JPH04134855A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04134855A
JPH04134855A JP25778690A JP25778690A JPH04134855A JP H04134855 A JPH04134855 A JP H04134855A JP 25778690 A JP25778690 A JP 25778690A JP 25778690 A JP25778690 A JP 25778690A JP H04134855 A JPH04134855 A JP H04134855A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
well
aluminum
wiring layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25778690A
Other languages
Japanese (ja)
Inventor
Mamoru Kitamura
守 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25778690A priority Critical patent/JPH04134855A/en
Publication of JPH04134855A publication Critical patent/JPH04134855A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent aluminum spike by connecting to a metallic wiring layer of a substrate electric potential of a scribe line in a semiconductor device using an input protecting device and by providing an auxiliary protecting device. CONSTITUTION:An auxiliary protecting device 17 is provided, which consists of an N<+>-type diffusion layer 5 connected to an aluminum wiring layer 7 through a contact hole 6 and an N<+>-type diffusion layer 2 which is connected to an N well 4 and an aluminum wiring layer 1 through a contact hole 3 at a fixed distance d3 with the layer 5. When a negative high voltage is applied to an input pin, electron injected from a diffusion layer resistance part passes through the aluminum wiring layer 7 of a scribe line and goes out of the layer 5 to a substrate again, and attains the N well 4 of ground level. Therefore, aluminum spike is not generated in a periphery of a pad. Although a layer 1 of ground level and a contact hole 3 exist in the N well 4, aluminum spike, if generated, does not matter at all since they are enclosed with the N well 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に負電圧の静電気による
破壊を防止する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device that prevents damage due to negative voltage static electricity.

〔従来の技術〕[Conventional technology]

従来、半導体装1の入力保護は、一般的に第3図の等価
回路で示すものが用いられている。
Conventionally, for input protection of the semiconductor device 1, the equivalent circuit shown in FIG. 3 has generally been used.

この等価回路は、半導体基板と逆導電型の拡散層抵抗R
と、拡散層抵抗Rと半導体基板とのダイオードDと、ゲ
ートとソースが接地端に、ドレインが抵抗Rの終端にそ
れぞれ接続されたトランジスタQにより構成されている
This equivalent circuit is a diffusion layer resistance R of a conductivity type opposite to that of the semiconductor substrate.
, a diffusion layer resistor R, a diode D connected to the semiconductor substrate, and a transistor Q whose gate and source are connected to a ground terminal, and whose drain is connected to the terminal end of the resistor R.

拡散層抵抗Rは、入力端子Pに加えられた入力パルス波
形をなまらせトランジスタQが導通状態になった際に1
を流を制限することと、ダイオードとして高電圧が加え
られた時にブレイクダウンして基板に電流を流す働きが
ある。トランジスタQはバンチスルー素子でソース・ド
レイン間に20V前後の電圧が加えられると導通し入力
電圧をりランプする働きがある。
The diffusion layer resistance R is 1 when the input pulse waveform applied to the input terminal P is blunted and the transistor Q becomes conductive.
It has the function of limiting the current, and as a diode, it breaks down when high voltage is applied and allows current to flow through the board. Transistor Q is a bunch-through element that becomes conductive when a voltage of around 20V is applied between the source and drain and has the function of ramping the input voltage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の入力保護装置は、以下に示す様な問題点
がある。
The conventional input protection device described above has the following problems.

P型半導体基板を用いる場合、第3図において、入力端
子Pに負電圧が印加されるとトランジスタQが導通状態
となる接地端から入力端子に電流が流れ込んでくるが、
入力端子Pに異常な負電圧が印加された場合、N+型の
拡散層抵抗RとP型半導体基板のダイオードDが順方向
となり、大部分の電子が基板中に注入され、パッド周辺
にある接地レベルのN+型型数散層内側回路のトランジ
スタのソース領域)に到達する。その結果、接地レベル
のN3型拡散層がら基板を通して入力端子に大電流が流
れることになり、接地レベルのアルミニウム配線とN+
型型数散層コンタクトでアルミニウムスパイクを起こし
接地レベルのアルミニウム配線と基板が短絡してしまう
When a P-type semiconductor substrate is used, in FIG. 3, when a negative voltage is applied to the input terminal P, the transistor Q becomes conductive, and current flows into the input terminal from the ground terminal.
When an abnormal negative voltage is applied to the input terminal P, the N+ type diffusion layer resistance R and the P type semiconductor substrate diode D become forward-oriented, and most electrons are injected into the substrate and connected to the ground around the pad. (the source region of the transistor of the N+ type scatter layer inner circuit). As a result, a large current flows through the ground-level N3 type diffusion layer to the input terminal through the substrate, and the ground-level aluminum wiring and N+
Aluminum spikes occur in the multilayer contact, resulting in a short circuit between the ground-level aluminum wiring and the board.

〔課題を解決するための手段〕 本発明は、半導体基板と逆導電型の不純物拡散層を有す
る入力保護装置を用いた半導体装1において、前記人力
保護装置と所定の距離を隔てて設けられた、スクライブ
線の基板電位の金属配線層と、前記金属配線層に接続さ
れた、半導体基板と逆導電型の第1の不純物拡散層、前
記第1の不純物拡散層と所定の距離隔てて設けられた半
導体基板と逆導電型のウェル及び前記ウェル内に設けら
れた、接地レベル又は電源レベルの金属配線層に接続さ
れた半導体基板と逆導電型の第2の不純物拡散層を有す
る補助保護装置が設けられているというものである。
[Means for Solving the Problems] The present invention provides a semiconductor device 1 using an input protection device having an impurity diffusion layer of a conductivity type opposite to that of a semiconductor substrate, which is provided at a predetermined distance from the human power protection device. , a metal wiring layer of the substrate potential of the scribe line, a first impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate and connected to the metal wiring layer, and provided at a predetermined distance from the first impurity diffusion layer. The auxiliary protection device includes a well having a conductivity type opposite to that of the semiconductor substrate, and a second impurity diffusion layer having a conductivity type opposite to the semiconductor substrate, which is connected to a metal wiring layer at a ground level or a power supply level provided in the well. It is said that it is set up.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例の全体の構成を示す平
面図、第1図(b)は一実施例の主要部である補助保護
装置を示す平面図、第1図(c)は第1図(b)のA−
A線断面図である。
FIG. 1(a) is a plan view showing the overall configuration of an embodiment of the present invention, FIG. 1(b) is a plan view showing an auxiliary protection device which is the main part of the embodiment, and FIG. ) is A- in Figure 1(b)
It is an A-line sectional view.

入力保護装置14(第3図の回路図で示されるの)から
距離dl(入力保護装置14と内部回路領域lb間の距
離d2より大きい)のところに基板電位のアルミニウム
の配線層7が設けられている。すなわち、このアルミニ
ウム配線層7はスクライブ線のP+拡散層8に接続され
ている。
An aluminum wiring layer 7 at a substrate potential is provided at a distance dl from the input protection device 14 (as shown in the circuit diagram of FIG. 3) (greater than the distance d2 between the input protection device 14 and the internal circuit area lb). ing. That is, this aluminum wiring layer 7 is connected to the P+ diffusion layer 8 of the scribe line.

アルミニウム配線層7にコンタクト孔6を介して接続さ
れたN+型型数散層5形成されており、そのN”型拡散
層5と一定の距離d3を隔ててNウェル4が形成されて
いる。Nウェル4内には、接地レベルのアルミニウム配
線層1にコンタクト孔3を介して接続されたN+型型数
散層2形成されておりNウェル4を接地レベルに保って
いる。
An N+ type diffused layer 5 is formed connected to the aluminum wiring layer 7 through a contact hole 6, and an N well 4 is formed at a constant distance d3 from the N'' type diffused layer 5. In the N well 4, an N+ type scattering layer 2 is formed which is connected to the aluminum wiring layer 1 at the ground level through a contact hole 3, and keeps the N well 4 at the ground level.

N1型拡散層2.5、P+型拡散層8間にはそれぞれ厚
いフィールド酸化M11が形成されており、最上層にカ
バー膜9が形成されている。なお、N4型拡散層5とN
ウェル4の距離d3はデバイスの信頼性を考慮すると2
0μm程度である。
A thick field oxide M11 is formed between the N1 type diffusion layer 2.5 and the P+ type diffusion layer 8, and a cover film 9 is formed on the top layer. Note that the N4 type diffusion layer 5 and the N4 type diffusion layer 5
The distance d3 of well 4 is 2 considering the reliability of the device.
It is about 0 μm.

次に本発明の動作について説明する。Next, the operation of the present invention will be explained.

入力ピンに接地端子に対して負の高電圧が印加された場
合、入力保護部に例えばN+型の拡散層抵抗を使用して
いると、パッドのアルミニウム層に接続されたN+型の
拡散層部から基板に大量の電子が注入され、それらの電
子が経路Iを通ってパッド周辺のトランジスタの接地レ
ベルのN+型型数散層到達し、アルミニウム層とN1型
拡散層のコンタクトに大電力が流れスパイクを引き起こ
す。そのため、パッドのアルミニウム層とN+型型数散
層コンタクト15は通常、スクライブ線よりに設けられ
る。
When a negative high voltage is applied to the input pin with respect to the ground terminal, if an N+ type diffusion layer resistor is used for the input protection section, the N+ type diffusion layer resistor connected to the aluminum layer of the pad will A large amount of electrons are injected into the substrate, and these electrons pass through path I and reach the N+ type diffused layer at the ground level of the transistor around the pad, causing a large amount of power to flow to the contact between the aluminum layer and the N1 type diffusion layer. cause spikes. Therefore, the aluminum layer of the pad and the N+ type scattered layer contact 15 are usually provided closer to the scribe line.

しかし、本発明の補助保護装置を設けると、拡散層抵抗
部より注入された電子は、パッド周辺のトランジスタの
接地レベルの拡散層に到達するよりも、スクライブ線の
アルミニウム配線層7を通ってN“型拡散層5がら再び
基板に抜け、すぐ近くの接地レベルのNウェル4に到達
する(第1図(a)の経路■)、つまり、パッドのアル
ミニウム層と接続されたN+型の拡散層抵抗の部分から
パッドの周辺のトランジスタの接地レベルのN+型型数
散層到達するまでの基板抵抗より、パッドのアルミニウ
ムと接続されたN”型の拡散層の部分からスクライブ線
への基板抵抗と、パッドに対応する位買から補助保護領
域までのスクライブ線のアルミニウム配線層7の抵抗と
、N+型型数散層5ら基板を通してNウェル4までの抵
抗との合計の抵抗値の方がかなり小さいので、大部分の
電流は、接地レベルのNウェル4からパッドに流れ込む
。そのため、パッドの周辺でアルミニウムスパイクが発
生しない。しかも、接地レベルのNウェル4内には接地
レベルのアルミニウム配線層lとN+型型数散層2コン
タクト孔3があるが、アルミニウムスパイクが発生して
も、Nウェル4に囲まれているために問題はない。
However, when the auxiliary protection device of the present invention is provided, the electrons injected from the diffusion layer resistor pass through the aluminum wiring layer 7 of the scribe line, rather than reaching the diffusion layer at the ground level of the transistor around the pad. “The type diffusion layer 5 passes through the substrate again and reaches the nearby N well 4 at the ground level (route ■ in Fig. 1(a)), that is, the N+ type diffusion layer connected to the aluminum layer of the pad. The substrate resistance from the N'' type diffusion layer connected to the aluminum of the pad to the scribe line is greater than the substrate resistance from the resistor to the N+ type diffused layer at the ground level of the transistor around the pad. , the total resistance value of the resistance of the aluminum wiring layer 7 of the scribe line from the pad corresponding to the pad to the auxiliary protection area and the resistance from the N+ type scattering layer 5 to the N well 4 through the substrate is considerably larger. Since it is small, most of the current flows into the pad from the N-well 4 at ground level. Therefore, aluminum spikes do not occur around the pad. Furthermore, although there is an aluminum wiring layer 1 at the ground level and an N+ type scattering layer 2 contact hole 3 in the N well 4 at the ground level, even if an aluminum spike occurs, it is surrounded by the N well 4. There is no problem.

また、接地レベルのアルミニウム配線層1を電源レベル
のアルミニウム配線に変えれば、電源端子に対して入力
ビンに負の高電圧が印加された場合の保護機能を持つの
はいうまでしない。
Moreover, if the aluminum wiring layer 1 at the ground level is replaced with an aluminum wiring at the power supply level, it goes without saying that a protection function is provided when a negative high voltage is applied to the input bin with respect to the power supply terminal.

なお、本発明は、半導体ICのチップ内のどのような所
に設置されても効果は変わらない、また、上記実施例は
P型半導体基板であったが、不純物拡散層の電導型を反
対にすればN型半導体基板でもよい。
Note that the present invention has the same effect no matter where it is installed in the chip of a semiconductor IC.Also, although the above embodiment used a P-type semiconductor substrate, it is possible to reverse the conductivity type of the impurity diffusion layer. If so, an N-type semiconductor substrate may be used.

第2図は本発明の一実施例の変形を示す平面図である。FIG. 2 is a plan view showing a modification of one embodiment of the present invention.

スクライブ線の基板電位のアルミニウム配w17に接続
されているアルミニウム配線13がコンタクト孔6を介
してN+型型数散層5接続されており、そのN”型拡散
層5と一定の距離を隔てて、まわりを囲むようにNウェ
ル4が形成されている。Nウェル4内には、接地レベル
のアルミニウム配線層1にコンタクト孔3を介して接続
されたN+型型数散層2形成された構造となっている。
The aluminum wiring 13 connected to the aluminum wiring w17 of the substrate potential of the scribe line is connected to the N+ type diffused layer 5 through the contact hole 6, and is separated from the N'' type diffused layer 5 by a certain distance. , an N well 4 is formed to surround the periphery.In the N well 4, an N+ type scattered layer 2 is formed which is connected to an aluminum wiring layer 1 at a ground level via a contact hole 3. It becomes.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明はスクライブ線の基板電位の
金属配線層に接続された半導体基板と逆導電型の第1の
不純物拡散層、前記第1の不純物拡散層と所定の距離を
隔てて設けられた半導体基板と逆導電型のウェルおよび
前記ウェル内に設けられた。接地レベル又は電源レベル
の金属配線層に接続された半導体基板と逆導電型の第2
の不純物拡散層を有する補助保護装置を設けることによ
って、入力端子に印加された負の高電圧に対して耐圧を
向上させることができる。また、半導体ICのチップの
どのような場所にも設置できるのでレイアウト的に構成
が容易であるという効果を有する。
As explained above, the present invention includes a semiconductor substrate connected to a metal wiring layer at a substrate potential of a scribe line, a first impurity diffusion layer of an opposite conductivity type, and a first impurity diffusion layer separated from the first impurity diffusion layer by a predetermined distance. A well having a conductivity type opposite to that of the provided semiconductor substrate and a well provided within the well. A second conductivity type opposite to the semiconductor substrate connected to the metal wiring layer at the ground level or power supply level.
By providing the auxiliary protection device having the impurity diffusion layer, it is possible to improve the withstand voltage against the negative high voltage applied to the input terminal. Furthermore, since it can be installed at any location on a semiconductor IC chip, it has the effect of simplifying the configuration in terms of layout.

ルミニウム配線層、14・・・入力保護装置(パッドを
含む)、15・・・パッドのアルミニウム層とN+型の
拡散層抵抗の接続部、16・・・内部回路領域、17・
・・補助保護装置。
aluminum wiring layer, 14...input protection device (including pad), 15... connection portion between aluminum layer of pad and N+ type diffusion layer resistor, 16... internal circuit area, 17.
...Auxiliary protection device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例の全体構成を示す平面
図、第1図(b)は一実施例における補助保護装置の平
面図、第1図(c)は第1図(b)のA−A線断面図、
第2図は一実施例の変形を示す平面図、第3図は従来の
入力保護装置の等価回路である。
FIG. 1(a) is a plan view showing the overall configuration of one embodiment of the present invention, FIG. 1(b) is a plan view of an auxiliary protection device in one embodiment, and FIG. AA line cross-sectional view of b),
FIG. 2 is a plan view showing a modification of one embodiment, and FIG. 3 is an equivalent circuit of a conventional input protection device.

Claims (1)

【特許請求の範囲】 1、半導体基板と逆導電型の不純物拡散層を有する入力
保護装置を用いた半導体装置において、前記入力保護装
置と所定の距離を隔てて設けられた、スクライブ線の基
板電位の金属配線層と、前記金属配線層に接続された、
半導体基板と逆導電型の第1の不純物拡散層、前記第1
の不純物拡散層と所定の距離隔てて設けられた半導体基
板と逆導電型のウェル及び前記ウェル内に設けられた、
接地レベル又は電源レベルの金属配線層に接続された半
導体基板と逆導電型の第2の不純物拡散層を有する補助
保護装置が設けられていることを特徴とする半導体装置
。 2、第1の不純物拡散層が第2の不純物拡散層で囲まれ
ている請求項1記載の半導体装置。
[Claims] 1. In a semiconductor device using an input protection device having an impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate, a substrate potential of a scribe line provided at a predetermined distance from the input protection device. a metal wiring layer connected to the metal wiring layer;
a first impurity diffusion layer of a conductivity type opposite to that of the semiconductor substrate;
a well of a conductivity type opposite to that of the semiconductor substrate, which is provided at a predetermined distance from the impurity diffusion layer of the semiconductor substrate; and a well provided within the well;
A semiconductor device comprising an auxiliary protection device having a second impurity diffusion layer of a conductivity type opposite to that of a semiconductor substrate connected to a metal wiring layer at a ground level or a power supply level. 2. The semiconductor device according to claim 1, wherein the first impurity diffusion layer is surrounded by a second impurity diffusion layer.
JP25778690A 1990-09-27 1990-09-27 Semiconductor device Pending JPH04134855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25778690A JPH04134855A (en) 1990-09-27 1990-09-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25778690A JPH04134855A (en) 1990-09-27 1990-09-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04134855A true JPH04134855A (en) 1992-05-08

Family

ID=17311088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25778690A Pending JPH04134855A (en) 1990-09-27 1990-09-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04134855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787432B2 (en) 1999-08-12 2004-09-07 Oki Electric Industry Co., Ltd. Semiconductor device
US6879025B2 (en) * 1997-08-29 2005-04-12 Kabushiki Kaisha Toshiba Semiconductor device incorporating a dicing technique for wafer separation and a method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879025B2 (en) * 1997-08-29 2005-04-12 Kabushiki Kaisha Toshiba Semiconductor device incorporating a dicing technique for wafer separation and a method for manufacturing the same
US7176061B2 (en) 1997-08-29 2007-02-13 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US7576411B2 (en) 1997-08-29 2009-08-18 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US6787432B2 (en) 1999-08-12 2004-09-07 Oki Electric Industry Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
US5473169A (en) Complementary-SCR electrostatic discharge protection circuit
US5548134A (en) Device for the protection of an integrated circuit against electrostatic discharges
EP0343977A2 (en) Mosfet having drain voltage detection function
US5675469A (en) Integrated circuit with electrostatic discharge (ESD) protection and ESD protection circuit
JP2822915B2 (en) Semiconductor device
JP3559075B2 (en) Polarity reversal protection device for integrated electronic circuits in CMOS technology
US5557130A (en) ESD input protection arrangement
CN112310949A (en) High voltage circuit device and its ring circuit layout
KR940008225B1 (en) Mos transistor for power switch
US7238969B2 (en) Semiconductor layout structure for ESD protection circuits
US4922316A (en) Infant protection device
JPH04134855A (en) Semiconductor device
JP2000040788A (en) Semiconductor device
JP2611639B2 (en) Semiconductor device
US5990731A (en) Input/output protection circuit
US5929491A (en) Integrated circuit with ESD protection
JP2780289B2 (en) Semiconductor device
US4882610A (en) Protective arrangement for MOS circuits
KR0158626B1 (en) Esd protection circuit
JPH0774353A (en) Input-output protective circuit
JP4368014B2 (en) Schmidt circuit
US5432369A (en) Input/output protection circuit
JP2005085820A (en) Semiconductor device
JPS63172468A (en) Input protective circuit
JP3134443B2 (en) Semiconductor input protection device