JPH04133004A - Ultraviolet and infrared cut filter - Google Patents

Ultraviolet and infrared cut filter

Info

Publication number
JPH04133004A
JPH04133004A JP25617090A JP25617090A JPH04133004A JP H04133004 A JPH04133004 A JP H04133004A JP 25617090 A JP25617090 A JP 25617090A JP 25617090 A JP25617090 A JP 25617090A JP H04133004 A JPH04133004 A JP H04133004A
Authority
JP
Japan
Prior art keywords
films
film
ultraviolet
thin film
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25617090A
Other languages
Japanese (ja)
Inventor
Shinji Noguchi
晋治 野口
Osamu Kuramitsu
修 倉光
Akihide Kudo
章英 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP25617090A priority Critical patent/JPH04133004A/en
Publication of JPH04133004A publication Critical patent/JPH04133004A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)

Abstract

PURPOSE:To effectively cut off a wide range of UV and IR rays by constituting the filter of multilayered interference thin films formed by alternately laminating transparent conductive oxide films and high-refractive index transparent dielectric films into multiple layers, a zinc oxide thin film and a transparent substrate. CONSTITUTION:The zinc oxide thin film of a prescribed thickness is laminated on the surface on one side of a float glass substrate and further, the multilayered interference thin films are laminated thereon. The multilayered interference thin films are formed by alternately laminating 3layers each of ITO films of a prescribed thickness as the transparent conductive oxide films and TiO2 films of a prescribed thickness as the high-refractive index transparent dielectric films in such a manner that the TiO2 film is positioned on the lowermost layer and the ITO film on the outermost layer. The optical characteristics of the respective layers are so determined that the multilayered interference thin films selectively reflect the IR ays and UV rays, that the transparent conductive oxide films well reflect the IR rays, that the zinc oxide thin film well reflects the UV rays, and that all these films have high visible light transmittances.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、広赤外域および紫外線を1枚で遮断する(
カットする)ことができる紫外赤外線カットフィルタに
関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is a method of blocking wide infrared and ultraviolet rays with a single sheet (
This relates to an ultraviolet and infrared cut filter that can cut ultraviolet and infrared rays.

〔従来の技術〕[Conventional technology]

従来、紫外線と赤外線を同時に遮断する光学フィルタと
しては、たとえば、下記■〜■のようなものがある。
Conventionally, as optical filters that simultaneously block ultraviolet rays and infrared rays, there are, for example, the following types 1 to 2.

■ リン酸塩系ガラス、ケイ酸塩系ガラス等を基本とす
る赤外線吸収ガラス上に、紫外線吸収剤を添加した透明
塗装膜を形成してなる紫外赤外線吸収フィルタ。
■ Ultraviolet and infrared absorbing filters that are made by forming a transparent coating film containing an ultraviolet absorber on infrared absorbing glass, such as phosphate glass or silicate glass.

■ ガラス組成中にFe、V、Ce、Ti等の元素を添
加してなる紫外線吸収ガラス上に、In* Ox 、S
 n Ox等の透明導電性酸化膜を形成してなる紫外線
吸収赤外線反射フィルタ、このフィルタは、第7図にみ
るように、可視光透過率が高く、紫外線吸収ガラスによ
り波長400ns以下の紫外線を良く吸収し、透明導電
性酸化膜により波長1500nm以上の赤外線を良く反
射する。
■ In*Ox, S
This ultraviolet absorbing infrared reflective filter is formed by forming a transparent conductive oxide film such as nOx. As shown in Figure 7, this filter has high visible light transmittance and uses ultraviolet absorbing glass to effectively absorb ultraviolet rays with a wavelength of 400 ns or less. The transparent conductive oxide film reflects infrared rays with a wavelength of 1500 nm or more.

■ ガラス組成中にF e SV % Ce % T 
s等の元素を添加してなる紫外線吸収ガラス上に、Zn
S等の誘電体膜とAg等の金属膜を交互に積層してなる
紫外線吸収赤外線反射フィルタ。
■ F e SV % Ce % T in glass composition
Zn is placed on ultraviolet absorbing glass made by adding elements such as
An ultraviolet absorbing and infrared reflecting filter made by alternately laminating dielectric films such as S and metal films such as Ag.

■ T 10 g −、Z r Ox 、Ce O茸、
Z n S等の高屈折率物質の薄膜とS iOs 、M
g Fe 、Ca Fm 、A It Os等の低屈折
率物質の薄膜を交互に多層積層してなる多層干渉薄膜を
透明基板上に形成してなる紫外赤外線反射フィルタ、具
体的には、たとえば、第6図にみるように、厚さ4Bの
フロートガラス基板上に、高屈折率物質の薄膜として厚
さ1140人のT i O*薄膜と、低屈折率物質の薄
膜として厚さ1810人のS iO!薄膜とを、交互に
7層ずつ積層してなる多層干渉薄膜を形成した紫外赤外
線反射フィルタである。このようなフィルタは、第7図
にみるように、波長800〜1200n*の赤外線と波
長400nw以下の紫外線を選択的に反射し、可視光を
良く透過する。
■ T 10 g −, Z r Ox , Ce O mushroom,
Thin films of high refractive index materials such as Z n S and SiOs, M
g An ultraviolet-infrared reflection filter formed by forming a multilayer interference thin film on a transparent substrate, which is formed by alternately laminating thin films of low refractive index substances such as Fe, CaFm, and AItOs, specifically, for example, As shown in Figure 6, on a float glass substrate with a thickness of 4B, a TiO* thin film with a thickness of 1140 μm as a thin film of a high refractive index material and an SiO* thin film with a thickness of 1810 μm as a thin film with a low refractive index material are deposited. ! This is an ultraviolet-infrared reflective filter that has a multilayer interference thin film formed by alternately laminating seven thin films. As shown in FIG. 7, such a filter selectively reflects infrared rays with a wavelength of 800 to 1200 n* and ultraviolet rays with a wavelength of 400 nw or less, and transmits visible light well.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述した紫外線と赤外線を同時に遮断する従
来の光学フィルタには、下記(a)〜(d)の問題点が
あった。
However, the above-mentioned conventional optical filters that simultaneously block ultraviolet rays and infrared rays have the following problems (a) to (d).

(a)  ■のフィルタは、耐熱性、耐湿性に劣り、経
年劣下が激しい、また、可視光透過率が小さく、最大で
も70%以下であって、光の減衰が大きい。
(a) The filter (2) has poor heat resistance and moisture resistance, deteriorates severely over time, and has a low visible light transmittance of 70% or less at most, resulting in large light attenuation.

山)■のフィルタは、第7mにみるように、白熱電球な
どから発生する赤外線(主に波長800〜200On−
)に対しては反射効果が乏しい。また、紫外線吸収ガラ
スの品質が不安定であり、しかもコスト的にも高価であ
る。
As shown in the 7th meter, the filter in (mountain)
) has poor reflection effect. Furthermore, the quality of the ultraviolet absorbing glass is unstable and it is also expensive.

(C)  ■のフィルタは、■のフィルタと同様の問題
点を有する。
(C) The filter (2) has the same problems as the filter (2).

(di  ■のフィルタは、第7図にみるように、近赤
外線の反射波長域が800〜1200n…と狭く、約1
300n*以上の波長域で透過率が高まり、そのため、
熱線反射効果が乏しい。
(As shown in Figure 7, the di ■ filter has a narrow near-infrared reflection wavelength range of 800 to 1200n...
The transmittance increases in the wavelength range of 300n* or more, so
Poor heat ray reflection effect.

このような事情に鑑み、この発明は、耐熱性、耐湿性に
優れ、経年劣下が少なく、可視光透過率が高く、広範囲
の赤外線と紫外線を効果的に遮断することができる紫外
赤外線カットフィルタを提供することを課題とする。
In view of these circumstances, this invention provides an ultraviolet and infrared cut filter that has excellent heat resistance and moisture resistance, has little deterioration over time, has high visible light transmittance, and can effectively block a wide range of infrared and ultraviolet rays. The challenge is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、この発明にかかる紫外赤外線
カットフィルタは、透明基板の少なくとも片側の表面上
に酸化亜鉛薄膜が形成されており、この酸化亜鉛i膜上
および/または前記透明基板上に、透明導電性酸化膜と
高屈折率透明誘電体膜を交互に多層積層してなる多層干
渉薄膜が形成されているものである。
In order to solve the above problems, the ultraviolet and infrared cut filter according to the present invention has a zinc oxide thin film formed on at least one surface of a transparent substrate, and on this zinc oxide i film and/or on the transparent substrate, A multilayer interference thin film is formed by alternately laminating transparent conductive oxide films and high refractive index transparent dielectric films.

この発明で用いられる透明基板としては、特に限定はさ
れないが、たとえば、フロートガラス基板、透明プラス
チック板等が挙げられる。
The transparent substrate used in this invention is not particularly limited, and examples thereof include a float glass substrate, a transparent plastic plate, and the like.

この発明の紫外赤外線カットフィルタが有する酸化亜鉛
薄膜の膜厚としては、特に限定はされないが、500Å
以上3000Å以下程度が好ましい、膜厚が500人未
満の場合は、紫外線の吸収が充分でなく、膜厚が300
0人を超える場合は、可視域の光の透過率が低下するか
らである。
The thickness of the zinc oxide thin film included in the ultraviolet and infrared cut filter of this invention is not particularly limited, but is 500 Å.
The film thickness is preferably about 3000 Å or less. If the film thickness is less than 500 Å, the absorption of ultraviolet rays is insufficient, and the film thickness is 300 Å or less.
This is because when the number of people exceeds 0, the transmittance of light in the visible range decreases.

このような酸化亜鉛薄膜の形成方法としては、特に限定
はされないが、たとえば、電子ビーム蒸着、スパッタリ
ング法、イオンブレーティング法等の乾式法、あるいは
、有機亜鉛化合物(オクチル酸亜鉛、ナフテン亜鉛、ア
セチルアセトン亜鉛、亜鉛アルコラードなどの金属石鹸
、亜鉛のアルコキシドやキレート化合物等)を適当な溶
剤に溶解させたコーテイング液を用いて、スプレー法、
浸漬法等の適当な方法で塗布・乾燥し400〜700℃
以上で焼成する湿式法が挙げられる。なお、酸化亜鉛薄
膜は、前述した透明基板の片側の表面上のみに形成され
ていてもよいし、透明基板の表裏両面上に形成されてい
てもよい。
The method for forming such a zinc oxide thin film is not particularly limited, but includes, for example, a dry method such as electron beam evaporation, sputtering method, ion blating method, or organic zinc compound (zinc octylate, zinc naphthene, acetylacetonate). Using a coating solution in which zinc, metal soaps such as zinc alcoholade, zinc alkoxides and chelate compounds, etc.) are dissolved in an appropriate solvent, spraying,
Coat using an appropriate method such as dipping and dry at 400-700°C.
A wet method in which firing is performed as described above can be mentioned. Note that the zinc oxide thin film may be formed only on one surface of the above-mentioned transparent substrate, or may be formed on both the front and back surfaces of the transparent substrate.

この発明の紫外赤外線カットフィルタが有する透明導電
性酸化膜を構成する材料としては、透明導電性酸化物で
あれば、特に限定はされないが、たとえば、Snをドー
プした酸化インジウム(以下、これをrI TOJと略
す。)、Fとsbをドープした酸化スズ(以下、これを
rFATOjと略す。)、Sbをドープした酸化スズ(
以下、これをrATOJと略す。)などが挙げられる。
The material constituting the transparent conductive oxide film of the ultraviolet-infrared cut filter of the present invention is not particularly limited as long as it is a transparent conductive oxide, but for example, Sn-doped indium oxide (hereinafter referred to as rI ), tin oxide doped with F and sb (hereinafter abbreviated as rFATOj), tin oxide doped with Sb (abbreviated as rFATOj),
Hereinafter, this will be abbreviated as rATOJ. ), etc.

透明導電性酸化膜は、同じ材料で構成されたものだけを
用いてもよいし、あるいは、構成材料の異なる複数種類
の透明導電性酸化膜を併用してもよいこの発明の紫外赤
外線カットフィルタが有する高屈折率透明誘電体膜を構
成する材料としては、前述した透明導電性酸化膜を構成
する透明導電性酸化物より高い屈折率を有する透明誘電
体であれば、特に限定はされないが、たとえば、Tie
!、ZrOs 、Cent 、ZnSなどが挙げられる
、高屈折率透明誘電体膜は、間じ材料で構成されたもの
だけを用いてもよいし、あるいは、構成材料の異なる複
数種類の高屈折率透明誘電体膜を併用してもよい。
The ultraviolet and infrared cut filter of the present invention may use only transparent conductive oxide films made of the same material, or may use a combination of multiple types of transparent conductive oxide films made of different constituent materials. The material constituting the high refractive index transparent dielectric film is not particularly limited as long as it is a transparent dielectric having a higher refractive index than the transparent conductive oxide constituting the transparent conductive oxide film described above, but for example, , Tie
! , ZrOs, Cent, ZnS, etc., the high refractive index transparent dielectric film may be made of only the same material, or it may be made of multiple types of high refractive index transparent dielectric films made of different constituent materials. A body membrane may also be used.

上記透明導電性酸化膜および高屈折率透明誘電体膜の形
成方法としては、特に限定はされず、たとえば、前述し
た酸化亜鉛薄膜の形成の場合と同様に、通常の蒸着法、
スパッタリング法等の乾式法や、スプレー法、浸漬法等
の湿式法を用いてよい。
The method for forming the transparent conductive oxide film and the high refractive index transparent dielectric film is not particularly limited, and examples thereof include the usual vapor deposition method, as in the case of forming the zinc oxide thin film described above.
A dry method such as a sputtering method, or a wet method such as a spray method or a dipping method may be used.

このような方法によって、透明導電性酸化膜と高屈折率
透明誘電体膜を交互に多層積層形成する。その際、透明
導電性酸化膜を構成する前述したITO等の透明導電性
酸化物の屈折率は、高屈折率透明誘電体膜を構成する前
述した7 i 0 *等の高屈折率透明誘電体の屈折率
より低く、そのため、高屈折率物質と低屈折率物質とが
交互に積層されることになる結果、前述の■で説明した
ような多層干渉vI#膜が形成される。この時の透明導
電性酸化膜と高屈折率透明誘電体膜の各層の膜厚は、光
学膜厚(nd=λ、/4)で決められる[n;屈折率、
d:膜厚、λ、:波長コ。ここで、λ。
By such a method, a multilayer stack of transparent conductive oxide films and high refractive index transparent dielectric films is formed alternately. At that time, the refractive index of the transparent conductive oxide such as the above-mentioned ITO constituting the transparent conductive oxide film is different from that of the high refractive index transparent dielectric such as the above-mentioned 7 i 0 * constituting the high refractive index transparent dielectric film. As a result, high refractive index materials and low refractive index materials are alternately laminated, resulting in the formation of a multilayer interference vI# film as explained in section (2) above. At this time, the film thickness of each layer of the transparent conductive oxide film and the high refractive index transparent dielectric film is determined by the optical film thickness (nd = λ, /4) [n: refractive index,
d: Film thickness, λ: Wavelength. Here, λ.

は、透明導電性酸化膜で吸収できない800〜1200
n−域の波長に設定する0通常は、白熱電球の波長11
000nに設定する。また、透明導電性酸化膜の総膜厚
は、2000Å以上にすることが好ましい。2000人
未満だと、近赤外域(波長1500nm以上)での反射
効果が充分には得られないからである。
is 800 to 1200, which cannot be absorbed by the transparent conductive oxide film.
Set to a wavelength in the n-range 0 Normally, the wavelength of an incandescent light bulb 11
Set to 000n. Further, the total thickness of the transparent conductive oxide film is preferably 2000 Å or more. This is because if there are fewer than 2,000 people, a sufficient reflection effect in the near-infrared region (wavelength of 1,500 nm or more) cannot be obtained.

なお、上述した透明導電性酸化膜と高屈折率透明誘電体
膜からなる多層干渉薄膜は、透明基板の片側のみに形成
されていてもよいし、あるいは、両側に形成されていて
もよい、この多層干渉薄膜は、また、透明基板に直接接
して形成されていてもよいし、あるいは、透明基板との
間に前記酸化亜鉛vr#膜を介して形成されていてもよ
い。
The multilayer interference thin film made of the transparent conductive oxide film and the high refractive index transparent dielectric film described above may be formed on only one side of the transparent substrate, or may be formed on both sides. The multilayer interference thin film may also be formed in direct contact with the transparent substrate, or may be formed between the transparent substrate and the zinc oxide vr# film.

〔作   用〕[For production]

透明導電性酸化膜および高屈折率透明誘電体膜を交互に
多層積層してなる多層干?!j″!l#膜と酸化亜鉛i
膜と透明基板とでフィルタを構成するようにすると、透
明基板上に形成された各層の有する下記(1)〜(3)
の光学的効果を併せ持つようになるため、可視光を良く
透過し、しかも広範囲の赤外線と紫外線を効果的に遮断
することが可能となる。
A multilayer film made by alternately laminating transparent conductive oxide films and high refractive index transparent dielectric films? ! j″!l# Membrane and zinc oxide i
When a filter is composed of a film and a transparent substrate, each layer formed on the transparent substrate has the following (1) to (3).
Because it has both optical effects, it can transmit visible light well while effectively blocking a wide range of infrared and ultraviolet rays.

(1)  多層干渉薄膜は、波長800〜1200■m
の赤外線と波長400ng以下の紫外線を選択的に反射
するが、可視光の透過率が高い。
(1) The multilayer interference thin film has a wavelength of 800 to 1200 μm.
It selectively reflects infrared rays with a wavelength of 400 ng or less and ultraviolet rays with a wavelength of 400 ng or less, but has a high transmittance of visible light.

(2)透明導電性酸化膜は、波長1500rv以上の赤
外線を良く反射するが、可視光の透過率が高い。
(2) The transparent conductive oxide film reflects infrared rays having a wavelength of 1500 rv or more well, but has a high transmittance for visible light.

(3ン 酸化亜鉛a*i*は、波長3B0nm以下の紫
外線を良く吸収するが、可視光の透過率が高い。
(3) Zinc oxide a*i* absorbs ultraviolet rays with a wavelength of 3B0 nm or less well, but has a high transmittance for visible light.

また、耐熱性、耐湿性に優れ、経年劣下の少ない材料で
構成されているため、フィルタの耐熱性、耐湿性が向上
し、経年劣下が少なくなる。
Furthermore, since the filter is made of a material that has excellent heat resistance and moisture resistance and is less susceptible to deterioration over time, the heat resistance and moisture resistance of the filter are improved, and deterioration over time is reduced.

〔実 施 例〕〔Example〕

以下に、この発明の具体的な実施例を説明するが、この
発明は、下記実施例に限定されない。
Specific examples of the present invention will be described below, but the invention is not limited to the following examples.

第1図は、第1実施例を表す0図にみるように、この紫
外赤外線カットフィルタは、厚さ4■のフロートガラス
基板の片側の表面上に厚さ3000人の酸化亜鉛ZnO
1i膜が積層形成され、さらに、そのZn0i[Il!
上に多層干渉薄膜が積層形成された構造を有する。その
多層干渉薄膜は、透明導電性酸化膜として厚さ1300
人のITO膜と、高屈折率透明誘電体膜として厚さ11
40人のT I Os i!l!とを、T t Oを膜
が最下層、かつ、ITO膜が最外層になるように、交互
に3層ずつ積層形成してなるものである。
FIG. 1 shows the first embodiment. As shown in FIG.
1i film is stacked, and the Zn0i[Il!
It has a structure in which a multilayer interference thin film is laminated on top. The multilayer interference thin film has a thickness of 1300 mm as a transparent conductive oxide film.
A human ITO film and a high refractive index transparent dielectric film with a thickness of 11
40 T I Os i! l! and are formed by alternately stacking three layers such that the T t O film is the bottom layer and the ITO film is the outermost layer.

第2図は、第2実施例を表す0図にみるように、この紫
外赤外線カントフィルタは、厚さ4mのフロートガラス
基板の一方の側の表面上に厚さ3000人の酸化亜鉛Z
nO薄膜が積層形成され、上記フロートガラス基板の他
方の側の表面上に多層干渉薄膜が積層形成された構造を
有する。その多層干渉薄膜の層構成、膜厚、積層順序等
は、上記第1実施例における多層干渉薄膜と同様である
第3図は、第3実施例を表す0図にみるように、この紫
外赤外線カットフィルタは、前記第1実施例の紫外赤外
線カントフィルタのフロートガラス基板が露出した側の
表面に、酸化亜鉛ZnO薄膜と多層干渉薄膜を、フロー
トガラス基板を中心にして対称構造をとるように積層形
成した構造を有する。
FIG. 2 shows the second embodiment. As shown in FIG.
It has a structure in which nO thin films are laminated and a multilayer interference thin film is laminated on the other surface of the float glass substrate. The layer structure, film thickness, lamination order, etc. of the multilayer interference thin film are the same as those of the multilayer interference thin film in the first embodiment. The cut filter has a zinc oxide ZnO thin film and a multilayer interference thin film laminated on the surface of the ultraviolet-infrared cant filter of the first embodiment on the side where the float glass substrate is exposed so as to have a symmetrical structure with the float glass substrate at the center. It has a formed structure.

第4図は、第4実施例を表す。図にみるように、この紫
外赤外線カットフィルタは、厚さ4日のフロートガラス
基板の片側の表面上に厚さ2000人の酸化亜鉛ZnO
薄膜が積層形成され、さらに、そのZnO薄膜上に多層
干渉薄膜が積層形成された構造を有する。その多層干渉
薄膜は、透明導電性酸化膜として厚さ1400人のFA
TO膜と、高屈折率透明誘電体膜として厚さ1040人
のZnS膜とを、Zn5llが最下層、かつ、FATo
llが最外層になるように、交互に4Nずつ積層形成し
てなるものである。
FIG. 4 represents a fourth embodiment. As shown in the figure, this ultraviolet and infrared cut filter consists of a 2,000-day thick zinc oxide ZnO film on one surface of a 4-day-thick float glass substrate.
It has a structure in which thin films are laminated and a multilayer interference thin film is further laminated on the ZnO thin film. The multilayer interference thin film has a thickness of 1,400 FA as a transparent conductive oxide film.
The TO film and the ZnS film with a thickness of 1040 mm as a high refractive index transparent dielectric film are combined with Zn5ll as the bottom layer and FATo as the bottom layer.
4N layers are alternately formed so that ll is the outermost layer.

第5図は、第5実施例を表す。図にみるように、この紫
外赤外線カットフィルタは、厚さ4鶴のフロートガラス
基板の片側の表面上に厚さ2000人の酸化亜鉛ZnO
薄膜が積層形成され、さらに、そのZnO薄膜上に多層
干渉薄膜が積層形成された構造を有する。その多層干渉
薄膜は、透明導電性酸化膜として厚さ1000人のAT
O膜と、高屈折率透明誘電体膜として厚さ1200人の
ZrOx膜とを、Z r O,膜が最下層、かつ、AT
O膜が最外層になるように、交互に4層ずつ積層形成し
てなるものである。
FIG. 5 represents a fifth embodiment. As shown in the figure, this ultraviolet and infrared cut filter consists of a 2000 mm thick zinc oxide ZnO film on one surface of a 4 mm thick float glass substrate.
It has a structure in which thin films are laminated and a multilayer interference thin film is further laminated on the ZnO thin film. The multilayer interference thin film is a transparent conductive oxide film with a thickness of 1000 nm.
The ZrO film and the ZrOx film with a thickness of 1200 nm as a high refractive index transparent dielectric film are combined with the ZrO film as the bottom layer and the AT film as the bottom layer.
Four layers are alternately stacked so that the O film is the outermost layer.

第1実施例ないし第5実施例の紫外赤外線カントフィル
タ、および、前述した第6図にみるような従来例の紫外
赤外線反射フィルタの分光透過特性を分光光度計(日立
製:tJ−3410)により測定し、それらの紫外線カ
ツト率、可視光透過率、赤外線カット率を算出した結果
を第1表にまとめて示した。
The spectral transmission characteristics of the ultraviolet-infrared cant filters of the first to fifth examples and the conventional ultraviolet-infrared reflection filter as shown in FIG. 6 were measured using a spectrophotometer (manufactured by Hitachi: tJ-3410). Table 1 summarizes the results of measurement and calculation of the ultraviolet cut rate, visible light transmittance, and infrared cut rate.

第1表 第1表にみるように、第1実施例ないし第5実施例のフ
ィルタは、従来例のフィルタに比べて、紫外線カツト率
および可視光透過率はほぼ同等であるが、赤外線カット
率が格段に高いことが確認された。
Table 1 As shown in Table 1, the filters of the first to fifth embodiments have almost the same ultraviolet cut rate and visible light transmittance as the conventional filter, but the infrared cut rate was found to be significantly higher.

なお、第7図は、第1実施例の紫外赤外線カットフィル
タ、前述した■の多層干渉薄膜を有する従来の紫外線吸
収赤外線反射フィルタ、および前述した■の透明導電性
酸化膜を有する従来の紫外赤外線反射フィルタの分光透
過特性曲線を示したものである。この図にみるように、
実施例のフィルタは、波長800〜2000nmの広範
囲の赤外線と波長400nm以下の紫外線を良く遮断し
、可視光を良く透過するものとなっており、従来のフィ
ルタの持つ光学的効果を併せ持ったものとなっているこ
とが確認された。
Note that FIG. 7 shows the ultraviolet-infrared cut filter of the first embodiment, the conventional ultraviolet-absorbing infrared-reflecting filter having a multilayer interference thin film (2) described above, and the conventional ultraviolet-infrared filter having a transparent conductive oxide film (2) described above. It shows the spectral transmission characteristic curve of the reflection filter. As you can see in this figure,
The filter of this example effectively blocks infrared rays with a wavelength of 800 to 2,000 nm and ultraviolet rays with a wavelength of 400 nm or less, and transmits visible light well, and has the optical effects of conventional filters. It was confirmed that this is the case.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる紫外赤外線カントフィルタは、耐熱性
、耐湿性に優れ、経年劣下が少なく、しかも、可視光を
良く透過し、広範囲の赤外線と紫外線を効果的に遮断す
ることができる。
The ultraviolet-infrared cant filter according to the present invention has excellent heat resistance and moisture resistance, has little deterioration over time, and can transmit visible light well and effectively block infrared rays and ultraviolet rays over a wide range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は、それぞれ、この発明の第1ない
し第5実施例を表す側断面図、第6図は、従来例を表す
側断面図、第7図は、第1実施例の紫外赤外線カットフ
ィルタの分光透過特性曲線、紫外線吸収ガラス上に透明
導電性酸化膜を形成してなる従来の紫外線吸収赤外線反
射フィルタの分光透過特性曲線、および透明基板上に多
層干渉薄膜を形成してなる従来の紫外赤外線反射フィル
タの分光透過特性曲線をまとめて示すグラフである。 (0ム) 代理人 弁理士  松 本 武 彦 第1図 1j!4図 第3図 ]6図 第7図 □ 皐肩し−フィルタ −−−−−17jLり(今シ普千珂)1)−−−*  
(m4tlll)
1 to 5 are side sectional views showing the first to fifth embodiments of the present invention, FIG. 6 is a side sectional view showing the conventional example, and FIG. 7 is a side sectional view showing the first embodiment. The spectral transmission characteristic curve of an ultraviolet-infrared cut filter, the spectral transmission characteristic curve of a conventional ultraviolet-absorbing infrared-reflecting filter formed by forming a transparent conductive oxide film on ultraviolet-absorbing glass, and the spectral transmission characteristic curve by forming a multilayer interference thin film on a transparent substrate. 1 is a graph summarizing spectral transmission characteristic curves of conventional ultraviolet-infrared reflection filters. (0mu) Agent Patent Attorney Takehiko Matsumoto Figure 1 1j! Figure 4, Figure 3] Figure 6, Figure 7 □ Filter ----17jL (Imashi Fuchika) 1)---*
(m4tllll)

Claims (1)

【特許請求の範囲】[Claims] 1 透明基板の少なくとも片側の表面上に酸化亜鉛薄膜
が形成されており、この酸化亜鉛薄膜上および/または
前記透明基板上に、透明導電性酸化膜と高屈折率透明誘
電体膜を交互に多層積層してなる多層干渉薄膜が形成さ
れている紫外赤外線カットフィルタ。
1. A zinc oxide thin film is formed on at least one surface of a transparent substrate, and a transparent conductive oxide film and a high refractive index transparent dielectric film are alternately multilayered on the zinc oxide thin film and/or on the transparent substrate. An ultraviolet and infrared cut filter that is made up of a multilayer interference thin film.
JP25617090A 1990-09-25 1990-09-25 Ultraviolet and infrared cut filter Pending JPH04133004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25617090A JPH04133004A (en) 1990-09-25 1990-09-25 Ultraviolet and infrared cut filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25617090A JPH04133004A (en) 1990-09-25 1990-09-25 Ultraviolet and infrared cut filter

Publications (1)

Publication Number Publication Date
JPH04133004A true JPH04133004A (en) 1992-05-07

Family

ID=17288885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25617090A Pending JPH04133004A (en) 1990-09-25 1990-09-25 Ultraviolet and infrared cut filter

Country Status (1)

Country Link
JP (1) JPH04133004A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449413A (en) * 1993-05-12 1995-09-12 Optical Coating Laboratory, Inc. UV/IR reflecting solar cell cover
US5618626A (en) * 1992-11-09 1997-04-08 Central Glass Company, Limited Glass plate with ultraviolet absorbing multilayer coating
US5764412A (en) * 1994-10-15 1998-06-09 Fujitsu Limited Polarization separation/conversion device for polarized lighting apparatus and projection display unit
JP2004354735A (en) * 2003-05-29 2004-12-16 Daishinku Corp Light ray cut filter
JP2006154395A (en) * 2004-11-30 2006-06-15 Canon Inc Optical filter and imaging device having the same
EP1701182A1 (en) * 2005-03-10 2006-09-13 Mitsumi Electric Co., Ltd. Camera module comprising an infrared cut filter, said filter comprising ultraviolet cut means
JP2007065232A (en) * 2005-08-31 2007-03-15 National Institute Of Advanced Industrial & Technology Ultraviolet and heat-ray reflection multilayer film
DE102005048743A1 (en) * 2005-10-10 2007-04-12 Janos Brellos Transparent, self-adhesive plastics films for use as sunscreens have a coating containing nanostructured materials to allow absorption of UV and IR without deterioration in transparency
JP2007094111A (en) * 2005-09-29 2007-04-12 Sekisui Chem Co Ltd Transparent heat shielding material and transparent heat shielding and light control material
CN100454050C (en) * 2005-07-15 2009-01-21 鸿富锦精密工业(深圳)有限公司 Light filter
CN100462738C (en) * 2005-07-15 2009-02-18 鸿富锦精密工业(深圳)有限公司 Light filter
JP2009521787A (en) * 2005-12-22 2009-06-04 ガーディアン・インダストリーズ・コーポレーション Optical diffuser comprising at least an IR block film or a UV block film
JP2012518205A (en) * 2009-02-19 2012-08-09 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Method for manufacturing an omnidirectional multilayer photonic structure
CN103261927A (en) * 2011-01-31 2013-08-21 株式会社大真空 Optical filter module and optical filter system
WO2017041819A1 (en) * 2015-09-07 2017-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multilayered system and method for producing the same
US20220011486A1 (en) * 2019-03-05 2022-01-13 Quantum-Si Incorporated Optical absorption filter for an integrated device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618626A (en) * 1992-11-09 1997-04-08 Central Glass Company, Limited Glass plate with ultraviolet absorbing multilayer coating
US5449413A (en) * 1993-05-12 1995-09-12 Optical Coating Laboratory, Inc. UV/IR reflecting solar cell cover
US5764412A (en) * 1994-10-15 1998-06-09 Fujitsu Limited Polarization separation/conversion device for polarized lighting apparatus and projection display unit
JP2004354735A (en) * 2003-05-29 2004-12-16 Daishinku Corp Light ray cut filter
JP2006154395A (en) * 2004-11-30 2006-06-15 Canon Inc Optical filter and imaging device having the same
EP1701182A1 (en) * 2005-03-10 2006-09-13 Mitsumi Electric Co., Ltd. Camera module comprising an infrared cut filter, said filter comprising ultraviolet cut means
CN100454050C (en) * 2005-07-15 2009-01-21 鸿富锦精密工业(深圳)有限公司 Light filter
CN100462738C (en) * 2005-07-15 2009-02-18 鸿富锦精密工业(深圳)有限公司 Light filter
JP2007065232A (en) * 2005-08-31 2007-03-15 National Institute Of Advanced Industrial & Technology Ultraviolet and heat-ray reflection multilayer film
JP2007094111A (en) * 2005-09-29 2007-04-12 Sekisui Chem Co Ltd Transparent heat shielding material and transparent heat shielding and light control material
DE102005048743A1 (en) * 2005-10-10 2007-04-12 Janos Brellos Transparent, self-adhesive plastics films for use as sunscreens have a coating containing nanostructured materials to allow absorption of UV and IR without deterioration in transparency
DE102005048743B4 (en) * 2005-10-10 2011-04-07 Janos Brellos Transperent self-adhesive plastic film
JP2009521787A (en) * 2005-12-22 2009-06-04 ガーディアン・インダストリーズ・コーポレーション Optical diffuser comprising at least an IR block film or a UV block film
JP2012518205A (en) * 2009-02-19 2012-08-09 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Method for manufacturing an omnidirectional multilayer photonic structure
CN103261927A (en) * 2011-01-31 2013-08-21 株式会社大真空 Optical filter module and optical filter system
WO2017041819A1 (en) * 2015-09-07 2017-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multilayered system and method for producing the same
US20220011486A1 (en) * 2019-03-05 2022-01-13 Quantum-Si Incorporated Optical absorption filter for an integrated device

Similar Documents

Publication Publication Date Title
JPH04133004A (en) Ultraviolet and infrared cut filter
EP1861339B1 (en) Coating composition with solar properties
JPH0370202B2 (en)
US20060057399A1 (en) Infra-red reflecting layered structure
KR101768257B1 (en) Low-emissivity coat and building material for window including the same
KR101788368B1 (en) Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
US11161780B2 (en) Functional building material for windows and doors
JPS63206333A (en) Heat ray reflecting glass of single plate
US20210355746A1 (en) Solar Control Coatings With Quadruple Metallic Layers
KR20020045484A (en) Heat-resistant reflecting layer, laminate formed of the reflecting layer, and liquid crystal display device having the reflecting layer or the laminate
KR20160015513A (en) Low-emissivity coat, and functional building material including low-emissivity coat for windows
TWI585196B (en) Solar control films, an assembly comprising the same and methods for producing the same
WO2020103206A1 (en) Polarization-independent filter
JPS6151761B2 (en)
IL26863A (en) Glazing for attenuating ultraviolet radiation
JP2566634B2 (en) Multi-layer antireflection film
JPS6064843A (en) Heat-wave shielding laminate
JP2561955B2 (en) Multi-layer antireflection film for plastic lenses
JPH01138159A (en) Heat ray shielding plate having high visible ray transmittance
RU2790082C2 (en) Sunscreen coatings with four metal layers
JPH0764598B2 (en) Infrared blocking glass
KR102064881B1 (en) Low-emissivity coat, and functional building material including low-emissivity coat for windows
JPH026904A (en) Optical filter
JPH09175840A (en) Low-reflection glass substrate for solar cell
JPH0211121B2 (en)