JPH04135492A - Recovery of physiologically active substance - Google Patents

Recovery of physiologically active substance

Info

Publication number
JPH04135492A
JPH04135492A JP25536390A JP25536390A JPH04135492A JP H04135492 A JPH04135492 A JP H04135492A JP 25536390 A JP25536390 A JP 25536390A JP 25536390 A JP25536390 A JP 25536390A JP H04135492 A JPH04135492 A JP H04135492A
Authority
JP
Japan
Prior art keywords
physiologically active
circuit
active substance
hollow fiber
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25536390A
Other languages
Japanese (ja)
Inventor
Seiichi Manabe
征一 真鍋
Ikuro Togo
東郷 育郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP25536390A priority Critical patent/JPH04135492A/en
Publication of JPH04135492A publication Critical patent/JPH04135492A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To enable continuous and safe recovery of the subject substance in high activity and yield by passing microorganisms or tissue cells capable of producing a physiologically active substance and its culture product through a circuit containing a specific hollow fiber membrane. CONSTITUTION:Microorganisms or tissue cells (A) are passed from a tank 7 through a circuit 1 together with a solution (B) containing nutrients essential for the growth of the cell A, O2 and CO2 to effect the culture of the cells. The solution containing the produced physiologically active substance (C) is supplied to a module T2 consisting of the elements 3a to 3d. Separately, a hollow fiber membrane (D) capable of removing virus and made of a hydrophobic polymer composed mainly of regenerated cellulose is produced by selecting hollow fibers having an average pore diameter 2rf of 20-100nm, a wall thickness of >=25mum and an inner diameter of 0.2-1mm. The component D is placed in the module T2 and the liquid B is passed through the circuit 2 by raising the pressure in the circuit 1 above the pressure in the circuit 2 by a pump 11 to separate the component C from the components A and B. The physiologically active substance is recovered in a tank 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生理活性を有する物質(以下、生理活性物質
と略称)の回収方法に関する。さらに詳しくは生理活性
物質を産生ずる微生物あるいは組織細胞(以下、細胞と
略称)から、該生理活性物質を微生物あるいは細胞を含
まない状態で連続的にかつ小型容器内で回収する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for recovering a physiologically active substance (hereinafter abbreviated as physiologically active substance). More specifically, it relates to a method for recovering physiologically active substances from microorganisms or tissue cells (hereinafter abbreviated as cells) that produce physiologically active substances continuously in a small container without containing microorganisms or cells. .

〔従来の技術〕[Conventional technology]

最近、細胞を培養する際、培養液中に細胞の活動により
産生ずる生理活性物質が注目されつつある。たとえば、
エイズ原因ウィルスすなわち、人免疫不全ウィルス(以
下、HIVと略称)を産生ずるMT−4細胞はウィルス
以外にもHIVの表面抗原(GP120等)を産生じて
いる。そこでMT−4細胞を多量に培養し、培養液から
GP120等の抗原のみを回収できれば、これをワクチ
ンとして利用することができる。
Recently, when culturing cells, physiologically active substances produced in the culture medium by cell activities have been attracting attention. for example,
MT-4 cells, which produce the AIDS-causing virus, ie, the human immunodeficiency virus (hereinafter abbreviated as HIV), produce surface antigens of HIV (GP120, etc.) in addition to the virus. Therefore, if MT-4 cells can be cultured in large quantities and only antigens such as GP120 can be recovered from the culture solution, this can be used as a vaccine.

従来、このようにウィルスに感染した細胞から生理活性
物質を回収する技術として細胞培養技術があるが、細胞
が浮遊状態でも増殖可能かどうかによって培養技術の詳
細が異なる。
Conventionally, cell culture techniques have been used to recover physiologically active substances from cells infected with viruses, but the details of the culture techniques differ depending on whether the cells can proliferate even in suspension.

しかし、細胞培養技術あるいは細胞培養システムには従
来、下記のような共通した問題点かある。
However, conventional cell culture techniques or cell culture systems have the following common problems.

すなわち、1)ウィルス、リッケチャ、クラジミア、マ
イコプラズマ等の微生物による細胞の汚染(感染)によ
る細胞の死滅、あるいは変質、2)細胞濃度をある値(
10’ CFU/ml)以上に高めることができない、
3)培養を継続する際、産生ずる物質による培養液組成
の変化等により、連続的に長期にわたって、安定して小
型容器内で生理活性物質を回収することがむつかしい、
4)生理活性物質の精製が困難である。
In other words, 1) cell death or deterioration due to cell contamination (infection) with microorganisms such as viruses, Rickettsia, Chlamydia, and mycoplasma; 2) cell concentration at a certain value (
cannot be increased above 10'CFU/ml),
3) When continuing the culture, it is difficult to continuously and stably recover physiologically active substances in a small container over a long period of time due to changes in the composition of the culture medium due to the substances produced.
4) Purification of physiologically active substances is difficult.

従来よりこれらの問題点を解決するために種々の細胞培
養法が提案されてきた。すなわち、(イ)通気攪拌培養
法(ロ)マイクロキャリヤーを用いた還流培養法(付着
性細胞の場合)あるいは素焼きフィルターを用いた還流
培養法、(ハ)細胞マイクロカプセル化法、(ニ)中空
糸培養法 等である。
Various cell culture methods have been proposed to solve these problems. Namely, (a) aeration agitation culture method, (b) reflux culture method using microcarriers (for adherent cells) or reflux culture method using unglazed filter, (c) cell microencapsulation method, (d) hollow Thread culture method, etc.

これら上記(イ)〜(ニ)のいずれの方法でも前記の1
)〜4)の問題点を同時に満足することはむずかしい。
In any of the above methods (a) to (d),
) to 4) are difficult to satisfy at the same time.

たとえば(イ)の方法では、培養器の材質、使用水の精
製度・組成・温度・pH等の制御、攪拌方法の工夫、半
回分培養等の工夫によっても細胞密度は10″ceAA
/J程度が限界であり、かつ微生物汚染のおそれが常に
存在し、装置もこれらを改良するために大型化してしま
う。
For example, in method (a), the cell density can be reduced to 10"ceAA by controlling the material of the incubator, the degree of purification, composition, temperature, pH, etc. of the water used, devising the stirring method, and using semi-batch culture.
/J is the limit, and there is always a risk of microbial contamination, and the size of the equipment has to be increased in order to improve these problems.

一方、将来性が期待されている中空糸培養法(ニ)にお
いては、中空糸の中空部に炭酸ガスと空気とを送り中空
糸外側に培養液を流し細胞が中空糸外側に存在するいわ
ゆるフラットベットタイプと、中空糸の中空部に培養液
を流し細胞が内側に存在するタイプとが提案されている
。これら両者のいずれにおいても、培養液側におけるウ
ィルス及びマイコプラズマ汚染のおそれが残り、また、
産生ずる生理活性物質と共に細胞あるいは細胞内部より
産生ずるウィルス、マイコプラズマ等を混入している。
On the other hand, in the hollow fiber culture method (d), which is expected to have future potential, carbon dioxide gas and air are sent into the hollow part of the hollow fiber, and a culture solution is poured outside the hollow fiber. A bed type and a type in which a culture solution is poured into the hollow part of a hollow fiber and cells are present inside have been proposed. In both of these cases, there remains a risk of virus and mycoplasma contamination on the culture medium side, and
Viruses, mycoplasma, etc. produced from cells or inside cells are mixed together with physiologically active substances produced.

従来の方法には上述の問題点が内在するために生理活性
物質を連続的に小型容器内で産生ずることがむつかしく
、かつ、生理活性物質を微生物の混入なしに安全に回収
することが困難であった。
Conventional methods have the above-mentioned problems, making it difficult to continuously produce physiologically active substances in small containers, and also difficult to safely recover physiologically active substances without contamination with microorganisms. there were.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、微生物あるいは細胞から産生ずる生理
活性物質を(a)ウィルス、マイコプラズマおよび細胞
等の微粒子を含まない状態で、(b)連続的に、(c)
小型容器内で回収する方法を提供する点にある。
The purpose of the present invention is to (a) continuously collect physiologically active substances produced from microorganisms or cells in a state free from viruses, mycoplasma, cells, and other particulates, (b) continuously, and (c)
The object of the present invention is to provide a method for collecting in a small container.

〔課題を解決するための手段〕[Means to solve the problem]

生物の組織から取り出された細胞にはそれ自体で生理活
性物質を産生ずる性質があり、また、組み換えDNA法
あるいはウィルスを細胞内に埋め込むことにより、細胞
が生理活性物質を産生ずるように変換することができる
Cells removed from biological tissues have the property of producing physiologically active substances by themselves, and cells can be converted to produce physiologically active substances by using recombinant DNA methods or by embedding viruses into cells. be able to.

一方、マイコプラズマのような微生物は、それ自体で生
理活性物質を産生ずることが知られている。
On the other hand, microorganisms such as mycoplasma are known to produce physiologically active substances by themselves.

本発明の目的とする前述の(a)、(b)、(C)の課
題は、平均孔径2石が20nm〜1100nであり壁厚
が25μm以上で内径は0゜2 mm−1mmの中空糸
膜であり、しかも再生セルロースを主原料とする親水性
高分子で構成されていることを特徴とするウィルス除去
性能をもつ中空糸を適切に用いることによって達成され
る。
The above-mentioned problems (a), (b), and (C), which are the objects of the present invention, are hollow fibers with an average pore diameter of 20 nm to 1100 nm, a wall thickness of 25 μm or more, and an inner diameter of 0°2 mm to 1 mm. This can be achieved by appropriately using a hollow fiber that is a membrane and has virus removal performance characterized by being composed of a hydrophilic polymer whose main raw material is regenerated cellulose.

すなわち、本発明は、微生物又は細胞の活動により産生
ずる生理活性物質を回収する方法において、■上記生理
活性物質と微生物又は細胞とを分離するための中空糸膜
を介して、上記微生物又は細胞の生育に必須な養分、酸
素および炭酸ガスを溶解した溶液(1)を流動させる回
路(1)と、上記生理活性物質を系外へ除去させる回路
(2)とを有し、かつ■上記中空糸膜は平均孔径2五が
20nm〜1100n、壁厚25μm以上、内径0.2
mm以上1mm以下であり、しかも再生セルロースを主
たる素材とする親水性高分子で構成されたウィルス除去
性能をもつ中空糸であり、さらに■上記回路(1)の圧
力が上記回路(2)の圧力より高いことを特徴とする生
理活性物質の回収方法、である。
That is, the present invention provides a method for recovering physiologically active substances produced by the activity of microorganisms or cells, in which: It has a circuit (1) for flowing a solution (1) in which nutrients essential for growth, oxygen and carbon dioxide gas are dissolved, and a circuit (2) for removing the physiologically active substance from the system, and The membrane has an average pore diameter of 20 nm to 1100 nm, a wall thickness of 25 μm or more, and an inner diameter of 0.2
mm or more and 1 mm or less, and is made of a hydrophilic polymer whose main material is regenerated cellulose, and has virus removal performance; This is a method for recovering physiologically active substances characterized by higher

一 本発明に用いる溶液(1)として、たとえば無血清培地
あるいは血清培地にたいしてp T−Tを6.8〜7.
8のある値に制御されかつ炭酸ガスと酸素とを溶存させ
た培地が一般的にあげられる。溶存酸素分圧は20〜2
00mmHgであるがpHが大きくなると溶存酸素分圧
は低めに設定する。溶解炭酸ガス量はpH調整と連動さ
せて設定する。溶液(1)に酸素および炭酸ガスを溶存
させることによって、微生物あるいは細胞に直接気体が
接触することを防止する。このことより細胞等の機械的
損傷が低下するのみでなく使用される中空糸への気泡の
付着が防止出来る。゛本発明は、回路(1)内の流体の
流出入口には溶液(1)が自由に通り抜けることのでき
、かつ、微生物および細胞の流出入を防止するための多
孔膜を設置することが好ましい。
One solution (1) used in the present invention is, for example, a serum-free medium or a serum medium with pTT of 6.8 to 7.
A common example is a medium that is controlled to a certain value of 8 and has carbon dioxide gas and oxygen dissolved therein. Dissolved oxygen partial pressure is 20-2
00 mmHg, but as the pH increases, the dissolved oxygen partial pressure is set lower. The amount of dissolved carbon dioxide gas is set in conjunction with pH adjustment. By dissolving oxygen and carbon dioxide gas in the solution (1), direct contact of the gas with microorganisms or cells is prevented. This not only reduces mechanical damage to cells, etc., but also prevents air bubbles from adhering to the hollow fibers used.゛In the present invention, it is preferable that a porous membrane is installed at the fluid inlet and outlet in the circuit (1) to allow the solution (1) to freely pass through and to prevent microorganisms and cells from flowing in and out. .

また、本発明は、加熱、除菌用フィルター等によるウィ
ルス、細菌の不活処理が不充分な溶液(1)を流動させ
るおそれがある場合には、回路(1)の流入口にウィル
ス除去性能をもち、かつ溶液(1)が自由に通り抜ける
ことができる中空糸が濾液側に接続されていることが好
ましい。本発明は、回路(1)により常にウィルス等の
粒子成分が除去された溶液(1)が微生物あるいは細胞
に供給されるので、培養過程中での微生物汚染の確率が
大幅に低下する。
Furthermore, in the case where there is a risk of flowing a solution (1) in which viruses and bacteria have not been sufficiently inactivated by heating, a sterilization filter, etc., the inlet of the circuit (1) is provided with a virus removal function. It is preferable that a hollow fiber having a diameter and through which the solution (1) can freely pass is connected to the filtrate side. In the present invention, the solution (1) from which particle components such as viruses have been removed is constantly supplied to the microorganisms or cells by the circuit (1), so that the probability of microbial contamination during the culture process is greatly reduced.

一定品質での継続的な培養が可能となる。Continuous culture with constant quality is possible.

本発明は、回路(2)を設定することにより、微生物等
が混入しない状態で生理活性物質を含む溶液が連続的に
回収される。回収された溶液より特定の生理活性物質を
濃縮分離する方法は液体クロマトグラフィの方法が一般
的である。また、回路(2)を流れる溶液量は回路(1
)のそれにほぼ等しく、かつ溶液中には生理活性物質以
外の細胞等の代謝産物も含まれている。これらの物質が
回路(2)により連続的に系外へ除去出来るため長期に
安定し、かつ細胞も高密度で培養できる。
In the present invention, by setting the circuit (2), a solution containing a physiologically active substance is continuously collected without contamination with microorganisms. A common method for concentrating and separating specific physiologically active substances from the recovered solution is liquid chromatography. Also, the amount of solution flowing through circuit (2) is
), and the solution also contains metabolites such as cells other than physiologically active substances. Since these substances can be continuously removed from the system by circuit (2), the system is stable for a long period of time, and cells can be cultured at high density.

本発明に用いるウィルス除去性能をもつ中空糸とは、ウ
ィルス粒子径が1100nであった際、ウィルス濃度が
106個/dである溶液を該中空糸で濾過した際の濾液
中のウィルス濃度が検出限界以下の濃度(通常1個/7
nl以下)にすることができる中空糸を意味する。
The hollow fiber with virus removal performance used in the present invention means that when the virus particle diameter is 1100n, the virus concentration in the filtrate is detected when a solution with a virus concentration of 106 cells/d is filtered through the hollow fiber. Concentration below the limit (usually 1/7
(nl or less).

本発明の最大の特徴は特定の素材で構成され、かつ特定
の孔構造をもちウィルス除去性能をもつ中空糸を用いる
点にある。すなわち本発明に用いる中空糸は、再生セル
ロースからなることが必要で、あり再生セルロースを用
いることによりタンパクの中空糸への吸着をおさえ、孔
径の経時的低下および吸着に伴う生理活性物質の損失を
おさえることができる。再生セルロースの中でも特に銅
アンモニア法再生セルロースが特に好ましい。
The most important feature of the present invention is the use of hollow fibers that are made of a specific material, have a specific pore structure, and have virus removal performance. In other words, the hollow fibers used in the present invention must be made of regenerated cellulose, and by using regenerated cellulose, it is possible to suppress the adsorption of proteins to the hollow fibers, reduce the pore size over time, and reduce the loss of physiologically active substances due to adsorption. It can be suppressed. Among the regenerated celluloses, regenerated cellulose produced by the copper ammonia method is particularly preferred.

本発明に用いる中空糸は水の濾過速度法で決定される平
均孔径2rfが20nm〜1100nであり、この値に
設定することにより産生ずる生理活性物質をすばやく回
路(2)を介して系外へ除去することができる。この系
外への水溶液の演出のため、微生物あるいは細胞の大部
分が中空糸内壁部の表面に固定化される。27〒が20
nm未満では生理活性物質の回収率および中空糸中の透
過率が低下し、また2rfが1100nを超えると逆に
濾過速度が大きくなりすぎて溶液1の回路(2)への流
出が大きくなりすぎ、かつ中空糸にウィルス除去性能を
与えることが困難となる。
The hollow fiber used in the present invention has an average pore diameter 2rf of 20 nm to 1100 nm determined by the water filtration rate method, and by setting it to this value, the physiologically active substances produced can be quickly removed from the system via circuit (2). Can be removed. Because of this directing of the aqueous solution to the outside of the system, most of the microorganisms or cells are immobilized on the surface of the inner wall of the hollow fiber. 27 〒 is 20
If it is less than nm, the recovery rate of the physiologically active substance and the permeability in the hollow fiber will decrease, and if 2rf exceeds 1100n, the filtration rate will be too high and the outflow of solution 1 to circuit (2) will be too large. , and it becomes difficult to provide the hollow fiber with virus removal performance.

本発明で中空糸にウィルス除去性能を付与するには、中
空糸の孔構造として下記のような特別の構造を与えるこ
とが好ましい。すなわち、中空糸の孔構造が内壁面より
観察した場合ネットワーク構造を示し、かつ壁厚方向に
は該ネットワーク構造をもつ層状物が積層した多層構造
をとっていることが好ましい。本発明でネットワーク構
造とは高分子が網目状の凝集体を構成し、この網目が孔
となっている構造をいう。多層構造とは(A)高分子多
孔膜の表面あるいは裏面、中空糸形状の場合は内壁面あ
るいは外壁面に平行な面内では注目する面内の場所に依
存しない固有の孔径分布と孔形状をもち、この−枚の層
(厚さは約0.2μm)では濾過性能の点では一枚のス
クリーンフィルターとして近似できる、(’B )該−
枚の層内での孔の位置関係は相互に実質的に無秩序であ
るか、又は繊維軸方向のみ配列する規則性が認められ、
(C)この−枚層内ではある特定された孔径分布と平均
孔径、面内空孔率が測定でき、(D)内壁面から壁厚方
向への距離を異にする面の相互の間には、平均孔径、面
内空孔率のいずれかが、該距離が大きくなるに従って減
少し、各層間の孔には相互に事実上相関性はなく、ただ
し、最外層はより内側の層にくらべて平均孔径あるいは
空孔率がわずかに大きい場合もある、構造をいう。
In order to impart virus removal performance to the hollow fibers in the present invention, it is preferable to provide the hollow fibers with a special pore structure as described below. That is, it is preferable that the pore structure of the hollow fiber exhibits a network structure when observed from the inner wall surface, and that it has a multilayer structure in which layered materials having the network structure are laminated in the wall thickness direction. In the present invention, the network structure refers to a structure in which polymers constitute a network-like aggregate, and this network serves as pores. What is a multilayer structure? (A) On the surface or back surface of a porous polymer membrane, or in a plane parallel to the inner wall surface or outer wall surface in the case of a hollow fiber membrane, it has a unique pore size distribution and pore shape that does not depend on the location within the plane of interest. In terms of filtration performance, these two layers (thickness is approximately 0.2 μm) can be approximated as one screen filter.
The positional relationship of the holes within the layers is substantially disordered with respect to each other, or there is a regularity in which they are arranged only in the fiber axis direction,
(C) Within this layer, a specified pore size distribution, average pore size, and in-plane porosity can be measured, and (D) between surfaces at different distances from the inner wall surface to the wall thickness direction. Either the average pore diameter or the in-plane porosity decreases as the distance increases, and the pores between each layer have virtually no correlation with each other, except for the outermost layer compared to the inner layer. A structure in which the average pore diameter or porosity may be slightly large.

この多層構造をもつ高分子多孔膜又は中空糸は、液体窒
素中で破断してその断面をフィールドエミッション型走
査型電子顕微鏡で観察することにより、直径0.05〜
2μmの粒子の堆積物で構成されていることで確認する
ことができる。ウィルス除去性能をもつ多孔膜又中空糸
としてさらに好ましい孔形状は、いわゆる、ニュウロン
様ボイド・キャピラリー構造(T、 Tsurumi、
 et aCPo1yrnm、J、、 22.304(
1990)参照)の20層以上の積層として表現される
構造を有する形状である。すなわち、上記−枚の層の孔
構造は直径5〜80nmの毛細管状の細い孔(キャピラ
リー)と100〜2000nmの塊状の孔(ボイド)と
の連結体として表現されるところのニュウロン様ボイド
・キャピラリー、構造であり、この孔が壁厚方向に積層
した形状で連なり、かつ積層した層間相互ではボイドが
直接連結する確率が極小化されているものである。これ
らの好適な孔構造をもつ中空糸を作製するには、(あ)
ミクロ相分離で発生した粒子(高分子濃厚相が粒子とな
る場合)の直径が50nm以上11000n以下となる
ように成長させ(い)該ミクロ相分離が膜の表面と裏面
とで発生させ(う)それぞれの面内でほぼ同時に発生し
、(え)壁厚方向にそって相分離を進行させるために厳
密に紡糸原液、凝固液組成および温度が制御され、かつ
異物混入が極力防止された条件下で紡糸され、かつ紡糸
巻取り工程中で中空糸に負荷される張力を可能なかぎり
小さくすることが重要である。外壁面と内壁面の平均孔
径は凝固液および中空剤組成を制御することによってほ
ぼ任意に設定できる。
This multilayered polymer porous membrane or hollow fiber was broken in liquid nitrogen and its cross section was observed using a field emission scanning electron microscope.
This can be confirmed by the fact that it is composed of deposits of 2 μm particles. A more preferable pore shape for a porous membrane or hollow fiber having virus removal performance is a so-called neuron-like void capillary structure (T, Tsurumi,
et aCPolynm, J., 22.304 (
1990)) has a structure expressed as a laminate of 20 or more layers. That is, the pore structure of the above-mentioned layers is a neuron-like void capillary expressed as a connected body of capillary-like thin pores (capillary) with a diameter of 5 to 80 nm and lump-like pores (voids) of 100 to 2000 nm. , a structure in which the holes are stacked in a stacked manner in the wall thickness direction, and the probability that voids are directly connected between the stacked layers is minimized. To produce hollow fibers with these suitable pore structures, (a)
The particles generated by microphase separation (in the case where the particles are polymeric dense phases) are grown so that the diameter is 50 nm or more and 11000 nm or less. ) Conditions in which the composition and temperature of the spinning dope and coagulation liquid are strictly controlled in order to cause phase separation to occur almost simultaneously in each plane and (d) to proceed along the wall thickness direction, and to prevent contamination of foreign matter as much as possible. It is important to minimize the tension applied to the hollow fibers that are spun underneath and during the winding process. The average pore diameters of the outer wall surface and the inner wall surface can be set almost arbitrarily by controlling the composition of the coagulating liquid and the hollowing agent.

本発明に用いる中空糸の外観上の形状は、内径が0.2
mm以上1mm以下であり壁厚は25μm以上であるこ
とが必要である。内径は当然、細胞の直径以上でなくて
はならず、実際には細胞が流動できる空隙部としては直
径の2倍以上が必要である。
The external shape of the hollow fiber used in the present invention is that the inner diameter is 0.2
It is necessary that the wall thickness is 25 μm or more and the wall thickness is 25 μm or more. Naturally, the inner diameter must be greater than or equal to the diameter of the cell, and in reality, the cavity in which the cells can flow needs to be at least twice the diameter.

実際は長時間安定に目ずまりなく溶液(1)を定常的に
流し、かつ死滅細胞を系外へ除去するには内径が0.2
mm以上であることが必要である。内径が1mmを越え
ると生存細胞も系外へ流出し、かつ中空糸としての形態
保持性が減少する。中空糸の素材として銅アンモニア法
再生セルロースを採用すると、水の共存下では内径が1
印を越えるとこの形態保持性は極めて悪くなり、破裂強
度も著しく低下する。壁厚は25μm以上でなくてはな
らない。
In reality, the inner diameter is 0.2 in order to steadily flow solution (1) without clogging for a long time and to remove dead cells from the system.
It is necessary that the diameter is not less than mm. If the inner diameter exceeds 1 mm, viable cells will also flow out of the system, and the shape retention of the hollow fiber will decrease. When copper ammonia regenerated cellulose is used as the hollow fiber material, the inner diameter becomes 1 in the coexistence of water.
Beyond this mark, the shape retention becomes extremely poor and the bursting strength is also significantly reduced. The wall thickness must be at least 25 μm.

銅アンモニア法セルロースは親水性素材のため水溶液に
浸漬した状態での強度を高めるためには壁厚は大きくす
ることが必要であり、また、ウィルス除去性能を保証す
るためには実用的には壁厚は25μm以上が必要である
Since cuprammonium cellulose is a hydrophilic material, it is necessary to increase the wall thickness in order to increase its strength when immersed in an aqueous solution. The thickness needs to be 25 μm or more.

実際に生理活性物質を安定して産生ずるためには、あら
かじめ生理活性物質を産生ずるように設計された微生物
あるいは細胞が、予測されない微生物あるいはウィルス
に汚染されないことが肝要である。そのためには回路(
1)内の溶液(1)の流入口には前述のウィルス除去性
能をもつ中空糸を設置することが好ましい。この際、当
然上記中空糸の濾液側は回路(1)への流入口である。
In order to actually stably produce physiologically active substances, it is important that microorganisms or cells designed in advance to produce physiologically active substances are not contaminated by unexpected microorganisms or viruses. To do this, a circuit (
It is preferable to install a hollow fiber having the above-mentioned virus removal performance at the inlet of the solution (1) in 1). At this time, the filtrate side of the hollow fiber is naturally the inlet to the circuit (1).

本発明方法の特徴は産生ずる生理活性物質を系外へ流出
するのに主として限外濾過法を利用する点にある。すな
わち、本発明は、回路(1)の圧力が回路(2)より高
い必要がある。この限外濾過法の採用により、ウィルス
除去性能をもつ中空糸の物質透過率は、分子量が400
XIO”以下であればほぼ95%以上となり、溶液(1
)の組成を定常値に保つことが可能となる。
A feature of the method of the present invention is that ultrafiltration is mainly used to drain the produced physiologically active substance out of the system. That is, in the present invention, the pressure in circuit (1) needs to be higher than that in circuit (2). By adopting this ultrafiltration method, the material permeability of hollow fibers with virus removal performance has been increased to 400% by molecular weight.
If it is less than XIO", it will be approximately 95% or more,
) can be maintained at a steady value.

本発明は、回路(1)内部の溶液(1)の流路に沿って
平均孔径2〒〒を異にするウィルス除去性能を有する中
空糸を複数個並列に設置することが好ましい。さらに、
回路(2)をそれぞれの中空糸の濾液側すなわち、中空
糸を介して溶液(1)と反対側の膜面側に設置すれば、
2rfに対応した一定の濾過液組成を個別に1回収する
ことが可能となりかつ下流側には高分子量物を濃縮する
ことも可能となる。
In the present invention, it is preferable that a plurality of hollow fibers having virus removal performance having different average pore diameters of 2 mm are installed in parallel along the flow path of the solution (1) inside the circuit (1). moreover,
If the circuit (2) is installed on the filtrate side of each hollow fiber, that is, on the membrane side opposite to the solution (1) via the hollow fiber,
It becomes possible to individually recover a fixed filtrate composition corresponding to 2rf, and it also becomes possible to concentrate high molecular weight substances on the downstream side.

また本発明は、回路(1)に残存し浮遊する死滅した微
生物又は細胞を系外へ除去するための回路(3)を設置
することが好ましく、この回路(3)に除菌用フィルタ
ー(以下、GFと略称)が設置されていれば、定期的に
GFをとりかえることにより糸外へ死滅した微生物、細
胞を除去することが可能となる。
Further, in the present invention, it is preferable to install a circuit (3) for removing dead microorganisms or cells floating in the circuit (1) from the system, and this circuit (3) is provided with a sterilization filter (hereinafter referred to as , GF) is installed, it becomes possible to remove dead microorganisms and cells from the thread by periodically replacing the GF.

本発明方法の具体的適用例としては、 (1)ウィルスあるいはマイコプラズマに感染した細胞
から産生ずる生理活性物質を回収し、上記物質を医薬品
原料として利用する製薬分野、(2)遺伝子操作によっ
て組み込まれた遺伝子を有する細胞あるいは微生物から
産生ずる生理活性を有するタンパク質を回収し医薬品を
製造する遺伝子工学分野、 (3)マイコプラズマあるいは多細胞生物の細胞から産
生ずる生理活性物質を回収し、上記物質を医薬品原料と
して利用する製薬分野、 等がある。
Specific application examples of the method of the present invention include (1) the pharmaceutical field, where physiologically active substances produced from cells infected with viruses or mycoplasma are recovered and used as raw materials for pharmaceuticals; (2) bioactive substances that are incorporated by genetic manipulation; (3) The field of genetic engineering, in which physiologically active proteins produced from cells or microorganisms containing genes are recovered to produce pharmaceuticals; There are pharmaceutical fields where it is used as a raw material, etc.

〔実施例〕〔Example〕

以下、本発明の方法を実施例により具体的に示す。 Hereinafter, the method of the present invention will be specifically illustrated by examples.

なお、本発明で測定される種々の物性値の測定方法を以
下にまとめて示す。
Note that methods for measuring various physical property values measured in the present invention are summarized below.

(1)  タンパク濃度:アルブミンの場合は紫外線吸
収スペクトルの波長280nmの透過率を測定し、予め
定めた検量線を用いて算出する。溶液中の総タンパク濃
度は、ビュウレット試薬による呈色反応を540nmで
の吸光度の測定値から算出される。
(1) Protein concentration: In the case of albumin, the transmittance at a wavelength of 280 nm in the ultraviolet absorption spectrum is measured and calculated using a predetermined calibration curve. The total protein concentration in the solution is calculated from the absorbance measured at 540 nm in a color reaction with Biuret's reagent.

(2)ウィルス除去性能:1100nの径をもつウィル
スとしてHIV (例えば HIV−1)を採用する。
(2) Virus removal performance: HIV (eg, HIV-1) is used as a virus with a diameter of 1100 nm.

ウィルス除去性能を有する中空糸による濾過前後のHI
V濃度をプラーク形成法で測定した。
HI before and after filtration with hollow fibers that have virus removal performance
V concentration was measured by plaque formation method.

(3)平均孔径2r+  (nm単位):純水をあらか
じめ平均孔径0,22μmミリポア社製のフィルター(
商品名 MFシリーズ)を用いて濾過し、微粒子を除去
した純水を作る。この純水を200Cで膜間差圧ΔP2
00mmHgの一定圧力下で濾過速度Jvを測定する。
(3) Average pore size 2r+ (nm unit): Pure water is pre-filtered through a Millipore filter with an average pore size of 0.22 μm (
(Product name: MF series) to remove particulates and create pure water. This pure water is heated to 200C with transmembrane pressure ΔP2
The filtration rate Jv is measured under a constant pressure of 00 mmHg.

ただしJVの単位は一/分である。測定に使用した中空
糸の有効濾過面積をAtn’とし、見掛は密度法で得ら
れた該中空糸の空孔率をPrρとすると平均孔径2〒〒
は次式で与えられる。
However, the unit of JV is 1/minute. The effective filtration area of the hollow fiber used in the measurement is Atn', and the apparent porosity of the hollow fiber obtained by the density method is Prρ, then the average pore diameter is 2〒〒
is given by the following equation.

2〒〒=2.0(Jv−d −77/八P−A−Prρ
)1″ここで、dは膜厚(μm単位)、ηは純水の粘度
(センチポイズ単位)。空孔率Prρは水膨潤時の見掛
は密度ρ、1、セルロースの密度ρ。
2〒〒=2.0(Jv-d -77/8P-A-Prρ
) 1'' where d is the film thickness (in μm), η is the viscosity of pure water (in centipoise), and the porosity Prρ is the apparent density ρ when swollen with water, 1, and the density ρ of cellulose.

(1,561g /ml)を用いてPrρ−(1−ρ8
w/ρ、)の式から求められる値 実施例 1 セルロースリンターを精製し、これを公知の方法で調製
した銅アンモニア溶液(銅アンモニア/水の重量比が3
.7/6.3/90.1)中に4.5〜5.5重量%の
範囲内の所定の濃度で溶解し、濾過後脱泡し紡糸原液を
25.0±0.1°Cに温度制御しつつ中央環状紡出口
(外径1.4mmφ)より2.:W/分で吐出させた。
(1,561 g/ml) and Prρ-(1-ρ8
Value obtained from the formula w/ρ, ) Example 1 Cellulose linter was purified and a cupric ammonia solution (copper ammonia/water weight ratio of 3) was prepared by a known method.
.. 7/6.3/90.1) at a predetermined concentration within the range of 4.5 to 5.5% by weight, filtered and defoamed, and the spinning stock solution was heated to 25.0 ± 0.1 °C. While controlling the temperature, 2. : Discharged at W/min.

一方、水/アセトン/アンモニア比100、0 /49
.0〜56.010.86〜0.92(重量比)の所定
の重量比に厳密に組成が制御された溶液(中空剤)を採
用し、これを25.0±0.1°Cに温度制御しつつ中
央紡出口(外径0.4mmφ)より4.177+7!/
分で吐出させた。吐出された糸状物を水/アセトン/ア
ンモニア比100.0158.0〜65.010.85
〜1゜10(重量比)の所定の重量比に厳密に組成が制
御された25.0±0.1℃の混合溶液中に直接導き該
溶液中で4.5m/分の速度で巻き取った。吐出直後の
透明青色状の繊維状物は次第にミクロ相分離を生起し、
透明度が減少し、引き続いて凝固が起こり、繊維として
の構造が形成された。その後、25゜0±0.5°Cで
2重量%の硫酸水溶液で定長で再生し、その後水洗した
。ついで得られた中空糸を20.0℃で真空乾燥した。
On the other hand, water/acetone/ammonia ratio 100, 0/49
.. A solution (hollow agent) whose composition is strictly controlled to a predetermined weight ratio of 0 to 56.010.86 to 0.92 (weight ratio) is adopted, and the solution is heated to 25.0 ± 0.1 °C. 4.177+7 from the central spinning spout (outer diameter 0.4mmφ) while controlling! /
It was discharged in minutes. The discharged filamentous material is treated with a water/acetone/ammonia ratio of 100.0158.0 to 65.010.85.
It is directly introduced into a mixed solution at 25.0±0.1°C whose composition is strictly controlled to a predetermined weight ratio of ~1°10 (weight ratio) and wound up at a speed of 4.5 m/min in the solution. Ta. Immediately after being discharged, the transparent blue-colored fibrous material gradually undergoes microphase separation,
Transparency decreased, followed by coagulation and formation of a fibrous structure. Thereafter, it was regenerated at a constant length with a 2% by weight aqueous sulfuric acid solution at 25°0±0.5°C, and then washed with water. The obtained hollow fibers were then vacuum dried at 20.0°C.

かくして得られた中空糸の外径は上記紡糸条件に依存し
て350〜400μm1壁厚は35〜42μm、内径は
290〜320μmであった。該中空糸の内外壁面は、
フィールドエミッション型走査型電子顕微鏡による観察
によれば両壁面はいずれもネットワーク構造をとり、ま
た該ネットワーク構造をもつ層状物が堆積した多層構造
を示す。得られた中空糸の27了は上記紡糸条件に対応
して30.35.40.50.75.85nmであった
。これらの中空糸を用いて有効濾過面積0.03rri
’のモジュールを成形した。得られたこれらのモジュー
ルを用いてHIVを106PFU/d含む水溶液を濾過
した際の濾液のいずれについてもHIV濃度は検出感度
(0,3PFU/d)以下であり濾液の感染性は認めら
れなかった。これらのモジュールを用いて第1図の装置
に組み立てた。タンク(7)内にはRPMI−メゾイム
(Medium)  1600 (G I BCO社製
)に10%濃度のFe2 (フエタル カラ セルム(
Fetal Caw 5erurn ) )を加え、温
度を37°Cに制御し、成人T細胞白血病ウィルス(H
TLV−1)感染したMT−4細胞、100I U/m
l’a度のペニシリンと100 g/−のストレプトマ
イシンとを混入し、常時02/Co、を溶解させた。バ
ルブ(8)を調整してポンプ(11)により回路(1)
内の圧力を200mmHgとし、該モジュール内の温度
も37℃に設定した。回路(2)のバルブ(8)により
濾液の回収速度を1β/日に設定し、連続2週間同一速
度で回収した。得られた濾液中には感染性を示すHIV
粒子、マイコプラズマは観察されず、HtVの殻タンパ
ク(P24等)が回収された。
The outer diameter of the hollow fibers thus obtained was 350 to 400 μm, the wall thickness was 35 to 42 μm, and the inner diameter was 290 to 320 μm, depending on the above-mentioned spinning conditions. The inner and outer wall surfaces of the hollow fiber are
Observation using a field emission scanning electron microscope shows that both wall surfaces have a network structure and a multilayer structure in which layered materials having the network structure are deposited. The diameter of the hollow fiber obtained was 30.35.40.50.75.85 nm corresponding to the above spinning conditions. Effective filtration area of 0.03rr using these hollow fibers
'The module was molded. When an aqueous solution containing 106 PFU/d of HIV was filtered using these obtained modules, the HIV concentration in all of the filtrate was below the detection sensitivity (0.3 PFU/d), and no infectivity was observed in the filtrate. . The apparatus shown in FIG. 1 was assembled using these modules. In the tank (7), RPMI-Medium 1600 (manufactured by GI BCO) with 10% concentration of Fe2 (Fetal Cala Serum) was added.
Adult T-cell leukemia virus (H
TLV-1) infected MT-4 cells, 100 I U/m
l'a degree of penicillin and 100 g/- of streptomycin were mixed, and 02/Co was constantly dissolved. Adjust valve (8) and pump (11) to circuit (1)
The pressure inside the module was set at 200 mmHg, and the temperature inside the module was also set at 37°C. The collection rate of the filtrate was set to 1β/day using the valve (8) of the circuit (2), and the collection was carried out at the same rate for two consecutive weeks. The resulting filtrate contains infectious HIV.
No particles or mycoplasma were observed, and HtV shell proteins (P24, etc.) were recovered.

〔発明の効果〕〔Effect of the invention〕

本発明方法により従来の中空糸培養法では不可能であっ
た、変性していない高活性の生理活性物質を高収率でマ
イコプラズマおよびウィルスが混7人しない状態で回収
することができる。また発明方法の装置により小型容器
内で、連続的に環境を汚染することなく安全に生理活性
物質を回収することが出来る。
By the method of the present invention, undenatured, highly active physiologically active substances can be recovered in high yields without contamination with mycoplasma and viruses, which was not possible with conventional hollow fiber culture methods. Furthermore, the apparatus of the invention method allows physiologically active substances to be safely recovered in a small container without contaminating the environment continuously.

(以下余白) 2〇−(Margin below) 20-

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する簡単な装置例を模式的に
示すフローチャート。第2図は第1図をさらに改良した
装置例を模式的に示すフローチャートである。 1−・・回路(1)、2・・・回路(2)、3a、3b
、3c。 3d・・・ウィルス除去性能をもつ中空糸で構成された
モジュール、土且、土亘・・・回路(1)を流れる溶液
(1)の除菌あるいは除ウィルス用中空糸で構成された
モジュール、5・・・回路(3)、6・・・死滅細胞と
生細胞とを分離するフィルター、7・・・培養用の栄養
源をたくわえるタンク、8・・・生理活性物質を含む回
収濾液をたくわえるタンク、9・・・栄養液あるいは酸
素、炭酸ガス等の組成を調節するための液補給用パイプ
、10・・・流量制御用のバルブ、11・・・回路(1
)内に設置された溶液(1)を流動させ、かつ回路(1
)の圧力を回路(2)の圧力より高くするためのポンプ 特許出願人  旭化成工業株式会社
FIG. 1 is a flowchart schematically showing an example of a simple apparatus for carrying out the method of the present invention. FIG. 2 is a flowchart schematically showing an example of a device that is further improved from FIG. 1-...Circuit (1), 2...Circuit (2), 3a, 3b
, 3c. 3d...Module made up of hollow fibers with virus removal performance, Dowata...Module made up of hollow fibers for sterilization or virus removal of solution (1) flowing through circuit (1), 5...Circuit (3), 6...A filter that separates dead cells from living cells, 7...A tank that stores a nutrient source for culture, 8...A collection filtrate containing physiologically active substances that is stored. Tank, 9...Liquid replenishment pipe for adjusting the composition of nutrient solution or oxygen, carbon dioxide, etc., 10...Valve for flow rate control, 11...Circuit (1
) is made to flow through the solution (1) installed in the circuit (1).
) Pump for making the pressure higher than the pressure in circuit (2) Patent applicant: Asahi Kasei Corporation

Claims (1)

【特許請求の範囲】[Claims] 1、微生物又は組織細胞の活動により産生する生理活性
を有する物質を回収する方法において、[1]上記生理
活性を有する物質と上記微生物又は組織細胞とを分離す
るための中空糸膜を介して、上記微生物又は組織細胞の
生育に必須な養分、酸素および炭酸ガスを溶解した溶液
を流動させる回路(1)と、上記生理活性を有する物質
を系外へ除去する回路(2)とを有し、かつ[2]上記
中空糸膜は平均孔径2@r_f@が20nm〜100n
m、壁厚25μm以上、内径0.2mm以上1mm以下
であり、しかも再生セルロースを主たる素材とする親水
性高分子で構成されたウィルス除去性能をもつ中空糸で
あり、さらに[3]上記回路(1)の圧力が上記回路(
2)の圧力より高いことを特徴とする生理活性を有する
物質の回収方法。
1. In a method for recovering a physiologically active substance produced by the activity of a microorganism or tissue cell, [1] Through a hollow fiber membrane for separating the physiologically active substance and the microorganism or tissue cell, It has a circuit (1) for flowing a solution containing dissolved nutrients, oxygen and carbon dioxide essential for the growth of the microorganisms or tissue cells, and a circuit (2) for removing the physiologically active substance from the system, and [2] The hollow fiber membrane has an average pore diameter 2@r_f@ of 20 nm to 100 nm.
m, a wall thickness of 25 μm or more, an inner diameter of 0.2 mm or more and 1 mm or less, and is a hollow fiber with virus removal performance composed of a hydrophilic polymer whose main material is regenerated cellulose, and [3] the above circuit ( 1) The pressure in the above circuit (
2) A method for recovering a physiologically active substance, characterized in that the pressure is higher than the pressure of 2).
JP25536390A 1990-09-27 1990-09-27 Recovery of physiologically active substance Pending JPH04135492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25536390A JPH04135492A (en) 1990-09-27 1990-09-27 Recovery of physiologically active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25536390A JPH04135492A (en) 1990-09-27 1990-09-27 Recovery of physiologically active substance

Publications (1)

Publication Number Publication Date
JPH04135492A true JPH04135492A (en) 1992-05-08

Family

ID=17277738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25536390A Pending JPH04135492A (en) 1990-09-27 1990-09-27 Recovery of physiologically active substance

Country Status (1)

Country Link
JP (1) JPH04135492A (en)

Similar Documents

Publication Publication Date Title
EP1206961B1 (en) Filter membranes for physiologically active substances
JPH01148305A (en) High molecular porous hollow yarn and process for removing virus utilizing the same
JPH11513909A (en) Extraluminal plasma separation and exchange device
JP2018076291A (en) Method of recovering useful substances from continuous culture
JP2016054686A (en) Recovery method of cultural product
US9272245B2 (en) Filtration method
JP2804055B2 (en) Preparation method of non-infectious substance containing virus antigen or antibody
JPS60142860A (en) Virus removing method
JP2832835B2 (en) Virus removal method
JPH04135492A (en) Recovery of physiologically active substance
KR20240038923A (en) Method for isolation and purification of extracellular vesicles
GB2192149A (en) Hollow cellulose ester fibre and its use for plasma separation
CN116943442B (en) Preparation method of ultrafiltration membrane with controllable thickness of humidity sensing small pore layer and ultrafiltration equipment
WO2021153093A1 (en) Separation substrate, cell separation filter, and platelet production method
JPH03173824A (en) Leukocyte separator
EP0264931A2 (en) A membrane for the separation of blood plasma components
JPH0211263B2 (en)
JP2009095701A (en) Multistage multilayer flat membrane
JPH01254204A (en) Method for removing virus
JPH03196819A (en) Method for removing mycoplasma
JPH03146067A (en) Blood plasma filtering method
Sakai et al. Low-temperature plasma separation by cross-flow filtration with microporous glass membranes
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JPH01192368A (en) Viral disease medical treatment system
JPH03228671A (en) Porous regenerated cellulose membrane for removing mycoplasma and removal of mycoplasma