・・試辣 14・・・ガ
スフィード、16・・・引出メツシュ、 18・・・中
性化チェンベ 20・・・サプレッサ。
Fig. 1 is a schematic cross-sectional view of a doping apparatus according to an embodiment of the present invention. Fig. 2 is a schematic cross-sectional view of a conventional doping apparatus.
DESCRIPTION OF SYMBOLS 10...Holder, 12...Test 14...Gas feed, 16...Drawer mesh, 18...Neutralization chamber 20...Suppressor.

Claims (3)

【特許請求の範囲】[Claims] (1)プラズマ自体の発散を利用して試料に不純物をド
ープするプラズマドーピング装置において、荷電粒子を
発生する構造及び前記荷電粒子を中性化する機構を有す
るか、または中性ビームを発生する構造を保有し、加え
て前記試料を保持する機構を保有し、前記試料表面に中
性化した若しくは中性の低エネルギーの不純物を導入す
ることを特徴とする低エネルギー中性ビームドーピング
装置。
(1) In a plasma doping apparatus that dopes impurities into a sample using the divergence of plasma itself, it has a structure that generates charged particles and a mechanism that neutralizes the charged particles, or a structure that generates a neutral beam. 1. A low-energy neutral beam doping device comprising: a mechanism for holding the sample; and a mechanism for introducing neutralized or neutral low-energy impurities into the surface of the sample.
(2)プラズマ自体の発散を利用して試料に不純物をド
ープするプラズマドーピング方法において、前記試料表
面に低エネルギーの中性ビームを照射し、前記試料自身
が電気的に中性近傍を保つように不純物を導入すること
を特徴とする低エネルギー中性ビームドーピング方法。
(2) In a plasma doping method that utilizes the divergence of plasma itself to dope impurities into a sample, the surface of the sample is irradiated with a low-energy neutral beam so that the sample itself remains near electrically neutral. A low energy neutral beam doping method characterized by the introduction of impurities.
(3)試料表面に低エネルギーの中性ビームを照射し、
前記試料自身が電気的に中性近傍を保つように不純物を
導入する方法に於いて、荷電粒子を発生する構造から直
接中性化する機構を通して行なうか、または直接低エネ
ルギー中性粒子発生装置からドーピングする事を特徴と
する特許請求の範囲第2項に記載の低エネルギー中性ビ
ームドーピング方法
(3) Irradiate the sample surface with a low-energy neutral beam,
In the method of introducing impurities so that the sample itself maintains near electrical neutrality, impurities are introduced through a mechanism that directly neutralizes the structure that generates charged particles, or directly from a low-energy neutral particle generator. A low energy neutral beam doping method according to claim 2, characterized in that doping is performed.
JP25805290A 1990-09-26 1990-09-26 Low energy neutral beam doping apparatus and its doping method Expired - Lifetime JP3170792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25805290A JP3170792B2 (en) 1990-09-26 1990-09-26 Low energy neutral beam doping apparatus and its doping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25805290A JP3170792B2 (en) 1990-09-26 1990-09-26 Low energy neutral beam doping apparatus and its doping method

Publications (2)

Publication Number Publication Date
JPH04137348A true JPH04137348A (en) 1992-05-12
JP3170792B2 JP3170792B2 (en) 2001-05-28

Family

ID=17314875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25805290A Expired - Lifetime JP3170792B2 (en) 1990-09-26 1990-09-26 Low energy neutral beam doping apparatus and its doping method

Country Status (1)

Country Link
JP (1) JP3170792B2 (en)

Also Published As

Publication number Publication date
JP3170792B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US6130436A (en) Acceleration and analysis architecture for ion implanter
US6135128A (en) Method for in-process cleaning of an ion source
US20070178678A1 (en) Methods of implanting ions and ion sources used for same
US7812321B2 (en) Techniques for providing a multimode ion source
US20070178679A1 (en) Methods of implanting ions and ion sources used for same
JP2011523764A (en) Control of particles in a semiconductor wafer when borohydride is implanted into the semiconductor wafer
TW202006801A (en) Semiconductor processing system and method of implanting ions into a workpiece and processing a workpiece and etching a workpiece and depositing material on a workpiece
US6573510B1 (en) Charge exchange molecular ion source
Rose et al. Concepts and designs of ion implantation equipment for semiconductor processing
JPH04137348A (en) Low-energy neutral-beam doping apparatus and doping method thereof
JPH0473847A (en) Electron radiation device
KR100282492B1 (en) Implanter with interceptor of undesired particles
EP0066175B1 (en) Ion implanter
JP3264988B2 (en) Ion implanter
JPS59196600A (en) Neutral particle implanting method and its device
JP3244883B2 (en) Ion implantation method
Renau Current capabilities and future needs for semiconductor ion implantation
JPH01243359A (en) Plasma doping
JP3105931B2 (en) Electron beam irradiation apparatus and electron beam irradiation method
JPH04124267A (en) Ion implanting device
JPS6134844A (en) Irradiation system of neutral fine beam
JPS61248428A (en) Apparatus for neutral high-speed particle beam
JP2000133652A (en) Method and device for forming metal wiring
JPH01152721A (en) Doping with impurity
JPH01120826A (en) Method and equipment for surface treatment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10