JPH04137326A - Manufacture of electrode material - Google Patents

Manufacture of electrode material

Info

Publication number
JPH04137326A
JPH04137326A JP25516890A JP25516890A JPH04137326A JP H04137326 A JPH04137326 A JP H04137326A JP 25516890 A JP25516890 A JP 25516890A JP 25516890 A JP25516890 A JP 25516890A JP H04137326 A JPH04137326 A JP H04137326A
Authority
JP
Japan
Prior art keywords
copper
melting point
point metal
bismuth
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25516890A
Other languages
Japanese (ja)
Inventor
Nobuyuki Yoshioka
信行 吉岡
Toshimasa Fukai
利眞 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP25516890A priority Critical patent/JPH04137326A/en
Publication of JPH04137326A publication Critical patent/JPH04137326A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To restrain vaporizing amount of low-melting-point metal and improve the uniformity of a product by putting a molded body, which is formed of powdered copper and metal with a lower melting point than copper, on high- melting-point metal powder for heating to infiltrate copper and low-melting-point metal into the cavity portions of high-melting-point metal. CONSTITUTION:Chrome powder is heated in a vacuum furnace while being degassed to obtain a porous infiltration base material B. On the other hand, copper powder and bismuth powder are mixed for agitation and charged into a mold for pressure molding to form a disc-shape molded body C. The body C is put on the base material B in a container A, on which a disc-shape copper block D is laid, and then given heat treatment in a vacuum furnace while being degassed after the container A is covered with an alumina ceramics cover plate E to infiltrate copper and bismuth into the cavity portions of the porous infiltration base material B. Such material is machined into a disc shape to form an electromagnetic material.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、低融点金属の分布のばらつきが少ない均質な
電極材料の製造方法に関し、特にビスマスを添加した銅
−クロム系の電極材料に応用して好適なものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of Application The present invention relates to a method for producing a homogeneous electrode material with little variation in the distribution of low melting point metals, and is particularly applicable to copper-chromium based electrode materials containing bismuth. It is suitable for this purpose.

B1発明の概要 銅よりも高融点の金属粉末上に銅よりも低融点の金属粉
末と銅粉末とを混合して加圧成形したものを載置するか
、或いは更に銅塊を載置し、これらを非酸化性雰囲気に
て加熱保持し、低融点金属の蒸散を抑制しつつ高融点金
属の空隙部分に銅及び低融点金属を溶浸させることによ
り、所望の性能を有する均質な電極材料を製造し得るよ
うにした方法である。
B1 Summary of the Invention Placing a mixture of metal powder with a lower melting point than copper and copper powder on a metal powder with a higher melting point than copper and press-molding the mixture, or further placing a copper ingot, By heating and holding these in a non-oxidizing atmosphere and infiltrating the voids of the high melting point metal with copper and low melting point metal while suppressing the evaporation of the low melting point metal, a homogeneous electrode material with the desired performance can be obtained. This method enables manufacturing.

C0従来の技術 真空インタラプタの電極材料として要求される重要な性
能の一つとして、電流遮断性能の高いことが挙げられる
C0 Prior Art One of the important performances required for the electrode material of a vacuum interrupter is high current interrupting performance.

近年、この電流遮断性能が非常に優れている鋼−クロム
系の材料に、電流遮断後の接触抵抗値の上昇を抑制する
目的でビスマスを添加したものを、真空インタラプタの
電極材料として使用することが試みられている。
In recent years, steel-chromium materials, which have excellent current interrupting performance, with bismuth added in order to suppress the increase in contact resistance after current interrupting, have been used as electrode materials for vacuum interrupters. is being attempted.

従来、このビスマスを添加した銅−クロム系の電極材料
の製造方法としては、銅とクロムとビスマスとの混合粉
末を一括して焼結するようにしたものや、容器内に充填
されたクロムとビスマスとの混合粉末上に銅塊を載置し
、これらを非酸化性雰囲気にて銅の融点以上に加熱し、
クロム及びビスマスの空隙部分に銅塊を溶浸させるよう
にしたもの、或いは予め焼結された銅とクロムとからな
る多孔質の溶浸母材の空隙部分にビスマスを溶浸させる
ようにしたもの等が知られている。
Conventionally, methods for producing bismuth-added copper-chromium electrode materials include sintering a mixed powder of copper, chromium, and bismuth all at once, or sintering a mixed powder of copper, chromium, and bismuth, or sintering a mixture of copper and chromium in a container. A copper ingot is placed on a mixed powder with bismuth, and these are heated above the melting point of copper in a non-oxidizing atmosphere.
A copper ingot is infiltrated into the voids of chromium and bismuth, or a porous infiltration base material made of pre-sintered copper and chromium is infiltrated with bismuth. etc. are known.

なお、ビスマスを添加した銅−クロム系の電極材料の組
成として一般的には、銅が20から98重量%の範囲、
クロムが2から80重量%の範囲、ビスマスが0.1か
ら15重量%の範囲に調整されている。
Note that the composition of copper-chromium-based electrode materials to which bismuth is added generally ranges from 20 to 98% by weight of copper;
Chromium is adjusted to a range of 2 to 80% by weight, and bismuth is adjusted to a range of 0.1 to 15% by weight.

D9発明が解決しようとする課題 ビスマスを添加した銅−クロム系の金属材料に対する従
来の製造方法の内、銅とクロムとビスマスとの混合粉末
を一括して焼結するようにした方法や、クロム及びビス
マスの空隙部分に銅塊を溶浸させるようにした方法では
、ビスマスは蒸気圧が高くて融点が低いことから、銅塊
を溶浸させる加熱工程において銅よりも融点の低いビス
マスの蒸発量が非常に多く、一つの容器内で製造される
電極材料中のビスマスの分布が著しく不均一となって製
品の均質性を損なう虞がある上、電極材料中に占めるビ
スマスの割合を設計通りに保つことが困難である。
D9 Problems to be Solved by the Invention Among the conventional manufacturing methods for copper-chromium metal materials added with bismuth, there are methods in which a mixed powder of copper, chromium, and bismuth is sintered all at once, and In the method of infiltrating copper ingots into the voids of bismuth, since bismuth has a high vapor pressure and a low melting point, the amount of evaporation of bismuth, which has a lower melting point than copper, is reduced during the heating process of infiltrating the copper ingots. There is a risk that the distribution of bismuth in the electrode material manufactured in one container may become extremely uneven, impairing the homogeneity of the product. Difficult to maintain.

又、銅とクロムとの焼結体の空隙部分にビスマスを溶浸
させるようにした方法では、上述の如き不具合はないも
のの、所定量のビスマスを含有する電極材料を製造する
ためには、銅とクロムとの焼結体の空隙率の調整が極め
て重要となる。しかし、従来の方法では銅とクロムとの
焼結体を所望の空隙率に調整することが非常に難しいこ
とに加え、一つの焼結体内での空隙率のばらつきも多い
ことから、電極材料中のビスマスの分布が不均一となっ
て、製品の均性を損なう虞があった。
In addition, although the method of infiltrating bismuth into the voids of a sintered body of copper and chromium does not have the above-mentioned problems, it is necessary to It is extremely important to adjust the porosity of the sintered body of aluminum and chromium. However, with conventional methods, it is very difficult to adjust the porosity of a sintered body of copper and chromium to the desired porosity. There was a risk that the distribution of bismuth would become uneven, impairing the uniformity of the product.

E0課題を解決するための手段 第一番目の本発明による電極材料の製造方法は、銅及び
この銅よりも低融点の低融点金属の粉末を混合して加圧
成形してなる成形体を前記鋼よりも高融点のスケルトン
を構成する高融点金属の粉末上に載置し、これらを非酸
化性雰囲気にて加熱保持し、前記銅及び低融点金属を前
記高融点金属の空隙部分に溶浸させるようにしたことを
特徴とするものである。
Means for Solving the E0 Problem The first method of manufacturing an electrode material according to the present invention is to mix a powder of copper and a powder of a low melting point metal whose melting point is lower than that of copper, and press and mold the mixture. It is placed on powder of a high melting point metal that constitutes the skeleton, which has a higher melting point than steel, is heated and held in a non-oxidizing atmosphere, and the copper and low melting point metal are infiltrated into the voids of the high melting point metal. This feature is characterized in that it allows the user to

又、第二番目の本発明による電極材料の製造方法は、第
一番目の発明の構成に加えて更に高融点金属の粉末上に
銅塊を載置したことを特徴とするものである。
Further, the method for manufacturing an electrode material according to the second invention is characterized in that, in addition to the structure of the first invention, a copper lump is further placed on the powder of a high melting point metal.

なお、前記低融点金属としてはビスマス等を挙げること
ができる。又、前記高融点金属としてはクロム等を挙げ
ることができる。ここで、低融点金属としてビスマスを
採用すると共に高融点金属としてをクロム採用したもの
において、銅が20重量%未満の場合には、導電率が低
下して発熱量が多くなり、逆に銅が98重量%を越える
と耐溶着性の低下や電流さい断値の増大をもたらす。又
、ビスマスが0.1重量%未満の場合には、電流遮断後
の接触抵抗値を抑制する効果が薄れてしまい、逆にビス
マスが15重量%を越えると、耐電圧特性等の真空イン
タラプタとしての性能に悪影響を及ぼす。一方、クロム
が2重量%未満の場合には、電流さい断値が増大し、逆
にクロムが80重量%を越える場合には、電流遮断性能
が低下してしまう。
In addition, bismuth etc. can be mentioned as said low melting point metal. Furthermore, examples of the high melting point metal include chromium and the like. Here, in a product that uses bismuth as a low melting point metal and chromium as a high melting point metal, if the copper content is less than 20% by weight, the electrical conductivity will decrease and the calorific value will increase; If it exceeds 98% by weight, the welding resistance will decrease and the current cutoff value will increase. Furthermore, if the bismuth content is less than 0.1% by weight, the effect of suppressing the contact resistance value after current interruption will be weakened, and if the bismuth content exceeds 15% by weight, it will not be effective as a vacuum interrupter such as withstanding voltage characteristics. performance is adversely affected. On the other hand, if the chromium content is less than 2% by weight, the current interrupting value increases, whereas if the chromium content exceeds 80% by weight, the current interrupting performance decreases.

従って、低融点金属としてビスマスを採用すると共に高
融点金属としてクロムを採用したものにおいては、銅は
20から98重量%の範囲、ビスマスは0.1から12
5量%の範囲、クロムは2から80重量%の範囲にそれ
ぞれあることが望ましい。
Therefore, in a product that uses bismuth as a low melting point metal and chromium as a high melting point metal, copper is in the range of 20 to 98% by weight, and bismuth is in the range of 0.1 to 12% by weight.
Preferably, the content of chromium is in the range of 5% by weight, and the content of chromium is in the range of 2 to 80% by weight.

但し、さい断電流値に注目した場合、ビスマスの添加量
とさい断電流値との関係を表す第3図に示すように、2
A以下のさい断電流値を得るためにはビスマスの添加量
を少な(とも2重量%にしなければならない。そして、
IA以下のさい断電流値を得るためには、ビスマスを6
重量%以上添加する必要があるが、このビスマスを12
重量%以上添加しても、さい断電流値をそれ以上に減少
させることが困難となることから、ビスマスは6から1
2重量%の範囲に収めることが特に有効となる。
However, when focusing on the cutting current value, as shown in Figure 3, which shows the relationship between the amount of bismuth added and the cutting current value,
In order to obtain a cutting current value of A or less, the amount of bismuth added must be small (both 2% by weight).
In order to obtain a cutting current value of less than IA, bismuth is
It is necessary to add more than 12% by weight of this bismuth.
Even if more than 1% by weight is added, it is difficult to reduce the cutting current value further, so bismuth is added in a range of 6 to 1%.
It is particularly effective to keep the content within the range of 2% by weight.

F0作用 銅とこの銅よりも低融点の金属とを混合した場合、これ
らの融点が純粋な銅の融点よりも低下することは、周知
の事実である。
It is a well-known fact that when F0 effect copper is mixed with a metal having a lower melting point than the copper, their melting points are lower than that of pure copper.

例えば、純粋な銅の融点は1083℃であり、純粋なビ
スマスの融点は271°Cである。
For example, pure copper has a melting point of 1083°C and pure bismuth has a melting point of 271°C.

ここで、銅に対するビスマスの混合割合とこの時のこれ
らの融点との関係を表す第4図に示すように、ビスマス
の混合割合が増大するにつれて、これらの融点が次第に
低下するような傾向を持つことが判る。
As shown in Figure 4, which shows the relationship between the mixing ratio of bismuth to copper and these melting points, as the mixing ratio of bismuth increases, these melting points tend to gradually decrease. I understand that.

このため、銅と低融点金属との成形体を非酸化性雰囲気
にて加熱すると、純粋な銅の融点よりも低い温度で成形
体が溶融し、これが高融点金属の空隙部分に溶浸する。
Therefore, when a molded body of copper and a low melting point metal is heated in a non-oxidizing atmosphere, the molded body will melt at a temperature lower than the melting point of pure copper, and this will infiltrate into the voids of the high melting point metal.

この場合、低融点金属の大部分は銅で囲まれた状態とな
るため、低融点金属の蒸゛発が抑制される。但し、銅塊
を更に載置したものでは、銅と低融点金属との成形体が
溶融した後に、二〇銅塊が高融点金属の表面全体から溶
浸を始める。
In this case, since most of the low melting point metal is surrounded by copper, evaporation of the low melting point metal is suppressed. However, in the case where a copper ingot is further placed, after the formed body of copper and low melting point metal is melted, the 20 copper ingots start infiltrating the entire surface of the high melting point metal.

上記加熱操作に伴って、高融点金属の粉末の空隙部分か
らガスが放出され、先に述べたようにして高融点金属の
空隙部分に銅と低融点金属とが次第に溶浸して行く。低
融点金属は電極材料自体の機械的強度を下げ、この電極
材料自体を変形し易くして電流遮断後の接触抵抗値の上
昇を抑制する。
With the above heating operation, gas is released from the voids in the high melting point metal powder, and copper and low melting point metal gradually infiltrate into the voids in the high melting point metal as described above. The low melting point metal lowers the mechanical strength of the electrode material itself, making the electrode material itself easily deformable and suppressing an increase in contact resistance after current interruption.

G、実施例 真空インタラプタは、その概略構造の一例を表す第8図
に示すようなものであり、相互に一直線状をなす一対の
リード棒11.12の対向端面には、それぞれ電極13
.14が一体的に設けである。これら電極13.14を
囲む筒状のシールド15の外周中央部は、このシールド
15を囲む一対の絶縁筒16゜17の間に挟まれた状態
で保持されている。
G. Embodiment The vacuum interrupter is as shown in FIG. 8, which shows an example of its schematic structure, and electrodes 13 are provided on opposite end surfaces of a pair of lead rods 11 and 12 that are in a straight line with each other.
.. 14 is integrally provided. A central portion of the outer periphery of a cylindrical shield 15 surrounding these electrodes 13 and 14 is held between a pair of insulating cylinders 16 and 17 surrounding this shield 15.

一方の前記リード棒11は、一方の絶縁筒16の一端に
接合された金属端板18を気密に貫通した状態で、この
金属端板18に一体的に固定されている。図示しない駆
動装置に連結される他方のリード棒12は、他方の絶縁
筒17の他端に気密に接合された他方の金属端板19に
ベローズ20を介して連結され、駆動装置の作動に伴っ
て電極13. l 4の対向方向に往復動可能に可動側
の電極14が固定側の電極13に対して開閉動作するよ
うになっている。
One of the lead rods 11 is integrally fixed to the metal end plate 18 joined to one end of the insulating tube 16 while airtightly passing through the metal end plate 18 . The other lead rod 12, which is connected to a drive device (not shown), is connected via a bellows 20 to the other metal end plate 19, which is hermetically joined to the other end of the other insulating tube 17. electrode 13. The movable electrode 14 is configured to open and close relative to the fixed electrode 13 so as to be able to reciprocate in the opposite direction of the electrode 14.

前記電極13.14は、クロム(Cr)と、銅(Cu)
と、これらクロムと銅との界面に分散するビスマス(B
i)とからなる複合金属で構成される。
The electrodes 13.14 are made of chromium (Cr) and copper (Cu).
and bismuth (B) dispersed at the interface between these chromium and copper.
i) It is composed of a composite metal consisting of.

本発明によるこの電極材料の製造方法の一例を第1図に
基づいて以下に記すと、まず−100メツシユの粒度の
クロムの粉末を内径68mmのアルミナセラミックス製
の容器A中に170g入れ、これを5 X 10−’T
orrの真空炉内で脱ガスしながら1200℃に加熱保
持し、クロム粒子を相互に拡散結合させて多孔質の溶浸
母材Bを得る。
An example of the method for manufacturing this electrode material according to the present invention will be described below based on FIG. 5 x 10-'T
The mixture is heated and maintained at 1200° C. while being degassed in a vacuum furnace of ORR, and the chromium particles are diffused and bonded to each other to obtain a porous infiltrated base material B.

一方、−275メツシユの粒度の銅の粉末150gとビ
スマスの粉末70gとを混合攪拌し、これを内径が60
mmの金型に装入して1aIr当たり2tの圧力で加圧
成形し、直径が60mmの円板状をなす成形体Cを作成
した。
On the other hand, 150 g of copper powder with a particle size of -275 mesh and 70 g of bismuth powder were mixed and stirred.
The molded product was placed in a mold with a diameter of 60 mm and was press-molded at a pressure of 2 tons per 1aIr to produce a disk-shaped molded body C with a diameter of 60 mm.

そして、この成形体Cを容器A内の溶浸母材Bに載置し
、更にこの成形体Cの上に直径が60++mの円板状を
なす銅塊りを重ねた後、容器Aにアルミナセラミックス
製の蓋板Eを被せ、この容器A内を密閉状態に保持した
Then, this molded body C is placed on the infiltrated base material B in the container A, and a disk-shaped copper ingot with a diameter of 60++ m is placed on top of the molded body C, and then the aluminium oxide is placed in the container A. A lid plate E made of ceramics was placed on the container A to keep the inside of the container A in an airtight state.

しかるのち、これらを5 X 10−’Torrの真空
炉内にて脱ガスしつつ1100℃に20分間加熱処理し
、多孔質の溶浸母材Bの空隙部分に銅及びビスマスを溶
浸させ、得られる電極材料を容器Aから出して直径60
Bで厚さが10mmの円板状に機械加工した。
Thereafter, these were heat-treated at 1100° C. for 20 minutes while being degassed in a vacuum furnace of 5 × 10-' Torr, and copper and bismuth were infiltrated into the voids of the porous infiltration base material B. The obtained electrode material is taken out from container A and has a diameter of 60 mm.
B was machined into a disk shape with a thickness of 10 mm.

このようにして、 Cu・45重量% Cr:45重量% Bi:10重量% からなる電極材料を作成した。In this way, Cu・45% by weight Cr: 45% by weight Bi: 10% by weight An electrode material consisting of

この方法によって、合計で25の試料を作成し、電極材
料中に占めるビスマスの割合を調査した結果、ビスマス
の割合の平均値が10重量%でその標準偏差が0.02
%となり、ビスマスの割合のばらつきが非常に小さいこ
とが判明した。
Using this method, a total of 25 samples were prepared and the proportion of bismuth in the electrode material was investigated. As a result, the average value of the proportion of bismuth was 10% by weight, and the standard deviation was 0.02.
%, and it was found that the variation in the proportion of bismuth was very small.

なお、本実施例では溶浸母材Bであるクロムの多孔質焼
結体の上に、成形体C及び銅塊りを載置するようにした
が、クロムの焼結工程を省略し、その粉末上に成形体C
及び銅塊りを載置し、これらをクロムの空隙部分に溶浸
させても同様な結果を得ることができる。
In addition, in this example, the molded body C and the copper lump were placed on the porous sintered body of chromium, which is the infiltration base material B, but the chromium sintering step was omitted and the Molded object C on powder
Similar results can be obtained by placing copper lumps and infiltrating the voids of chromium.

又、本実施例では成形体C及び銅塊りを溶浸させるよう
にしたが、銅の割合を多くした成形体Cのみをクロムの
空隙部分に溶浸させるようにすることも当然可能である
Further, in this example, the molded body C and the copper lump were infiltrated, but it is naturally possible to infiltrate only the molded body C, which has a higher proportion of copper, into the voids of chromium. .

H0発明の効果 本発明の電極材料の製造方法によると、銅及びこの銅よ
りも低融点の低融点金属の粉末を混合して加圧成形して
なる成形体を高融点金属の粉末上に載置し、これらを加
熱して高融点金属の空隙部分に銅と低融点金属とを溶浸
させるようにしたので、低融点金属の蒸発量を従来の方
法よりも大幅に抑制することが可能となり、電極材料中
の低融点金属の分布が均一となって製品の均質性が向上
し、電極材料中に占める低融点金属の割合を設計通りに
保つことができる。
H0 Effects of the Invention According to the method for producing an electrode material of the present invention, a molded body obtained by mixing copper and powder of a low-melting point metal having a lower melting point than copper and press-molding the mixture is placed on a powder of a high-melting point metal. The copper and low melting point metals are infiltrated into the voids of the high melting point metals by heating them, making it possible to significantly suppress the amount of evaporation of the low melting point metals compared to conventional methods. , the distribution of the low melting point metal in the electrode material becomes uniform, improving the homogeneity of the product, and the proportion of the low melting point metal in the electrode material can be maintained as designed.

この結果、所望のさい断電流値を有する電極材料を製造
できると共に多数回の開閉操作後でも接触抵抗値が低(
安定しているため、開閉のための操作装置を小形化でき
ると共に発熱が少ないことと相俟ってキユービクルを小
形化できる。
As a result, it is possible to manufacture an electrode material with a desired cutting current value, and the contact resistance value is low (
Since it is stable, the operating device for opening and closing can be made smaller, and together with the fact that it generates less heat, the cubicle can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電極材料の製造方法の一実施例を
表す断面図、第2図は真空インタラプタの一例を表す断
面図、第3図はビスマスの添加量とさい断電流値との関
係を表すグラフ、第4図は銅に対するビスマスの割合と
これらの融点との関係を表すグラフである。 又、図中の符号でAは容器、Bは溶浸母材、Cは成形体
、Dは銅塊、Eは蓋板、11.12はり−ド棒、13.
14は電極である。 特許出願人 株式会社 明 電 舎 代理人 弁理士 光石英俊(他1名) 第1図 本発明による電極材料の 製造方法の一実施例を 表わす断面図 A:容器 B : 、II!母材 C:成形体 り二鯛塊 E:蓋板 第2図 真空インタラプタの断面図 第3図 さL1断電流値の変化を表わすグラフ ビスマス添加量(重量%) 第4 図 変化を表すグラフ 鯛に対するビスマスの割合で重量%)
Fig. 1 is a cross-sectional view showing an example of the method for producing an electrode material according to the present invention, Fig. 2 is a cross-sectional view showing an example of a vacuum interrupter, and Fig. 3 is the relationship between the amount of bismuth added and the cutting current value. FIG. 4 is a graph showing the relationship between the ratio of bismuth to copper and their melting points. Also, in the figures, A is a container, B is an infiltration base material, C is a molded body, D is a copper ingot, E is a cover plate, 11.12 a beam rod, 13.
14 is an electrode. Patent Applicant Meidensha Co., Ltd. Agent Patent Attorney Hidetoshi Mitsuishi (and one other person) Figure 1 Cross-sectional view showing one embodiment of the method for manufacturing an electrode material according to the present invention A: Container B: , II! Base material C: Molded body 2 Sea bream lump E: Lid plate Figure 2 Cross-sectional view of vacuum interrupter Figure 3 Graph showing changes in L1 cut-off current value Bismuth addition amount (wt%) Figure 4 Graph showing changes Sea bream (wt%) in proportion of bismuth to

Claims (4)

【特許請求の範囲】[Claims] (1)銅及びこの銅よりも低融点の低融点金属の粉末を
混合して加圧成形してなる成形体を前記銅よりも高融点
のスケルトンを構成する高融点金属の粉末上に載置し、
これらを非酸化性雰囲気にて加熱保持し、前記銅及び低
融点金属を前記高融点金属の空隙部分に溶浸させるよう
にしたことを特徴とする電極材料の製造方法。
(1) A compact formed by mixing copper and powder of a low-melting point metal with a lower melting point than the copper and press-molding the mixture is placed on top of the powder of the high-melting point metal that constitutes the skeleton and has a higher melting point than the copper. death,
A method for manufacturing an electrode material, characterized in that these are heated and maintained in a non-oxidizing atmosphere, and the copper and low melting point metal are infiltrated into the voids of the high melting point metal.
(2)銅及びこの銅よりも低融点の低融点金属の粉末を
混合して加圧成形してなる成形体と銅塊とを前記銅より
も高融点のスケルトンを構成する高融点金属の粉末上に
載置し、これらを非酸化性雰囲気にて銅の融点以上に加
熱保持し、前記銅及び低融点金属を前記高融点金属の空
隙部分に溶浸させるようにしたことを特徴とする電極材
料の製造方法。
(2) A compact formed by mixing and press-molding copper and a powder of a low-melting point metal having a lower melting point than the copper, and a copper ingot, and a powder of a high-melting point metal that constitutes a skeleton having a higher melting point than the copper. the copper and the low melting point metal are infiltrated into the voids of the high melting point metal by heating and holding them above the melting point of copper in a non-oxidizing atmosphere. Method of manufacturing the material.
(3)低融点金属がビスマスであることを特徴とする請
求項(1)又は(2)に記載した電極材料の製造方法。
(3) The method for producing an electrode material according to claim (1) or (2), wherein the low melting point metal is bismuth.
(4)高融点金属がクロムであることを特徴とする請求
項(1)又は(2)に記載した電極材料の製造方法。
(4) The method for manufacturing an electrode material according to claim (1) or (2), wherein the high melting point metal is chromium.
JP25516890A 1990-09-27 1990-09-27 Manufacture of electrode material Pending JPH04137326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25516890A JPH04137326A (en) 1990-09-27 1990-09-27 Manufacture of electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25516890A JPH04137326A (en) 1990-09-27 1990-09-27 Manufacture of electrode material

Publications (1)

Publication Number Publication Date
JPH04137326A true JPH04137326A (en) 1992-05-12

Family

ID=17275002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25516890A Pending JPH04137326A (en) 1990-09-27 1990-09-27 Manufacture of electrode material

Country Status (1)

Country Link
JP (1) JPH04137326A (en)

Similar Documents

Publication Publication Date Title
JP2530484B2 (en) Contact for vacuum circuit breaker and manufacturing method thereof
JPH056780B2 (en)
JP3825275B2 (en) Electrical contact member and its manufacturing method
KR20160013153A (en) Electrical contact for vacuum valve and process for producing same
US4503010A (en) Process of producing a compound material of chromium and copper
JPH04137326A (en) Manufacture of electrode material
WO2015194344A1 (en) Process for producing electrode material, and electrode material
JP2853308B2 (en) Manufacturing method of electrode material
JP4209183B2 (en) Contact material for vacuum valves
JPH04129120A (en) Manufacture of electrode material
JPH05217473A (en) Manufacture of electrode material
JPH04141924A (en) Manufacture of electrode material
JPH05101750A (en) Manufacture of electrode material
JP3106598B2 (en) Manufacturing method of electrode material
JP3067317B2 (en) Manufacturing method of electrode material
JP3106609B2 (en) Manufacturing method of electrode material
JPH04324220A (en) Manufacture of electrode material
JPH04141925A (en) Manufacture of electrode material
JPH1040761A (en) Contact material for vacuum circuit breaker, its manufacture, and vacuum circuit breaker
JP3298129B2 (en) Manufacturing method of electrode material
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JPH09190730A (en) Manufacture of contact member for vacuum circuit breaker
JP2004076141A (en) Vacuum valve used for vacuum interrupter, and manufacturing method of electric contact
JPH0193018A (en) Contact material for vacuum bulb