JPH04132225A - Furnace core tube for semiconductor-substrate heat-treatment use - Google Patents

Furnace core tube for semiconductor-substrate heat-treatment use

Info

Publication number
JPH04132225A
JPH04132225A JP25446590A JP25446590A JPH04132225A JP H04132225 A JPH04132225 A JP H04132225A JP 25446590 A JP25446590 A JP 25446590A JP 25446590 A JP25446590 A JP 25446590A JP H04132225 A JPH04132225 A JP H04132225A
Authority
JP
Japan
Prior art keywords
gas
core tube
furnace core
furnace
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25446590A
Other languages
Japanese (ja)
Inventor
Isamu Tanabe
田辺 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP25446590A priority Critical patent/JPH04132225A/en
Publication of JPH04132225A publication Critical patent/JPH04132225A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the uniformity of a film thickness inside a furnace by a method wherein a gas is spouted from a plurality of introduction parts and from flow-rate control devices of the same number and the concentration of the gas is made uniform in the whole region inside a furnace core tube. CONSTITUTION:Three gas-introduction pipe nozzles 4 and gas flow-rate control devices 2 of the same number are provided. The individual gas nozzles 4 are laid separately in three gas introduction parts, e.g. on the front side 5, the center 6, and the rear side 7 of a furnace tube, gas-spouting ports are installed in the respective gas introduction parts; and gas is spouted from the upper part to the lower part of the furnace core tube. Thereby, the concentration of the gas is made uniform in the whole region inside the furnace tube, ad the uniformity of a film thickness inside a furnace can be enhanced. When the gas is spouted from the upper part of the furnace core tube, it is possible to avoid that a foreign body or the like from a reference wafer adheres. Since an unreacted gas is supplied to each semiconductor substrate, a quality is enhanced. When the gas flow-rate control devices 2 are separated respectively for individual gas introduction pipes, it is not required to divide a furnace core tube heater to provide a temperature gradient inside the furnace core tube.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板熱処理用炉芯管に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a furnace core tube for heat treatment of semiconductor substrates.

〔従来の技術〕[Conventional technology]

従来の炉芯管は、第2図の縦断面図に示すように、炉芯
管1に半導体基板8を出し入れするなめの半導体基板挿
入口9の反対側にガス噴出口3が付いている。
As shown in the longitudinal cross-sectional view of FIG. 2, a conventional furnace core tube has a gas outlet 3 on the opposite side of a diagonal semiconductor substrate insertion opening 9 through which a semiconductor substrate 8 is inserted into and taken out of the furnace core tube 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、半導体熱処理用炉芯管は、ガス導入口に近い半導
体基板と遠い半導体基板とでは、到達したガスの濃度に
差が生じるため、炉芯管加熱用ヒータを分割し、炉芯管
内に温度勾配をつけることによって膜厚の均一性を保っ
ている。しかしながら、温度測定による膜厚調整は難し
く、温度測定を終わらせるのにかなり時間がかかつてし
まう。
Conventionally, in furnace core tubes for semiconductor heat treatment, there is a difference in the concentration of the gas that reaches the semiconductor substrate near the gas inlet and the semiconductor substrate further away from the gas inlet, so the heater for heating the furnace core tube is divided and the temperature is controlled inside the furnace core tube. The uniformity of the film thickness is maintained by creating a gradient. However, it is difficult to adjust the film thickness by temperature measurement, and it takes a considerable amount of time to complete the temperature measurement.

又、炉芯管のガス噴出口が1個所の為、ガス導入口に近
い方から反対側へガスが流れて行く際、ガス導入口に近
い半導体基板等に触れたガスが流れて来る為、異物がガ
スとともに他の半導体基板に付着し、短絡等の欠陥を生
じて品質を劣化させるという欠点がある。
In addition, since the furnace core tube has only one gas outlet, when the gas flows from the side near the gas inlet to the opposite side, the gas that comes into contact with the semiconductor substrate, etc. near the gas inlet will flow. There is a drawback that foreign matter adheres to other semiconductor substrates together with gas, causing defects such as short circuits and deteriorating quality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体基板熱処理用炉芯管は、炉芯管内にガス
導入部を複数設け、各ガス導入部の管内上部にガス噴出
口を複数有し、各ガス導入部のそれぞれにガス流量制御
装置を有している。
The furnace core tube for semiconductor substrate heat treatment of the present invention has a plurality of gas introduction sections in the furnace core tube, a plurality of gas jet ports in the upper part of the tube of each gas introduction section, and a gas flow rate control device for each gas introduction section. have.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)、(b)、(c)は本発明の一実施例の半
導体基板熱処理用炉芯管を示す図で、図(a)は構成図
、図(b)は図(a)のA−A断面図、図(c)は図(
a>のB−B断面図である。
FIGS. 1(a), (b), and (c) are diagrams showing a furnace core tube for semiconductor substrate heat treatment according to an embodiment of the present invention; FIG. 1(a) is a configuration diagram, and FIG. ), Figure (c) is a cross-sectional view of Figure (
a> is a BB sectional view.

第1図(a)において、3個のガス導入配管ノズル4と
、同数のガス流量制御装置2をそれぞれ有し、各ガス導
入配管ノズル4は、炉芯管のフロント側5、センタ一部
6、リア側7の3箇所のガス導入部に別れて図(b)に
示すように配管され、それぞれのガス導入部は図(c)
に示すようにガス噴出口3を設け、ガスを炉芯管の上か
ら下へ噴出することによって、炉芯管内全域にわたって
ガスの濃度を均一にすることにより、炉内膜厚の均一性
を向上させることができる。
In FIG. 1(a), each gas introduction pipe nozzle 4 has three gas introduction pipe nozzles 4 and the same number of gas flow rate control devices 2, and each gas introduction pipe nozzle 4 has a front side 5 and a center part 6 of the furnace core tube. The pipes are separated into three gas introduction parts on the rear side 7 as shown in Figure (b), and each gas introduction part is arranged as shown in Figure (c).
As shown in the figure, a gas outlet 3 is installed to eject gas from the top to the bottom of the furnace core tube, thereby making the gas concentration uniform throughout the entire area inside the furnace core tube, thereby improving the uniformity of the film thickness inside the furnace. can be done.

又、炉芯管上部よりガスを噴出する事によって、リファ
レンスウェハーからの異物等の付着が避けられ、半導体
基板1枚毎に未反応ガスが供給される為、品質の向上に
もなる。次に、ガス流量制御装置2を個々のガス導入配
管用にそれぞれ分けた事によって、ガス流量をそれぞれ
コントロール出来るので、炉芯管加熱用ヒーターを分割
し炉芯管内に温度勾配を設けることは必要なくなる。
Furthermore, by ejecting gas from the upper part of the furnace core tube, adhesion of foreign matter from the reference wafer can be avoided, and unreacted gas is supplied to each semiconductor substrate, which also improves quality. Next, by dividing the gas flow control device 2 for each individual gas introduction pipe, the gas flow rate can be controlled individually, so there is no need to divide the heater for heating the furnace core tube and create a temperature gradient inside the furnace core tube. It disappears.

第3図のグラフは、炉内温度900℃の条件の下で、炉
内半導体基板の膜厚を一定にするために必要な、外部熱
電対設定温度を示す、白丸は従来炉芯管の温度分布であ
り、黒丸は本発明の温度分布を示す、従来は、炉内基板
の膜厚を一定にするために、F(フロント側5)、C(
センタ一部6)、R(リア側7)の3箇所の出力を調整
する必要があったが、本実施例では、F、C,Hの出力
値は同じなので1つ決めてやればよい。従って、条件出
しの時間短縮となる。
The graph in Figure 3 shows the external thermocouple setting temperature required to maintain a constant film thickness of the semiconductor substrate in the furnace under the condition of the furnace temperature of 900°C.The white circle indicates the temperature of the conventional furnace core tube. The black circles indicate the temperature distribution of the present invention. Conventionally, in order to keep the film thickness of the substrate in the furnace constant, F (front side 5), C (
It was necessary to adjust the outputs at three locations, center part 6) and R (rear side 7), but in this embodiment, the output values for F, C, and H are the same, so it is only necessary to determine one. Therefore, the time required to set conditions is shortened.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の半導体基板熱処理用炉芯管
は、ガス導入部を複数有し、ガス導入部と同数のガス流
量制御装置でガスをそれぞれの噴出口より噴出し、炉芯
管内全域においてガスの濃度を均一にしたので、炉内膜
厚均一性の向上が得られ、異物等の付着が避けられ、半
導体基板1枚毎に未反応ガスが供給され品質の向上につ
ながるという効果を有する。
As explained above, the furnace core tube for heat treatment of semiconductor substrates of the present invention has a plurality of gas introduction parts, and the same number of gas flow rate control devices as the gas introduction parts blows out gas from each spout, and the entire inside of the furnace core tube is By making the gas concentration uniform in the process, it is possible to improve the uniformity of the film thickness in the furnace, avoid adhesion of foreign substances, and improve quality by supplying unreacted gas to each semiconductor substrate. have

又、ガス流量制御装置を個々のガス導入管用にそれぞれ
分けて、ガス流量を個々にコントロール出来るようにし
たので、炉芯管内の温度勾配は必要なくなり、温度測定
の時間の短縮という効果を有する。
Furthermore, since the gas flow rate control device is separated for each individual gas introduction tube so that the gas flow rate can be controlled individually, there is no need for a temperature gradient in the furnace core tube, which has the effect of shortening the time for temperature measurement.

側、6・・・センタ一部、7・・・リア側、8・・・半
導体基板、9・・・半導体基板挿入口。
Side, 6... Center part, 7... Rear side, 8... Semiconductor board, 9... Semiconductor board insertion slot.

Claims (1)

【特許請求の範囲】[Claims]  半導体基板熱処理用炉芯管において、前記炉芯管内に
ガス導入部を複数有し、かつ各ガス導入部毎に炉芯管内
へのガス噴出口を炉芯管内上部に複数有し、各ガス導入
部のそれぞれにガス流量制御装置が接続されていること
を特徴とする半導体基板熱処理用炉芯管。
In a furnace core tube for semiconductor substrate heat treatment, the furnace core tube has a plurality of gas introduction parts, and each gas introduction part has a plurality of gas injection ports in the upper part of the furnace core tube, and each gas introduction A furnace core tube for semiconductor substrate heat treatment, characterized in that a gas flow rate control device is connected to each of the sections.
JP25446590A 1990-09-25 1990-09-25 Furnace core tube for semiconductor-substrate heat-treatment use Pending JPH04132225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25446590A JPH04132225A (en) 1990-09-25 1990-09-25 Furnace core tube for semiconductor-substrate heat-treatment use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25446590A JPH04132225A (en) 1990-09-25 1990-09-25 Furnace core tube for semiconductor-substrate heat-treatment use

Publications (1)

Publication Number Publication Date
JPH04132225A true JPH04132225A (en) 1992-05-06

Family

ID=17265409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25446590A Pending JPH04132225A (en) 1990-09-25 1990-09-25 Furnace core tube for semiconductor-substrate heat-treatment use

Country Status (1)

Country Link
JP (1) JPH04132225A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348417B1 (en) 1998-04-03 2002-02-19 Nec Corporation Semiconductor device manufacturing apparatus and semiconductor device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348417B1 (en) 1998-04-03 2002-02-19 Nec Corporation Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
US6391116B2 (en) 1998-04-03 2002-05-21 Nec Corporation Semiconductor device manufacturing apparatus and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JPS63227011A (en) Chemical vapor deposition system
JPH07283149A (en) Thin film vapor growth device
CN108691008A (en) Admission gear, reaction chamber and the epitaxial growth equipment of reaction chamber
JPH10280150A (en) Device for treating substrate to be treated
JPH04132225A (en) Furnace core tube for semiconductor-substrate heat-treatment use
JP3359474B2 (en) Horizontal heat treatment equipment
JP3081860B2 (en) Chemical vapor deposition apparatus and method for manufacturing semiconductor device
JPH0383897A (en) Vapor-phase growth device
TW201812854A (en) Vapor-phase growth apparatus, method for production of epitaxial wafer, and attachment for vapor-phase growth apparatus
JPH0555172A (en) Dry etching apparatus
CN203346518U (en) Silicon wafer thermal treatment reaction tube
JPH02254714A (en) Semiconductor manufacturing device
KR200165875Y1 (en) Throttle gas injecting system
JPS6359762B2 (en)
KR20070089817A (en) Substrate surface treating apparatus
KR20020006776A (en) Atomic thin layer deposition appratus
KR100246314B1 (en) Wafer heating apparatus
JPS61129822A (en) Pressure-reduced cvd apparatus
JPH07176492A (en) Cvd apparatus
JPH04352322A (en) Inpurity thermal diffusion device
JPS6140771Y2 (en)
JPH01198016A (en) Horizontal plasma cvd apparatus
JPS62124738A (en) Thermal treatment equipment for wafer
JPH11195611A (en) Manufacture of reactor and semiconductor member
TW202108811A (en) Temperature control apparatus