JPH0413301B2 - - Google Patents

Info

Publication number
JPH0413301B2
JPH0413301B2 JP59031139A JP3113984A JPH0413301B2 JP H0413301 B2 JPH0413301 B2 JP H0413301B2 JP 59031139 A JP59031139 A JP 59031139A JP 3113984 A JP3113984 A JP 3113984A JP H0413301 B2 JPH0413301 B2 JP H0413301B2
Authority
JP
Japan
Prior art keywords
silicon oxide
oxide film
treatment liquid
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59031139A
Other languages
Japanese (ja)
Other versions
JPS60176947A (en
Inventor
Hirotsugu Nagayama
Masato Hyodo
Masao Misonoo
Hisao Pponda
Hideo Kawahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP59031139A priority Critical patent/JPS60176947A/en
Publication of JPS60176947A publication Critical patent/JPS60176947A/en
Publication of JPH0413301B2 publication Critical patent/JPH0413301B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明は基材上に酸化珪素被膜を製造する方法
に関し、更に詳しくは太陽電池基板に適した凹凸
形状を有する透明基板を製造する方法に関する。 b 従来技術 今日、いろいろな材料の表面を酸化珪素膜で被
覆することが広く行なわれている。例えばガラス
表面に酸化チタン膜と酸化珪素の交互多層膜を形
成することにより、表面の反射効果を減じること
が古くから行なわれている。あるいは金属・合金
材料の保護膜としてその表面に酸化珪素被膜を形
成させることも広く行なわれている。更には、液
晶表示パネル、太陽電池用基板ガラスにソーダラ
イムガラスまたはホウ珪酸ガラスなどアルカリ含
有ガラスを用いる場合、ガラスからのアルカリ成
分の溶出を防止する目的で、これらガラスの表面
を酸化珪素膜で被覆することが行なわれる。特に
ガラスからのアルカリ成分の溶出防止は、液晶表
示あるいは太陽電池の寿命を維持する上で、欠く
ことのできない技術となつている。 ガラスの表面に酸化珪素被膜を形成させるに
は、従来より真空蒸着・スパツター・CVDある
いは浸漬塗布法(デイツピング法)等の方法が多
く用いられてきた。しかしながら、これらの方法
は装置あるいは付帯設備が高価であるため、酸化
珪素被覆に要するコストが高くなる他、小さなガ
ラスしか処理できないという欠点があつた。 そこで、これら従来の酸化珪素被膜形成方法の
欠点に鑑み、珪弗化水素酸の酸化珪素飽和水溶液
にホウ酸を添加した処理液を用いた新しい酸化珪
素被膜形成方法が提案されている。(特開昭57−
196744)。 又、一方近年シランガスをグロー放電分解する
ことなどにより作製される非晶質シリコン(a−
Si)を用いた太陽電池が低コストで製造可能な光
電変換装置の一つとして注目を浴びている。しか
し、かかるa−Si太陽電池においては、その光電
変換効率が他の結晶半導体(結晶Si、GaAsな
ど)に比べ極めて低いことが問題となり、これを
解決するため作製方法や電池の構造に対し種々の
対策が考案されている。特に電池の表面における
光反射損失を低減し短絡電流を増大させることは
重要であり、このため太陽電池を凹凸構造にして
入射光を電池内で多重反射屈折させることにより
長波長光に対する収集効率を向上させることが考
えられている。しかしながら、凹凸の度合いが大
き過ぎるとピンホール等の欠陥が発生したり膜厚
が不均一になりやすく、かえつて太陽電池の特性
(特に開放電圧・良品率)が低下する。従つて高
度に制御された凹凸の度合が必要とされていた。 c 発明の目的 本発明は、珪弗化水素酸の酸化珪素飽和水溶液
にホウ酸を添加した処理液を用いた酸化珪素被膜
製造方法を改良し、連続的でかつ安価であり、凹
凸の形状精度が調整され、大面積でも製造出来、
凹凸形状を有する太陽電池基板に適する酸化珪素
被膜の製造方法を提供することにある。 d 発明の構成 本発明は、基材を珪弗化水素酸の酸化珪素飽和
水溶液にホウ酸を添加した処理液に浸漬すること
により、該基材表面上に酸化珪素被膜を製造する
方法において該処理液中に酸化珪素のかたまりが
浮遊し、かつ該処理液が浸漬した基材表面で0.2
〜8.0cm/minの速度で流動する状態で該基材を
処理液に浸漬させ、該基材表面に凹凸形状を有す
る酸化珪素被膜を形成させることを特徴とする酸
化珪素被膜の製造方法である。 ここで基材には酸化珪素を含むガラス、セラミ
ツクス、プラスチツク等があげられる。 又、使用する処理液の調整法としては2モル/
の濃度以上の珪弗化水素酸水溶液に酸化珪素を
飽和し、しかる後水で希釈し珪弗化水素酸の濃度
を2モル/以下としたものが望ましい。この様
な処理液調整法が望ましい理由は、被膜形成速度
が速く、かつ形成される凹凸が大きく数も多くな
るからである。ここで処理液として用いる珪弗化
水素酸の望ましい濃度は1〜2モル/である
が、この濃度の珪弗化水素酸水溶液を直接調整し
た後酸化珪素を飽和するよりも、本発明のように
あらかじめ高濃度の珪弗化水素酸水溶液を調整し
た後酸化珪素を飽和し、しかる後珪弗化水素酸の
濃度が1〜2モル/となるよう水で希釈した方
が酸化珪素被膜の形成速度が速く、かつ形成され
る凹凸が大きく、数も多くなるからである。 上記処理液にホウ酸を添加して行くとしだいに
酸化珪素の過飽和状態となつて処理液中から酸化
珪素の析出が始まる。本発明の酸化珪素被膜の製
造方法は、上記析出酸化珪素を被膜として得る方
法である。 ホウ酸の添加速度は、ホウ酸濃度が0.5モル/
であり処理液が上記方法により調整された珪弗
化水素酸の酸化珪素含有水溶液(珪弗化水素酸が
1〜2モル/)である時は、0.05〜1ml/min
であることが好まれる。ここで添加量が0.05より
少ないと酸化珪素被膜が形成されず、1ml/min
より多いと、処理液中に大きな酸化珪素の固りが
生じ沈殿となるために凹凸形状を有する酸化珪素
被膜を安定的に形成することが出来ない。良好な
凹凸形状を持つた酸化珪素被膜を得るためには、
処理液中に適度な大きさの酸化珪素の固りが浮遊
することが必要である。又出来上がる酸化珪素被
膜の凹凸の大きさおよび数は、処理液の基材表面
での流動速度、およびホウ酸の添加速度によつて
変化させることが出来、一般的には処理液の流動
速度が遅いほど、ホウ酸の添加速度が速いほど凹
凸は大きくなる。 処理液の流動により、酸化珪素の固りが処理液
中に浮遊することが、良好な凹凸形状を持つた酸
化珪素被膜を形成するのに必要であるが、ここで
浮遊する酸化珪素の固りには1.5μm以上の大きさ
を持つた酸化珪素の固りが含まれていることが好
まれる。ここで1.5μmより小さい酸化珪素の固り
だけでは良好な凹凸形状を持つた酸化珪素被膜が
得られず、平担な酸化珪素被膜が得られる(特開
昭60−33233))ためである。 析出する酸化珪素の固りを処理液中に浮遊し、
又添加したホウ酸を処理液に混合するために処理
液を流動させるが、処理液の浸漬基材表面での流
速が0.2〜8.0cm/minであることが好まれる。流
速が0.2cm/minより遅いと、処理液中に酸化珪
素の沈殿が生じやすくなり、望みの凹凸形状を持
つた酸化珪素被膜が得られない。又流速が8.0
cm/minより早いと、流れが乱流となりやすく、
ムラの多い膜となるので好ましくない。 処理液を流動させる方法はどの様な方法であつ
てもかまわないが、処理液を流出させその後循環
ポンプ等で循環させる方法等が簡単であり、好ま
れる。又処理液の流れは浸漬した基材面に対して
層状に流れる事が好まれる。これは処理液が乱流
で流れる場合には上述の様にムラの多い膜となる
ためである。 以下に本発明を実施例に基き説明する。 e 実施例 実施例 1 大きさが100(mm)×100(mm)の厚味1(mm)のソ
ーダライムガラスを0.5%濃度(重量%)のHF水
溶液中に10分間浸漬した後、十分に洗浄し乾燥し
試料ガラスとした。次に試料を浸漬するための浸
漬槽を用意する。 浸漬槽は外槽1と内槽2から成り、内槽と外槽
の間には水3が満してある。実験では、この水の
温度が35℃となるよう、水はヒーター4で加熱さ
れ、かつ温度分布均一化のため撹拌器5で撹拌さ
れている。内槽は前部6、中部7、後部8から成
り、その内部には2モル/の珪弗化水素酸に酸
化珪素を飽和し、しかる後水で1モル/に希釈
した3の処理液が満たしてある。内槽後部8の
処理液は循環ポンプ10によりろ過されることな
く内槽前部6へ戻される。ここで全処理液量に対
する1分間当りの処理液循環量の割合は8%に設
定した。(ここで全処理液量は約3であり処理
槽中部の底面積は約150cm2であるので、浸漬する
基材ガラス板表面での液流速は約1.6cm/minと
予想される。) この反応液に0.5モル/の濃度のホウ酸水溶
液11を0.2ml/分で連続的に滴下し、10時間保
持した。 その後この反応液に試料9を内槽中央部7に垂
直状に浸漬・保持する。反応処理液の循環および
ホウ酸水溶液の添加を続けながら4時間保持し、
その後試料を取り出し洗浄乾燥した。 得られた被膜の厚みは約1000Åであり、同被膜
の電子顕微鏡観察の結果直径300〜5000Å高さ200
〜3000Åの略おわん形をした多数の凹凸が見られ
た。約10700倍の倍率の電子顕微鏡写真を第2図
に示す。 凹凸の形状、および単位面積あたりの数はその
総合効果として、入射光に対する散乱度合(ヘイ
ズ率)として表わすことができる。ここで得られ
た試料のヘイズ率を航空機用メタクリル樹脂板の
曇価測定法(JIS、K−6714(1977))により測定
したら約2%であり、表面に凹凸のないSiO2
をコートした試料のヘイズ率0.2%とくらべると
大きな値であつた。 実施例 2 処理液の循環量を全処理液量に対し1分間当り
3%(処理液の流速約0.6cm/min)となる様に
変更し、試料の浸漬時間を3時間に変更した以外
は実施例1と同様の方法により試料上に約1000Å
の厚さの酸化珪素被膜を形成した。 得られた酸化珪素被膜は厚み約1000Åの膜であ
り、試料の電子顕微鏡観察により試料には実施例
1と同様の直径300〜5000Å高さ200〜3000Åの略
おわん形をした多数の凹凸が存在することが確認
された。 又得られた試料のヘイズ率は7%であり、実施
例2により得られた試料は実施例1により得られ
た試料より、深い弧を持つ凹凸の割合または凹凸
の数が増加していることが予想される。 実施例 3 実施例2によつて製造された凹凸形状を有する
酸化珪素被膜つき基板ガラス(以後AOと呼ぶ)
をリン入り酸化珪素形成液(東京応化工業社製
OCD溶液)に浸漬し、その後500℃で焼成を行な
い膜厚約1000Åの酸化珪素被膜を形成した。(以
後この基板をA1と呼ぶ)ヘイズ率は7%から3
%へと変化した。 又同様にAoのガラス基板上にスパッタ法によ
り約200Åの膜厚の酸化珪素被膜を形成した。(以
後この基板をA2と呼ぶ)ヘイズ率は7%から6
%へ変化した。 又別に実施例2と同様なガラス基板を珪弗化水
素酸の酸化珪素飽和水溶液にホウ酸を添加した処
理液に浸漬し平滑度の高い酸化珪素被膜約1000Å
を作成した比較用基板Bを作成した(特開昭60−
33233) これら基板を用いてアモルフアスSiの太陽電池
を作成した。作成手順を以下に示す。 基板Ao,A1,A2,B上にモノブチル錫トリク
ロライドの蒸気及びドーパントとしてCH3CHF2
ガスを用いCVD法によつて2000Åの酸化錫透明
導電膜を形成した。次いでモノシラン(SiH4
ガスを主成分とする原料ガスを用いて100Pa程度
の圧力下で容量結合型高周波グロー放電装置によ
り (1) P型半導体層(ホウ素ドープのa−SiC:
H、約150Å厚) (2) 真性半導体層(a−Si:H、約5000Å厚) (3) n型半導体層(マイクロクリスタリンSi:
H約300Å厚) をそれぞれ順番に推積させ、最後にAl電極(約
500Å)を真空中(約10-4Pa)で蒸着法により作
成した。 得られた太陽電池にAM1の100mW/cm2の光
を照射し、負荷を無限大とした時の起電圧(開放
電圧;V)および負荷をOとした時の太陽電池単
位表面積あたりの電流値(短絡電流;mA/cm2
を測定した。 第1表に得られた測定結果を示す。表より明ら
かな様に、凹凸形状を持つ酸化珪素被膜を用いた
基板Ao,A1,A2が平滑な酸化珪素被膜を用いた
基板Bよりも大きな短絡電流値を示し、性能が向
上していることがわかる。 ここで上記実施例では基材として酸化珪素を含
むガラスを用い、又形状も100mm×100mmとし、処
理工程も断続的に行なつたが、この酸化珪素被
a. Industrial Application Field The present invention relates to a method for manufacturing a silicon oxide film on a substrate, and more particularly to a method for manufacturing a transparent substrate having an uneven shape suitable for a solar cell substrate. b. Prior Art Today, it is widely practiced to coat the surfaces of various materials with silicon oxide films. For example, it has long been practiced to reduce the reflection effect of the surface by forming alternating multilayer films of titanium oxide and silicon oxide on the glass surface. Alternatively, it is widely practiced to form a silicon oxide film on the surface of metal/alloy materials as a protective film. Furthermore, when alkali-containing glasses such as soda lime glass or borosilicate glass are used for substrate glass for liquid crystal display panels and solar cells, the surfaces of these glasses are coated with a silicon oxide film in order to prevent the elution of alkaline components from the glass. Coating is performed. In particular, preventing the elution of alkaline components from glass has become an indispensable technology for maintaining the lifespan of liquid crystal displays or solar cells. To form a silicon oxide film on the surface of glass, many methods such as vacuum evaporation, sputtering, CVD, and dip coating have been used. However, these methods have the disadvantage that the equipment or ancillary equipment is expensive, which increases the cost required for coating with silicon oxide, and that only small pieces of glass can be processed. In view of these drawbacks of the conventional methods for forming silicon oxide films, a new method for forming silicon oxide films has been proposed using a treatment solution in which boric acid is added to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid. (Unexamined Japanese Patent Publication No. 57-
196744). On the other hand, in recent years, amorphous silicon (a-
Solar cells using Si) are attracting attention as one of the photoelectric conversion devices that can be manufactured at low cost. However, the problem with such a-Si solar cells is that their photoelectric conversion efficiency is extremely low compared to other crystalline semiconductors (crystalline Si, GaAs, etc.).To solve this problem, various changes have been made to the manufacturing method and cell structure. Countermeasures have been devised. In particular, it is important to reduce light reflection loss on the surface of the cell and increase short-circuit current. For this purpose, the solar cell has an uneven structure and the incident light is subjected to multiple reflection and refraction within the cell, thereby increasing the collection efficiency for long wavelength light. It is thought that it can be improved. However, if the degree of unevenness is too large, defects such as pinholes tend to occur or the film thickness becomes non-uniform, and the characteristics of the solar cell (particularly the open-circuit voltage and yield rate) deteriorate. Therefore, there is a need for a highly controlled degree of unevenness. c. Purpose of the Invention The present invention improves a method for manufacturing a silicon oxide film using a treatment solution in which boric acid is added to a saturated aqueous solution of silicon oxide of hydrosilicofluoric acid, which is continuous and inexpensive, and improves the shape accuracy of irregularities. is adjusted and can be manufactured even on large areas.
An object of the present invention is to provide a method for manufacturing a silicon oxide film suitable for a solar cell substrate having an uneven shape. d Structure of the Invention The present invention provides a method for producing a silicon oxide film on the surface of a substrate by immersing the substrate in a treatment solution in which boric acid is added to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid. A lump of silicon oxide is suspended in the treatment liquid, and the surface of the substrate immersed in the treatment liquid has a concentration of 0.2
A method for producing a silicon oxide film, which comprises immersing the base material in a treatment liquid while flowing at a speed of ~8.0 cm/min to form a silicon oxide film having an uneven shape on the surface of the base material. . Here, examples of the base material include glass, ceramics, and plastic containing silicon oxide. In addition, the method for adjusting the processing solution used is 2 mol/
It is preferable to saturate silicon oxide with an aqueous solution of hydrosilicofluoric acid having a concentration of at least 2 mol/min, and then dilute it with water so that the concentration of hydrosilicic acid is 2 mol/or less. The reason why such a treatment liquid adjustment method is desirable is that the film formation rate is fast and the number of irregularities formed is large and large. The preferred concentration of the hydrosilicofluoric acid used as the treatment liquid here is 1 to 2 mol/ml. It is better to prepare a highly concentrated aqueous solution of hydrosilicofluoric acid in advance, saturate the silicon oxide, and then dilute the hydrosilicic acid with water to a concentration of 1 to 2 mol/ml to form a silicon oxide film. This is because the speed is fast and the formed irregularities are large and numerous. As boric acid is added to the treatment liquid, silicon oxide gradually becomes supersaturated, and silicon oxide begins to precipitate from the treatment liquid. The method for producing a silicon oxide film of the present invention is a method for obtaining the above-mentioned precipitated silicon oxide as a film. The addition rate of boric acid is as follows: boric acid concentration is 0.5 mol/
When the treatment liquid is a silicon oxide-containing aqueous solution of hydrosilicofluoric acid prepared by the above method (hydrosilicic acid is 1 to 2 mol/min), the flow rate is 0.05 to 1 ml/min.
It is preferred that If the amount added is less than 0.05, no silicon oxide film will be formed, and the amount will be 1ml/min.
If the amount is larger than that, large silicon oxide particles will form in the treatment solution and become precipitates, making it impossible to stably form a silicon oxide film having an uneven shape. In order to obtain a silicon oxide film with a good uneven shape,
It is necessary that silicon oxide lumps of appropriate size be suspended in the processing solution. In addition, the size and number of unevenness in the silicon oxide film that is completed can be changed by the flow rate of the treatment liquid on the substrate surface and the addition rate of boric acid, and generally speaking, the flow rate of the treatment liquid is The slower the addition rate of boric acid, the larger the unevenness becomes. It is necessary for forming a silicon oxide film with a good uneven shape that silicon oxide lumps are suspended in the processing liquid due to the flow of the processing liquid. Preferably, the material contains silicon oxide lumps having a size of 1.5 μm or more. This is because silicon oxide particles smaller than 1.5 μm alone cannot provide a silicon oxide film with a good uneven shape, but instead a flat silicon oxide film (Japanese Patent Laid-Open No. 60-33233). The precipitated silicon oxide solids are suspended in the processing solution,
In order to mix the added boric acid into the treatment liquid, the treatment liquid is made to flow, and it is preferred that the flow rate of the treatment liquid on the surface of the immersed substrate is 0.2 to 8.0 cm/min. If the flow rate is slower than 0.2 cm/min, silicon oxide tends to precipitate in the treatment solution, making it impossible to obtain a silicon oxide film with the desired uneven shape. Also, the flow rate is 8.0
If the speed is faster than cm/min, the flow tends to become turbulent,
This is not preferable because it results in a film with a lot of unevenness. Any method may be used to flow the treatment liquid, but a method in which the treatment liquid is flowed out and then circulated using a circulation pump or the like is simple and preferred. Further, it is preferable that the treatment liquid flows in a layered manner over the immersed substrate surface. This is because when the processing liquid flows in a turbulent flow, the film becomes uneven as described above. The present invention will be explained below based on examples. e Examples Example 1 A soda lime glass with a size of 100 (mm) x 100 (mm) and a thickness of 1 (mm) was immersed in a 0.5% concentration (wt%) HF aqueous solution for 10 minutes, and then thoroughly soaked. It was washed and dried to obtain a sample glass. Next, prepare an immersion tank for immersing the sample. The immersion tank consists of an outer tank 1 and an inner tank 2, and water 3 is filled between the inner tank and the outer tank. In the experiment, the water was heated with a heater 4 so that the temperature of this water was 35° C., and was stirred with a stirrer 5 to make the temperature distribution uniform. The inner tank consists of a front part 6, a middle part 7, and a rear part 8, and inside the tank is a treatment solution 3 in which silicon oxide is saturated with 2 mol/hydrosilicic acid and then diluted with water to 1 mol//. It's filled. The processing liquid in the rear part 8 of the inner tank is returned to the front part 6 of the inner tank without being filtered by the circulation pump 10. Here, the ratio of the amount of processing liquid circulated per minute to the total amount of processing liquid was set to 8%. (Here, the total amount of treatment liquid is approximately 3 cm and the bottom area of the middle of the treatment tank is approximately 150 cm 2 , so the liquid flow rate on the surface of the substrate glass plate to be immersed is expected to be approximately 1.6 cm/min.) An aqueous boric acid solution 11 having a concentration of 0.5 mol/min was continuously added dropwise to the reaction solution at a rate of 0.2 ml/min, and the mixture was maintained for 10 hours. Thereafter, the sample 9 is immersed and held vertically in the reaction solution in the center part 7 of the inner tank. Hold for 4 hours while continuing to circulate the reaction treatment solution and add the boric acid aqueous solution,
Thereafter, the sample was taken out, washed and dried. The thickness of the obtained film was approximately 1000 Å, and as a result of electron microscopic observation of the same film, the diameter was 300 to 5000 Å, and the height was 200 Å.
Numerous roughly bowl-shaped irregularities of ~3000 Å were observed. An electron micrograph at a magnification of approximately 10,700 times is shown in Figure 2. The shape of the unevenness and the number per unit area can be expressed as the degree of scattering (haze rate) for incident light as a comprehensive effect. The haze rate of the sample obtained here was approximately 2% when measured by the haze value measurement method for aircraft methacrylic resin plates (JIS, K-6714 (1977)), and the surface was coated with a smooth SiO 2 film. This was a large value compared to the haze rate of the sample, which was 0.2%. Example 2 Except that the circulation rate of the processing solution was changed to 3% per minute of the total amount of processing solution (flow rate of processing solution approximately 0.6cm/min), and the immersion time of the sample was changed to 3 hours. Approximately 1000 Å was deposited on the sample using the same method as in Example 1.
A silicon oxide film with a thickness of . The obtained silicon oxide film was approximately 1000 Å thick, and electron microscopic observation of the sample revealed that the sample had many approximately bowl-shaped irregularities with a diameter of 300 to 5000 Å and a height of 200 to 3000 Å, similar to those in Example 1. It was confirmed that The haze rate of the obtained sample was 7%, and the sample obtained in Example 2 had an increased proportion of unevenness or the number of unevenness with deep arcs than the sample obtained in Example 1. is expected. Example 3 Substrate glass with a silicon oxide film having an uneven shape manufactured according to Example 2 (hereinafter referred to as AO)
Silicon oxide forming solution containing phosphorus (manufactured by Tokyo Ohka Kogyo Co., Ltd.)
(OCD solution) and then baked at 500°C to form a silicon oxide film with a thickness of approximately 1000 Å. (Hereafter, this board will be referred to as A1) The haze rate is 7% to 3
It changed to %. Similarly, a silicon oxide film with a thickness of about 200 Å was formed on an Ao glass substrate by sputtering. (Hereafter, this board will be referred to as A2) Haze rate is 7% to 6
changed to %. Separately, a glass substrate similar to that in Example 2 was immersed in a treatment solution in which boric acid was added to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid to form a highly smooth silicon oxide film with a thickness of approximately 1000 Å.
Comparison board B was created with
33233) We created an amorphous Si solar cell using these substrates. The creation procedure is shown below. Monobutyltin trichloride vapor and CH 3 CHF 2 as dopant on substrates Ao, A 1 , A 2 , B
A 2000 Å thick tin oxide transparent conductive film was formed by CVD using gas. Then monosilane (SiH 4 )
(1) P-type semiconductor layer (boron-doped a-SiC:
H, about 150 Å thick) (2) Intrinsic semiconductor layer (a-Si:H, about 5000 Å thick) (3) N-type semiconductor layer (microcrystalline Si:
The Al electrode (about 300 Å thick) was deposited in turn, and finally the Al electrode (about 300 Å thick) was deposited in turn.
500 Å) by vapor deposition in vacuum (approximately 10 -4 Pa). The obtained solar cell is irradiated with AM1 light of 100 mW/cm 2 and the electromotive force (open circuit voltage; V) when the load is set to infinite and the current value per unit surface area of the solar cell when the load is set to O. (Short circuit current; mA/cm 2 )
was measured. Table 1 shows the measurement results obtained. As is clear from the table, the substrates Ao, A 1 and A 2 using a silicon oxide film with an uneven shape showed a larger short circuit current value than the substrate B using a smooth silicon oxide film, and the performance was improved. I know that there is. In the above example, glass containing silicon oxide was used as the base material, the shape was 100 mm x 100 mm, and the treatment process was performed intermittently.

【表】 膜は、付着被膜であるので着色ガラスをはじめと
するその他のガラス板、プラスチツク板、セラミ
ツクス板などあらゆる材料を使用することができ
る。又形状も100mm×100mmに限らず大板化出来、
又処理工程も酸化珪素の飽和状態が続く限り連続
的に基材を浸漬することができる。 f 発明の効果 本発明によれば、大板形状の基材に簡単に凹凸
の精度の調整された凹凸形状を有する酸化珪素被
膜を形成することができる。この様にして形成さ
れた凹凸形状を有する酸化珪素被服体は、基材が
透明材料である場合は太陽電池基板として、その
他の材料である場合はその装飾効果を利用する材
料として利用出来る。又使用される基材は曲率を
持つた板状体であつても、管状のものであつても
かまわない。
[Table] Since the film is an adhesive coating, all kinds of materials can be used, including colored glass, other glass plates, plastic plates, and ceramic plates. In addition, the shape is not limited to 100mm x 100mm, and it can be made into a large plate.
Also, in the treatment process, the substrate can be continuously immersed as long as the saturated state of silicon oxide continues. f Effects of the Invention According to the present invention, it is possible to easily form a silicon oxide film having a concavo-convex shape with adjusted concavity-convex accuracy on a large plate-shaped base material. The silicon oxide covering body having the uneven shape formed in this manner can be used as a solar cell substrate when the base material is a transparent material, and as a material that takes advantage of the decorative effect when the base material is other material. Further, the base material used may be a plate-like material having curvature or a tubular material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明の実施例を示す循環系統説明
図、第2図は実施例1により得られた酸化珪素被
膜に生成している略おわん形粒子の構造を示す図
面に代る電子顕微鏡写真である。 1…外槽、2…内槽、3…水、4…ヒーター、
5…撹拌器、6…内槽前部、7…内槽中央部、8
…内槽後部、9…ガラス、10…循環ポンプ、1
1…ホウ酸水溶液。
FIG. 1 is an explanatory diagram of a circulation system showing an example of the present invention, and FIG. 2 is an electron micrograph in place of a drawing showing the structure of approximately bowl-shaped particles formed in the silicon oxide film obtained in Example 1. It is. 1...Outer tank, 2...Inner tank, 3...Water, 4...Heater,
5... Stirrer, 6... Inner tank front part, 7... Inner tank center part, 8
...Inner tank rear, 9...Glass, 10...Circulation pump, 1
1...Boric acid aqueous solution.

Claims (1)

【特許請求の範囲】 1 基材を、珪弗化水素酸の酸化珪素飽和水溶液
にホウ酸を添加した処理液に浸漬することによ
り、該基材表面上に酸化珪素被膜を製造する方法
において、該処理液中に酸化珪素のかたまりが浮
遊し、かつ該処理液が浸漬した基材表面で0.2〜
8.0cm/minの速度で流動する状態で該基材を処
理液に浸漬させ、該基材表面に凹凸形状を有する
酸化珪素被膜を形成させることを特徴とする酸化
珪素被膜の製造方法。 2 該処理液の流動が浸漬した基材面に対して平
行な層流である特許請求の範囲第1項記載の酸化
珪素被膜の製造方法。 3 該処理液の流動が、処理液の流出操作および
循環操作によるものである特許請求の範囲第1項
又は第2項記載の酸化珪素被膜の製造方法。 4 該凹凸形状を有する酸化珪素被膜が直径300
〜5000Å、高さ200〜3000Åの多数の凸部を有す
る膜である特許請求の範囲第1項ないし第3項記
載の酸化珪素被膜の製造方法。
[Scope of Claims] 1. A method for producing a silicon oxide film on the surface of a substrate by immersing the substrate in a treatment solution in which boric acid is added to a saturated silicon oxide aqueous solution of hydrosilicofluoric acid, comprising: A lump of silicon oxide is suspended in the treatment liquid, and the surface of the substrate immersed in the treatment liquid has a concentration of 0.2 to
A method for producing a silicon oxide film, the method comprising: immersing the base material in a treatment liquid while flowing at a rate of 8.0 cm/min to form a silicon oxide film having an uneven shape on the surface of the base material. 2. The method for producing a silicon oxide film according to claim 1, wherein the flow of the treatment liquid is a laminar flow parallel to the surface of the substrate immersed. 3. The method for producing a silicon oxide film according to claim 1 or 2, wherein the flow of the treatment liquid is performed by a discharge operation and a circulation operation of the treatment liquid. 4 The silicon oxide film having the uneven shape has a diameter of 300 mm.
4. The method for producing a silicon oxide film according to claims 1 to 3, wherein the film is a film having a large number of convex portions with a diameter of 5,000 Å and a height of 200 to 3,000 Å.
JP59031139A 1984-02-21 1984-02-21 Production of silicon oxide film Granted JPS60176947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59031139A JPS60176947A (en) 1984-02-21 1984-02-21 Production of silicon oxide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59031139A JPS60176947A (en) 1984-02-21 1984-02-21 Production of silicon oxide film

Publications (2)

Publication Number Publication Date
JPS60176947A JPS60176947A (en) 1985-09-11
JPH0413301B2 true JPH0413301B2 (en) 1992-03-09

Family

ID=12323103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59031139A Granted JPS60176947A (en) 1984-02-21 1984-02-21 Production of silicon oxide film

Country Status (1)

Country Link
JP (1) JPS60176947A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391226B1 (en) * 1989-04-01 1994-07-13 Nippon Sheet Glass Co. Ltd. Method for manufacturing layer-built material with silicon dioxide film containing organic colorant and the layer-built material manufactured thereby
US5232781A (en) * 1989-04-01 1993-08-03 Nippon Sheet Glass Co., Ltd. Method for manufacturing layer-built material with silicon dioxide film containing organic colorant and the layer-built material manufactured thereby
WO1992007793A1 (en) * 1990-10-25 1992-05-14 Nippon Sheet Glass Company, Limited Process for preparing silicon dioxide coating
AUPR719801A0 (en) * 2001-08-23 2001-09-13 Pacific Solar Pty Limited Glass beads coating process
US7381610B2 (en) * 2005-11-04 2008-06-03 International Business Machines Corporation Semiconductor transistors with contact holes close to gates
JP2016528149A (en) * 2013-07-29 2016-09-15 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Super hydrophilic coating

Also Published As

Publication number Publication date
JPS60176947A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
US4500743A (en) Amorphous semiconductor solar cell having a grained transparent electrode
KR100273726B1 (en) A method for the formation of an indium oxide film by electro deposition process or electroless deposition process, a substrate provided with said indium oxide film for a semiconductor element, and a semiconductor element provided with said substrate
US4694116A (en) Thin-film solar cell
JP3416024B2 (en) Fine particle coating film in thin film solar cell
EP2078706B1 (en) Methods of making silica-titania coatings, and products containing the same
EP1950813A1 (en) Transparent conductive substrate for solar cell and process for producing the same
JPH02503615A (en) Substrate for solar cells
US20050016583A1 (en) Transparent substrate comprising an electrode
EP1068899A1 (en) Multilayer structure and process for producing the same
EP1056136B1 (en) Conductive substrate for a photoelectric conversion device and its manufacturing method
EP2215028A1 (en) Method of making an antireflective silica coating, resulting product, and photovoltaic device comprising same
JP2002260448A (en) Conductive film, method of making the same, substrate and photoelectric conversion device equipped with the same
US4880664A (en) Method of depositing textured tin oxide
KR20110036060A (en) Transparent conductive film substrate and solar cell using the substrate
EP1462540A1 (en) Method for forming thin film, substrate having thin film formed by the method, and photoelectric conversion device using the substrate
EP1363142A1 (en) Reflection reducing coating, base material and photoelectric transducer with the reflection reducing coating
JPH0413301B2 (en)
JPS60175465A (en) Solar battery substrate
CN112186048A (en) Transparent electrode substrate and solar cell
JPS623046A (en) Formation of silicon oxide film
US5102721A (en) Textured tin oxide
JP2003253435A (en) Method of depositing rugged film and method of manufacturing photoelectric converter
JPH1111980A (en) Transparent conductive glass substrate and its production
JP2541986B2 (en) Glass surface treatment method
CN116395981B (en) Glass substrate with transparent conductive film and method for manufacturing same