JPH04132131A - Vacuum pressure measuring device for vacuum circuit breaker vacuum bulb - Google Patents

Vacuum pressure measuring device for vacuum circuit breaker vacuum bulb

Info

Publication number
JPH04132131A
JPH04132131A JP25230690A JP25230690A JPH04132131A JP H04132131 A JPH04132131 A JP H04132131A JP 25230690 A JP25230690 A JP 25230690A JP 25230690 A JP25230690 A JP 25230690A JP H04132131 A JPH04132131 A JP H04132131A
Authority
JP
Japan
Prior art keywords
vacuum
circuit breaker
power source
measuring device
large current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25230690A
Other languages
Japanese (ja)
Other versions
JPH0748341B2 (en
Inventor
Yoshio Koguchi
湖口 義雄
Katsuzo Kuroda
黒田 勝三
Korehiro Ishigami
石上 維宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2252306A priority Critical patent/JPH0748341B2/en
Publication of JPH04132131A publication Critical patent/JPH04132131A/en
Publication of JPH0748341B2 publication Critical patent/JPH0748341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Details Of Valves (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To predict the life expectancy of a vacuum bulb which is in the state of being mounted on a vacuum circuit breaker, by controlling to a specific range the rising time constant of the pulse electric current of a large electric current pulse power source generating a magnetic field at a solenoid coil surrounding the vacuum bulb. CONSTITUTION:A vacuum pressure measuring device 2 is equipped with electrodes 4, 5 which are in a vacuum bulb 1 mounted on a vacuum circuit breaker 3, a control circuit 7 that maintains a lag time during which high voltage impressed from a DC high pressure power source 6 reaches the predetermined voltage, a large electric current pulse power source 8 which is actuated through the circuit 7, and a solenoid coil 9 at which a magnetic field is generated by means of the output of the power source 8 and which surrounds the vacuum bulb, and measures vacuum pressure by measuring the crest value and integration value of an ion electric current flowing between electrodes 4, 5 by means of a detecting circuit 10. The probability of ion electric current generation becomes high by controlling the pulse electric current rising time constant of the above large electric current pulse power source at 0.1-5mS, and a measuring range can be expanded to 10<-7>Torr, so the prediction of the life expectancy of the vacuum bulb under the condition of being mounted on the vacuum circuit breaker, and the transport and fitting of it can easily be done.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空遮断器用真空バルブの真空圧力測定装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker.

〔従来の技術〕[Conventional technology]

従来の真空バルブの内部真空圧力測定は工場出荷前に真
空バルブ単品で測愈しているため、被測定真空圧力容器
を包囲するソレノイドコイルは。
Conventionally, the internal vacuum pressure of a vacuum valve is measured by a single vacuum valve before it is shipped from the factory, so the solenoid coil that surrounds the vacuum pressure vessel to be measured.

励磁磁束密度を大きくするため巻数を数百巻以上にし、
電源容量を余り大きくしなかった。あるいは真空圧力測
定による真空容器内の脱ガス効果を抑えるため、電極間
に印加する直流高電圧をサイラトロン等によりパルス印
加する方式等がある。
In order to increase the excitation magnetic flux density, the number of turns is several hundred or more,
The power supply capacity was not increased too much. Alternatively, in order to suppress the effect of degassing inside the vacuum container due to vacuum pressure measurement, there is a method in which a pulse of DC high voltage is applied between electrodes using a thyratron or the like.

また、実開昭54−30975号公報に示すように、被
測定真空容器を包囲するソレノイドコイルを二重以上に
して真空圧力の測定範囲を拡大したり、公開技報番号第
86−504号に示すように、電離放射線による先駆放
電を利用して真空圧力の測定範囲を拡大していた。
In addition, as shown in Japanese Utility Model Application No. 54-30975, the measurement range of vacuum pressure can be expanded by using two or more solenoid coils surrounding the vacuum vessel to be measured, and as shown in Japanese Utility Model Publication No. 86-504. As shown, the measurement range of vacuum pressure was expanded by using pioneer discharge caused by ionizing radiation.

一方、真空遮断器に搭載された真空バルブの真空圧力測
定については、真空バルブの端板にマグネトロン素子を
具備して置く方法が検討されたが、マグネトロン素子が
高価なため、真空遮断器のコストアップの要因となるの
で実現されていない。
On the other hand, in order to measure the vacuum pressure of a vacuum valve installed in a vacuum circuit breaker, a method of installing a magnetron element on the end plate of the vacuum valve was considered, but since the magnetron element is expensive, the cost of the vacuum circuit breaker This has not been realized because it would cause an increase in

また、簡易法では真空遮断器の線間の容量変化から真空
圧力の劣化を検出する方法もあるが、精度も悪く、あま
り採用されていない。
Another simple method is to detect the deterioration of vacuum pressure from the change in capacitance between the lines of a vacuum circuit breaker, but this method is not very accurate and is not widely used.

最近の高度に発達した情報化社会において安定した高品
質の電力供給を行うためには、送電、配電の基幹となる
真ゆ遮断器には高信頼性が要求されている。そのために
は真空遮断器のバイタルパーツである真空バルブの使用
寿命予測、すなわち真空圧力推移予測が注目されている
。しかしながら前述したように、真空遮断器に搭載した
状態での測定方法が確立されていない、また、真空バル
ブ単品の真空圧力測定方式は、被測定容器を包囲するコ
イルが大きかったり、電源設備が大きかったりするため
、フィールドで使用している真空遮断器の真空圧力測定
には利用されていない。
In order to provide a stable, high-quality power supply in today's highly developed information society, high reliability is required of the true wire circuit breakers, which are the backbone of power transmission and distribution. For this purpose, the prediction of the service life of the vacuum valve, which is a vital part of the vacuum circuit breaker, or the prediction of the vacuum pressure transition, is attracting attention. However, as mentioned above, there is no established method for measuring vacuum pressure when it is mounted on a vacuum circuit breaker, and the vacuum pressure measurement method using a single vacuum valve requires a large coil surrounding the container to be measured and a large power supply equipment. Therefore, it is not used to measure the vacuum pressure of vacuum circuit breakers used in the field.

現在、一番利用されている方法は、直流高電圧発生器を
用いた直流耐電圧法である。しかし、本方式は内部真空
圧力が3 X 10−”Torr以上のグロー放電領域
の真空度チエッカ−としては有効であるが、真空バルブ
の保障限界値である5X10−4丁orr以下の値が測
定できない、また、真空バルブの運転中の内部真空圧力
はI X 10−’TorrがらIX 10−’Tor
rの範囲内にあるため、真空バルブの寿命予測には、上
記範囲内を絶対値で把握する必要がある。
Currently, the most used method is the DC withstand voltage method using a DC high voltage generator. However, although this method is effective as a vacuum level checker for glow discharge areas where the internal vacuum pressure is 3 X 10-"Torr or more, it cannot measure values that are less than 5X10-4 Torr, which is the guaranteed limit for vacuum valves. Also, the internal vacuum pressure during operation of the vacuum valve is between IX 10-'Torr and IX 10-'Torr.
Since it is within the range of r, it is necessary to know the absolute value within the above range in order to predict the life of the vacuum valve.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、真空遮断器に搭載された真空バルブの
内部真空圧力が絶対値で測定できないため、真空バルブ
の寿命予測ができなかった。
In the above-mentioned conventional technology, the internal vacuum pressure of the vacuum valve mounted on the vacuum circuit breaker cannot be measured as an absolute value, so it is not possible to predict the life of the vacuum valve.

本発明は以上の点に鑑みなされたものであり、真空遮断
器に搭載された状態の真空バルブの寿命予測および運搬
、取付けを容易にすることを可能とした真空遮断器用真
空バルブの真空圧力測定装置を提供することを目的とす
るものである。
The present invention was made in view of the above points, and provides vacuum pressure measurement of a vacuum valve for a vacuum circuit breaker, which makes it possible to predict the life of the vacuum valve installed in the vacuum circuit breaker and to facilitate transportation and installation. The purpose is to provide a device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、大電流パルス電源のパルス電流の立上り時
定数を0.1〜5mSに制御することにより、達成され
る。
The above object is achieved by controlling the rise time constant of the pulse current of the large current pulse power supply to 0.1 to 5 mS.

被測定真空容器(真空バルブ)に搭載された真空バルブ
を包囲し、磁界を励磁するソレノイドコイルは真空バル
ブに装着自在(1〜50巻)に形成した。
A solenoid coil that surrounds a vacuum valve mounted on a vacuum vessel to be measured (vacuum valve) and excites a magnetic field was formed so that it could be freely attached to the vacuum valve (1 to 50 turns).

大電流パルス電源、制御回路および検出回路を、夫々複
数個に分割自在で、かつ可搬可能に形成した。
A large current pulse power source, a control circuit, and a detection circuit are formed so that they can be divided into a plurality of parts and are portable.

〔作用〕[Effect]

上記手段を設けたので、イオン電流の発生確率が高くな
って、真空圧力測定範囲を1O−7Torrまで拡大で
きるようになる。
Since the above means is provided, the probability of generation of ion current is increased, and the vacuum pressure measurement range can be expanded to 10-7 Torr.

さらに、ソレノイドコイルが真空遮断器に搭載されてい
る真空バルブに装着自在となり、大電流パルス電源、制
御回路および検出回路は夫々複数個に分割自在となる。
Furthermore, the solenoid coil can be attached to the vacuum valve mounted on the vacuum circuit breaker, and the large current pulse power source, control circuit, and detection circuit can each be divided into a plurality of parts.

〔実施例〕〔Example〕

以下1図示した実施例に基づいて本発明を説明する。第
1図から第8図には本発明の一実施例が示されている。
The present invention will be explained below based on an embodiment shown in one figure. An embodiment of the present invention is shown in FIGS. 1-8.

真空遮断器用真空バルブ1の真空圧力測定装置2は、真
空遮断器3に搭載されている真空バルブ1と、この真空
バルブ1中に気密封止された接離自在な電極4,5に高
電圧を印加する直流高圧電源6と、この電源6から電極
4,5に印加される高電圧が所定電圧に達するまでの遅
れ時間を維持する制御回路7と、この制御回路7を介し
て動作する大電流パルス電源8と、このパルス電源8の
出力により磁界を発生し、かつ真空バルブ1を包囲して
配置されるソレノイドコイル9とを備えている。そして
一対の電極4,5間を流れるイオン電流の波高値および
積分値を検出回路(イオン電流検出器)10で測定して
真空バルブ1中の真空圧力を測定する。このように構成
された真空圧力測定袋W12で、本実施例では大電流パ
ルス電源8のパルス電流の立上り時定数を0.1〜5m
Sに制御した。このようにすることにより、イオン電流
の発生確率が高くなって、真空圧力測定範囲を10−7
Torrまで拡大できるようになり。
A vacuum pressure measuring device 2 of a vacuum valve 1 for a vacuum circuit breaker applies a high voltage to a vacuum valve 1 mounted on a vacuum circuit breaker 3 and electrodes 4 and 5 that are hermetically sealed in the vacuum valve 1 and can be freely connected and separated. a DC high-voltage power supply 6 that applies a voltage, a control circuit 7 that maintains a delay time until the high voltage applied from this power supply 6 to the electrodes 4 and 5 reaches a predetermined voltage, and a large It includes a current pulse power source 8 and a solenoid coil 9 that generates a magnetic field by the output of the pulse power source 8 and is arranged to surround the vacuum valve 1. Then, the peak value and integral value of the ion current flowing between the pair of electrodes 4 and 5 are measured by a detection circuit (ion current detector) 10 to measure the vacuum pressure in the vacuum valve 1. In the vacuum pressure measurement bag W12 configured as described above, in this embodiment, the rise time constant of the pulse current of the large current pulse power source 8 is set to 0.1 to 5 m.
Controlled to S. By doing this, the probability of generation of ion current increases, and the vacuum pressure measurement range increases to 10-7.
It is now possible to expand up to Torr.

真空遮断器3に搭載された状態の真空バルブ1の寿命予
測および運搬、取付けを容易にすることを可能とした真
空遮断器用真空バルブ1の真空圧力測定装置2を得るこ
とができる。
It is possible to obtain a vacuum pressure measuring device 2 for a vacuum valve 1 for a vacuum circuit breaker, which makes it possible to predict the life of the vacuum valve 1 mounted on the vacuum circuit breaker 3 and to facilitate transportation and installation.

すなわち第1図に示されているように、真空バルブ1は
真空遮断器3に搭載されている。真空遮断器3からの真
空バルブ1の開閉動作指令は絶縁操作ロッド11より伝
達される。真空バルブ1は、絶縁筒12と上下の端板お
よびベローズ13により真空気密を保持されている。閉
鎖配電盤との接続は外部端子14.15を介して行う。
That is, as shown in FIG. 1, the vacuum valve 1 is mounted on the vacuum circuit breaker 3. Opening/closing operation commands for the vacuum valve 1 from the vacuum circuit breaker 3 are transmitted through the insulated operating rod 11. The vacuum valve 1 is kept vacuum-tight by an insulating cylinder 12, upper and lower end plates, and a bellows 13. Connection to the closed switchboard is made via external terminals 14.15.

第1図の状態で真空圧力を測定するためには、ソレノイ
ドコイル9を真空バルブ1に装着する。
In order to measure the vacuum pressure in the state shown in FIG. 1, a solenoid coil 9 is attached to the vacuum valve 1.

この時、真空バルブ1が絶縁碍子やモールド製の絶縁カ
バー(いずれも図示せず)に固着されているため、ソレ
ノイドコイル9の装着は容易でない。
At this time, since the vacuum valve 1 is fixed to an insulator or a molded insulating cover (none of which is shown), it is not easy to attach the solenoid coil 9.

そのため、絶縁碍子あるいは絶縁カバーと真空バルブ1
との空隙および相間空隙を考慮して、ソレノイドコイル
9の巻数は50巻から1巻の範囲となる。
Therefore, insulator or insulation cover and vacuum valve 1
The number of turns of the solenoid coil 9 ranges from 50 turns to 1 turn, taking into account the gap between the two and the phase gap.

真空圧力測定装置2は、直流高電圧電源6.大電流パル
ス電源8.検出回路10.直流高電圧を接地する接地ス
イッチ16および接地抵抗17゜電源6および機器を制
御し、かつイオン電流を表示する表示器を具備している
制御回路7から構成されている。
The vacuum pressure measuring device 2 includes a DC high voltage power source 6. Large current pulse power supply 8. Detection circuit 10. It is composed of a grounding switch 16 and a grounding resistor 17 for grounding a DC high voltage, a power supply 6, and a control circuit 7 that controls the equipment and has a display that displays the ion current.

大電流パルス電源8は第2図に示す回路構成になってい
る。8aは電源、8b、8Q、8oは制限抵抗、8 c
 v 8 m* 8 pはパルス発生回路を示す。各パ
ルス発生回路8c、8m、8pは、リアクタンスと容量
とで構成される。パルス発生回路8cはリアクタンス8
e、8g、8jと容量8d。
The large current pulse power supply 8 has a circuit configuration shown in FIG. 8a is a power supply, 8b, 8Q, 8o are limiting resistors, 8c
v 8 m* 8 p indicates a pulse generation circuit. Each pulse generation circuit 8c, 8m, 8p is composed of reactance and capacitance. The pulse generation circuit 8c has reactance 8
e, 8g, 8j and capacity 8d.

8f、8h、8iで構成されている。他のパルス発生回
路8m、8pも基本構成はパルス発生回路8cと同じで
ある。同図表示のパルス発生回路内の鎖線は、インダク
タンスと容量との組合せを任意に行えるようにし、後述
の励磁電流波形を形成するものである。また、パルス発
生回路8c。
It consists of 8f, 8h, and 8i. The other pulse generating circuits 8m and 8p also have the same basic configuration as the pulse generating circuit 8c. The dashed line in the pulse generation circuit shown in the figure allows for arbitrary combinations of inductance and capacitance to form an excitation current waveform to be described later. Further, a pulse generation circuit 8c.

8m、8pを鎖線で接続しているのも、任意に並列接続
できることを示すものである。パルス発生回路8c、8
m、8pの出力側に夫々放電スイッチ8に、8n、8q
を設置し、最終段のパルス発生回路8pにはパルス波形
整形器8rを具備させた。そしてこの大電流パルス電源
の出力端にソレノイドコイル9を接続する。
The connection of 8m and 8p with a chain line also indicates that they can be connected in parallel as desired. Pulse generation circuit 8c, 8
Discharge switches 8 and 8n and 8q are connected to the output sides of m and 8p, respectively.
The final stage pulse generation circuit 8p was equipped with a pulse waveform shaper 8r. A solenoid coil 9 is connected to the output end of this large current pulse power source.

この大電流パルス電源の動作を、次に説明する。The operation of this large current pulse power supply will be explained next.

電源8aより各制限抵抗8b、8Ω、8oを経て各パル
ス発生回路8c、8m、8pの容量(例えば発生回路8
cについては8d、8f、8h。
The capacity of each pulse generation circuit 8c, 8m, 8p (for example, generation circuit 8
For c, 8d, 8f, 8h.

8i)に充電される。充電が完了した時点で放電スイッ
チ8に、8n、8qを時間遅れをもって導通すると、パ
ルス発生回路8c、8m、8pを重畳した電流波形を形
成することができる。最終段のパルス波形整形器8rで
パルス電流波形の波尾を成形している。
8i). When charging is completed, if 8n and 8q are turned on with a time delay in the discharge switch 8, a current waveform in which the pulse generation circuits 8c, 8m, and 8p are superimposed can be formed. The final stage pulse waveform shaper 8r shapes the wave tail of the pulse current waveform.

第3図には、真空圧力測定装置の簡単なタイムチャート
が示されている。大電流パルス電源8(第1図参照)は
既に充電完了の状態であることを前提とする1図中Aは
直流高電圧、Bはパルス励磁電流、Cはイオン電流を示
す。まず、直流高電圧電源6(第1図参照)のスイッチ
がONされると、直流高電圧が所定電圧に達するまでT
1の時間遅れがある。TlになったらT8後にパルス電
源8(第1図参照)の放電スイッチをONして、パルス
電流Bを通電する。イオン電流Cは若干の時間遅れで発
生する。この時、直流高電圧Aは、所定電圧をTz秒持
続する。また、パルス電流BについてもTs秒持続させ
る必要がある。
FIG. 3 shows a simple time chart of the vacuum pressure measuring device. It is assumed that the large current pulse power source 8 (see FIG. 1) is already fully charged. In FIG. 1, A indicates a direct current high voltage, B indicates a pulse excitation current, and C indicates an ion current. First, when the switch of the DC high voltage power supply 6 (see Figure 1) is turned on, the DC high voltage is turned on until it reaches a predetermined voltage.
There is a time delay of 1. When T1 is reached, the discharge switch of the pulse power source 8 (see FIG. 1) is turned on after T8, and the pulse current B is applied. The ion current C is generated with a slight time delay. At this time, the DC high voltage A maintains a predetermined voltage for Tz seconds. Further, the pulse current B also needs to last for Ts seconds.

第4図はパルス電流Bの波形をモデル化した図形である
。波高値の63%に達する時定数τは、回路定数とソレ
ノイドコイル9(第1図参照)のりアクタンスとにより
決定される。ω1はパルス発生回路8c(第2図参照)
のみの波形で、ω2はパルス発生回路8m、8p (第
2図参照)を重畳した波形であるaTaは波高値の50
%の電流haoの時間を示す。
FIG. 4 is a diagram modeling the waveform of the pulse current B. The time constant τ for reaching 63% of the peak value is determined by the circuit constant and the actance of the solenoid coil 9 (see FIG. 1). ω1 is the pulse generation circuit 8c (see Figure 2)
ω2 is the waveform obtained by superimposing the pulse generation circuits 8m and 8p (see Figure 2). aTa is the waveform at the peak value of 50
% current hao time is shown.

第5図は真空圧力とイオン電流形成時間tとの関係を示
す。イオン電流形成時間とは、真空バルブ1 (第1図
参照)の電極間に電圧を印加し、真空バルブ1を包囲し
たソレノイドコイル9(共に第1図参照)にパルス電流
を通電して励磁した瞬間から真空バルブ内のガス分子が
イオン化し、イオン電流が形成されるまでの時間である
。イオン電流の検出は、イオン電流が形成されなければ
できないので、イオン電流が形成されるまでの時間、パ
ルス電流のhso(第4図参照)を持続させる必要があ
る。同図の直線aはソレノイドコイル9(第11!I参
照)の巻数が数千者の従来方式によるイオン化時間を示
す、直線すはそのイオン化電流形成時間を示す、直線C
はソレノイドコイル9(第1図参照)の巻数を50巻以
下にし、パルス電流の立上り時定数τ(第3図および第
4図参照)を5 m S以下にした時のイオン化時間で
あり、直線dはその時のイオン化電流形成時間である。
FIG. 5 shows the relationship between vacuum pressure and ionic current formation time t. The ionic current formation time is defined as the time when a voltage is applied between the electrodes of the vacuum valve 1 (see Figure 1), and a pulse current is applied to the solenoid coil 9 surrounding the vacuum valve 1 (both shown in Figure 1) to excite it. This is the time from the moment the gas molecules inside the vacuum valve ionize and the ionic current is formed. Since the ionic current cannot be detected unless the ionic current is formed, it is necessary to maintain the pulse current hso (see FIG. 4) for the time until the ionic current is formed. The straight line a in the same figure shows the ionization time according to the conventional method in which the number of turns of the solenoid coil 9 (see No. 11! I) is several thousand. The straight line C shows the ionization current formation time.
is the ionization time when the number of turns of the solenoid coil 9 (see Fig. 1) is set to 50 turns or less and the rise time constant τ of the pulse current (see Figs. 3 and 4) is set to 5 mS or less, and it is a straight line. d is the ionization current formation time at that time.

真空圧力Pが10−’Torrの時はhlsoのT4時
間(第4図参照)は10mS必要であることが示されて
いる。真空圧力測定下限値を拡大した場合、例えばP 
= l O−”Torrにした時、イオン化電流形成時
間dはISとなり、パルス発生回路は数十段となり、電
源が膨大となる0本発明は、フィールドで使用できる装
置の提供であるので、真空圧力測定の範囲が10″″’
Torr以上であればよいので、T4(第4図参照)は
50mS程度持続すればよい。
It is shown that when the vacuum pressure P is 10-' Torr, the hlso T4 time (see FIG. 4) is required to be 10 mS. If the lower limit of vacuum pressure measurement is expanded, for example, P
= l O-''Torr, the ionization current formation time d becomes IS, the pulse generation circuit has several tens of stages, and the power supply becomes enormous.The present invention provides a device that can be used in the field, so it Pressure measurement range is 10''''
As long as it is Torr or more, T4 (see FIG. 4) only needs to last about 50 mS.

第6図はソレノイドコイル9(第1図参照)が励磁する
磁界のアンペア・ターン(A−T)とイオン電流が検出
できる真空圧力の範囲とを示す。
FIG. 6 shows the ampere-turns (A-T) of the magnetic field excited by the solenoid coil 9 (see FIG. 1) and the vacuum pressure range in which the ionic current can be detected.

曲線epfelKehの右上を斜線で示しているのは、
その部分がイオン電流の検出できることを示す、この曲
線aef*gt hはソレノイドコイル9(第1図参照
)を3.30,300.3000巻にし、励磁電流を通
電した時のイオン電流検出の下限界値の包絡線を示す、
しかし、各々のソレノイドコイルに同じ電流を通電した
のではなく。
The upper right corner of the curve epfelKeh is indicated by a diagonal line.
This curve aef*gt h, which shows that the ion current can be detected in that part, shows the ion current detection when the solenoid coil 9 (see Figure 1) is set to 3,30, 300, and 3000 turns and the excitation current is applied. showing the envelope of the limit value,
However, instead of passing the same current through each solenoid coil.

第1表の励磁電流源に示すようにした。すなわち300
0巻、300巻は直流定電流を通電し。
The excitation current source shown in Table 1 was used. i.e. 300
A constant DC current is applied to the 0th and 300th turns.

30巻、3巻については上述の第4図に示すパルス電流
を通電した。第6図は同じ磁界であれば、励磁電流の立
上り時定数が速い程、真空圧力の検出範囲が拡大してい
ることを示している。第1表は、磁界が30.0OOA
−Tの時のソレノイドコイル、励磁電流源、真空圧力の
測定下限界、フィールドでの測定の可否を検討したもの
を示す、同表に示されているように、ソレノイドコイル
3.000巻、300巻は、真空遮断器に搭載された真
空バルブに装着することは不可能である。
For the 30th and 3rd volumes, the pulse current shown in FIG. 4 described above was applied. FIG. 6 shows that for the same magnetic field, the faster the rise time constant of the excitation current, the wider the vacuum pressure detection range. Table 1 shows that the magnetic field is 30.0OOA
- Solenoid coil 3,000 turns, 300 It is impossible to attach the winding to the vacuum valve mounted on the vacuum circuit breaker.

30巻、3巻は真空バルブに装着可能であるが。Volumes 30 and 3 can be attached to the vacuum valve.

パルス電源が大規模になる。従って真空圧力下限値と第
4図に示すhsoのT番秒とを選定し、適切な電源の大
きさを決定することが肝要である。
Pulse power supply becomes large-scale. Therefore, it is important to select the lower limit value of the vacuum pressure and the T-th second of hso shown in FIG. 4, and to determine the appropriate size of the power source.

すなわち、ソレノイドコイルの巻数を小さくし、大電流
パルス電源のパルス電流の立上り時定数τを0.1〜5
mSにすれば真空圧力測定範囲をL 0−7Torrま
で広げることができ、真空遮断器に搭載した状態の真空
バルブの真空圧力が測定できるようになるのである5こ
のようにイオン電流を測定するのに真空圧力を低い方に
し、ソレノイドコイルを小さくして真空遮断器に搭載さ
れている真空バルブに装着できるようにし、イオン電流
を測定する装置を小型化して、所期の目的を達成するよ
うにしたのである。
In other words, the number of turns of the solenoid coil is reduced, and the rise time constant τ of the pulse current of the large current pulse power source is set to 0.1 to 5.
mS, the vacuum pressure measurement range can be expanded to L 0-7 Torr, and the vacuum pressure of the vacuum valve installed in the vacuum circuit breaker can be measured. 5 Measuring the ion current in this way In order to achieve the desired purpose, the vacuum pressure was lowered, the solenoid coil was made smaller so that it could be attached to the vacuum valve installed in the vacuum circuit breaker, and the device for measuring the ion current was made smaller. That's what I did.

しかしながら直流高電圧電源、大電流パルス電源、検出
回路、制御回路を一体にした状態で運搬することはでき
ない。そのため各々を分割して運搬できるようにする必
要がある。直流高電圧電源は単独で運搬できるようにす
るのは容易であるが。
However, it is not possible to transport the DC high voltage power supply, large current pulse power supply, detection circuit, and control circuit in an integrated state. Therefore, it is necessary to be able to transport each item separately. However, it is easy to transport a DC high voltage power supply independently.

大電流パルス電源、制御回路は基本的には一体構造が望
ましい、特に大電流パルス電源は1通電路が大電流をパ
ルスで通電するため、電磁反撥力、接続による発熱を抑
える対策をする必要がある。
It is basically desirable that the large current pulse power supply and control circuit have an integrated structure.In particular, in the case of a large current pulse power supply, one conduction path carries a large current in pulses, so it is necessary to take measures to suppress electromagnetic repulsion and heat generation due to connections. be.

第7図は大電流パルス電源と制御回路とを分割した状態
を示した。最上段に制御回路箱18,2段目に第1段大
電流パルス発生回路箱8C,3段目に第2段大電流パル
ス発生回路笥8m’ 、最下段に第N段大電流パルス発
生回路箱8p’ を配置する。各々の箱18,8c  
、8m  、8pの下には運搬し易いように車輪19を
設ける。2段目以下の箱8 c’ g 8m’ e 8
 p’の上部には車輪袋20を設け、上から箱を装填し
た場合に。
FIG. 7 shows a state in which the large current pulse power source and the control circuit are divided. The control circuit box 18 is on the top level, the first stage large current pulse generation circuit box 8C is on the second stage, the second stage large current pulse generation circuit box 8m' is on the third stage, and the Nth stage large current pulse generation circuit is on the bottom stage. Place box 8p'. Each box 18,8c
, 8m and 8p are provided with wheels 19 for easy transportation. Boxes below 2nd tier 8 c' g 8 m' e 8
A wheel bag 20 is provided on the top of p', when a box is loaded from above.

ガイド兼固定に利用する。また上部前面にはレバー21
を設け、上部後面には連結部保護カバー(保護蓋)22
を設ける。なお同図において31は把手である0次に導
体を自動連結するのを第7図および第8図により説明す
る。
Used as a guide and for fixing. In addition, the lever 21 is located on the front of the upper part.
A connecting part protective cover (protective lid) 22 is provided on the upper rear surface.
will be established. In the figure, reference numeral 31 indicates a handle, and the automatic connection of the 0th order conductor will be explained with reference to FIGS. 7 and 8.

′最下段の第N段大電流パルス発生回路箱8pには複数
個の容量23とリアクタンスとを配置。
'A plurality of capacitors 23 and reactances are arranged in the Nth stage large current pulse generation circuit box 8p at the bottom.

接続されている。他の箱8m’ と連結するために、導
体24を絶縁体25で保持する導体24の先端にチュウ
リツプコンタクト等の連結部26を配置する。その連結
部26の上部には連結部保護カバー22を設け、カバー
復帰バネ27にワイヤ28を接続し、連結部保護カバー
22の一端もワイヤ28に接続する。ワイヤ28はガイ
ドピン29を介してレバー21に接続するが、レバー2
1の一端は蝶番になっている。第2段大電流パルス発生
回路箱8m’も同様の構成になっているが、前方にバー
30が取り付けてあり、このバー30は導体、24の下
部先端より長くする。
It is connected. In order to connect to another box 8m', a connecting part 26 such as a tulip contact is placed at the tip of the conductor 24, which is held by an insulator 25. A connecting portion protective cover 22 is provided above the connecting portion 26, a wire 28 is connected to the cover return spring 27, and one end of the connecting portion protective cover 22 is also connected to the wire 28. The wire 28 is connected to the lever 21 via a guide pin 29, but the lever 2
One end of 1 is hinged. The second stage large current pulse generating circuit box 8m' has a similar structure, but a bar 30 is attached to the front, and this bar 30 is longer than the lower end of the conductor 24.

第N段大電流パルス発生回路箱8p’の上に第2段大電
流パルス発生回路箱8m’ を上から装填すると、まず
、車輪19が車輪袋20にガイドされる。車輪19が車
輪袋20にガイドされるとバー30がレバー21に当り
、ワイヤ28を左側に引張る際に、ワイヤ28に接続さ
れている連結部保護カバー22も左側にスライドする。
When the second stage large current pulse generating circuit box 8m' is loaded onto the Nth stage large current pulse generating circuit box 8p' from above, the wheels 19 are first guided by the wheel bags 20. When the wheel 19 is guided by the wheel bag 20, the bar 30 hits the lever 21, and when the wire 28 is pulled to the left, the connection protection cover 22 connected to the wire 28 also slides to the left.

連結部保護カバー22が左側にスライドすると、導体2
4がさし込まれ連結部26に挿入され、自動連結する。
When the connection protection cover 22 slides to the left, the conductor 2
4 is inserted into the connecting portion 26 and automatically connected.

これと反対に分離する場合は、第2段大電流パルス発生
回路箱8m’ を上に持ち上げると、カバー復帰バネ2
7により連結部保護カバー22とレバー21とが元の位
置に復帰し、異物や塵埃が連結部26に侵入するのを防
止できる。
On the other hand, if you want to separate the box, lift the second stage large current pulse generator box 8m' up and release the cover return spring 2.
7, the connecting portion protective cover 22 and the lever 21 return to their original positions, and foreign matter and dust can be prevented from entering the connecting portion 26.

このように本実施例によれば次に述べるような効果を奏
することができる。
As described above, according to this embodiment, the following effects can be achieved.

(1)真空遮断器に搭載された真空バルブにソレノイド
コイルを装置し、真空圧力を絶対値で把握することがで
きる。
(1) By installing a solenoid coil in the vacuum valve mounted on the vacuum circuit breaker, the vacuum pressure can be determined in absolute value.

(2)従って、定期的に測定することにより、真空バル
ブの内部真空圧力の寿命予測が可能となり、真空遮断器
の信頼性を向上することができる。
(2) Therefore, by periodically measuring, it is possible to predict the life of the internal vacuum pressure of the vacuum valve, and the reliability of the vacuum circuit breaker can be improved.

(3)本装置を分割して可搬型にしたので、あらゆるフ
ィールドに利用することができる。
(3) Since this device is divided into parts and made portable, it can be used in any field.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明は真空遮断器に搭載された状態の真
空バルブの寿命予測および運搬、取付けが容易となって
、真空遮断器に搭載された状態の真空バルブの寿命予測
および運搬、取付けを容易にすることを可能とした真空
遮断器用真空バルブの真空圧力測定装置を得ることがで
きる。
As described above, the present invention makes it easier to predict the lifespan, transport, and install the vacuum valve mounted on the vacuum circuit breaker, and makes it easier to predict the lifespan, transport, and install the vacuum valve mounted on the vacuum circuit breaker. It is possible to obtain a vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker that can be easily used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空遮断器用真空バルブの真空圧力測
定装置の一実施例の回路構成を示す説明図、第2図は同
じく一実施例の大電流パルス電源の回路図、第3図は同
じく一実施例のタイムチャート図、第4図は同じく一実
施例のパルス電流波形図、第5図は同じく一実施例の真
空圧力とイオン電流形成時間との関係を示す特性図、第
6図は同じく一実施例の磁界強度によるイオン電流検出
可能な真空圧力範囲を示す特性図、第7図は同じく一実
施例の大電流パルス電源と制御回路とを分割した状態を
示す斜視図、第8図は同じく一実施例の分割したパルス
発生回路箱を自動連結する状態を示す縦断側面図である
。 1・・・真空バルブ(被測定真空容器)、2・・・真空
圧力測定装置、3・・・真空遮断器、4.5・・・電極
、6・・・直流高電圧電源、7・・・制御回路、8・・
・大電流パルス電源、8c′・・・第1段大電流パルス
発生回路箱、8m’・・・第2段大電流パルス発生回路
箱、8p′・・・第N段大電流パルス発生回路箱、9・
・・ソレノイドコイル、10・・・検出回路、22・・
・連結部第 1図 第2図 1・・・・・・真空バルブ (−測定真空容器) 2・・・・・・真空圧力測定装置 3・・・・・・真空遮断器 4.5・・・電極 6・・・・・・直流高電圧電源 7・・・・・・制御回路 8・・・・・・大電流パルス電源 9・・・・・・ソレノイドコイル 10・・・・・・検出回路 P(TOrr) −m− P(’l’orr) 8C′・・・第1段大電流パルス 発生回路箱 8m’・・・第2段大電流パルス 発生回路箱 8p′・・・第1段大電流パルス 発生回路箱 22・・・連結部保護カバ (保護蓋) 26・・・連結部
FIG. 1 is an explanatory diagram showing the circuit configuration of an embodiment of the vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker according to the present invention, FIG. 2 is a circuit diagram of a large current pulse power supply according to the same embodiment, and FIG. Similarly, FIG. 4 is a pulse current waveform diagram of one embodiment. FIG. 5 is a characteristic diagram showing the relationship between vacuum pressure and ion current formation time of one embodiment. FIG. 7 is a characteristic diagram showing the vacuum pressure range in which ion current can be detected depending on magnetic field strength according to one embodiment; FIG. The figure is also a longitudinal sectional side view showing a state in which the divided pulse generating circuit boxes of one embodiment are automatically connected. 1... Vacuum valve (vacuum vessel to be measured), 2... Vacuum pressure measuring device, 3... Vacuum circuit breaker, 4.5... Electrode, 6... DC high voltage power supply, 7...・Control circuit, 8...
- Large current pulse power supply, 8c'...1st stage large current pulse generation circuit box, 8m'...2nd stage large current pulse generation circuit box, 8p'...Nth stage large current pulse generation circuit box , 9・
... Solenoid coil, 10... Detection circuit, 22...
・Connection part Figure 1 Figure 2 1...Vacuum valve (-measurement vacuum container) 2...Vacuum pressure measuring device 3...Vacuum circuit breaker 4.5...・Electrode 6...DC high voltage power supply 7...Control circuit 8...Large current pulse power supply 9...Solenoid coil 10...Detection Circuit P (TOrr) -m- P ('l'orr) 8C'...1st stage large current pulse generation circuit box 8m'...2nd stage large current pulse generation circuit box 8p'...1st Stage large current pulse generation circuit box 22... Connecting part protective cover (protective lid) 26... Connecting part

Claims (1)

【特許請求の範囲】 1、真空遮断器に搭載されている被測定真空容器と、こ
の被測定真空容器中に気密封止された接離自在な電極に
高電圧を印加する直流高電圧電源と、この電源から前記
電極に印加される高電圧が所定電圧に達するまでの遅れ
時間を維持する制御回路と、この制御回路を介して動作
する大電流パルス電源と、このパルス電源の出力により
磁界を発生し、かつ前記被測定真空容器を包囲して配置
されるソレノイドコイルとを備え、前記一対の電極間を
流れるイオン電流の波高値および積分値を検出回路で測
定して前記被測定真空容器中の真空圧力を測定する真空
遮断器用真空バルブの真空圧力測定装置において、前記
大電流パルス電源のパルス電流の立上り時定数を0.1
〜5mSに制御してなることを特徴とする真空遮断器用
真空バルブの真空圧力測定装置。 2、前記大電流パルス電源が、大電流パルスの波高値が
1,000Aから10,000Aの出力を有し、立上り
から波高値の50%までの電流通電幅を10から50m
S持続する波形整形機能を有しているものである請求項
1記載の真空遮断器用真空バルブの真空圧力測定装置。 3、前記ソレノイドコイルが、前記真空遮断器に搭載さ
れている被測定真空容器に装着自在に形成されたもので
ある請求項1記載の真空遮断器用真空バルブの真空圧力
測定装置。 4、前記ソレノイドコイルが、巻数が1〜50巻である
請求項1記載の真空遮断器用真空バルブの真空圧力測定
装置。 5、前記大電流パルス電源、制御回路および検出回路が
、夫々複数個に分割自在で、かつ可搬可能に形成された
ものである請求項1記載の真空遮断器用真空バルブの真
空圧力測定装置。 6、前記大電流パルス電源が、複数個の大電流パルス発
生回路箱に収納して分割構成され、かつこれら回路箱の
通電路が上位段の回路箱を装填することにより自動的に
連結されるものである請求項1記載の真空遮断器用真空
バルブの真空圧力測定装置。 7、前記大電流パルス発生回路箱が、前記通電路の連結
部への前記通電路の装填に同期して作動する保護蓋が設
けられたものである請求項6記載の真空遮断器用真空バ
ルブの真空圧力測定装置。
[Claims] 1. A DC high-voltage power supply that applies a high voltage to a vacuum vessel to be measured mounted on a vacuum circuit breaker and electrodes that are hermetically sealed in the vacuum vessel to be measured and can be freely connected and separated. , a control circuit that maintains a delay time until the high voltage applied from this power source to the electrode reaches a predetermined voltage, a large current pulse power source that operates via this control circuit, and a magnetic field generated by the output of this pulse power source. a solenoid coil that is generated and arranged to surround the vacuum vessel to be measured, and a detection circuit measures the peak value and integral value of the ion current flowing between the pair of electrodes, In a vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker, the rise time constant of the pulse current of the large current pulse power source is set to 0.1.
A vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker, characterized in that the vacuum pressure is controlled to 5 mS. 2. The large current pulse power supply has an output with a large current pulse peak value of 1,000 A to 10,000 A, and a current conduction width from the rise to 50% of the peak value of 10 to 50 m.
2. The vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker according to claim 1, which has a waveform shaping function that lasts. 3. The vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker according to claim 1, wherein the solenoid coil is formed so as to be freely attached to a vacuum vessel to be measured mounted on the vacuum circuit breaker. 4. The vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker according to claim 1, wherein the solenoid coil has 1 to 50 turns. 5. The vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker according to claim 1, wherein the large current pulse power source, the control circuit, and the detection circuit are each divided into a plurality of parts and are formed to be portable. 6. The large current pulse power source is divided into a plurality of large current pulse generating circuit boxes, and the energizing paths of these circuit boxes are automatically connected by loading an upper stage circuit box. A vacuum pressure measuring device for a vacuum valve for a vacuum circuit breaker according to claim 1. 7. The vacuum valve for a vacuum circuit breaker according to claim 6, wherein the large current pulse generating circuit box is provided with a protective lid that operates in synchronization with the loading of the energizing path into the connecting portion of the energizing path. Vacuum pressure measuring device.
JP2252306A 1990-09-21 1990-09-21 Vacuum pressure measuring device for vacuum valve for vacuum circuit breaker Expired - Fee Related JPH0748341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252306A JPH0748341B2 (en) 1990-09-21 1990-09-21 Vacuum pressure measuring device for vacuum valve for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252306A JPH0748341B2 (en) 1990-09-21 1990-09-21 Vacuum pressure measuring device for vacuum valve for vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JPH04132131A true JPH04132131A (en) 1992-05-06
JPH0748341B2 JPH0748341B2 (en) 1995-05-24

Family

ID=17235418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252306A Expired - Fee Related JPH0748341B2 (en) 1990-09-21 1990-09-21 Vacuum pressure measuring device for vacuum valve for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH0748341B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013090408A1 (en) * 2011-12-13 2013-06-20 Finley Lee Ledbetter Flexible magnetic field coil for measuring ionic quantity
CN103557988A (en) * 2013-11-09 2014-02-05 宁夏天地经纬电力设备工程有限公司 Rotary electric field probe
WO2016205420A1 (en) * 2015-06-15 2016-12-22 Finley Lee Ledbetter System and method to predict a usable life of a vacuum interrupter in the field
US9759773B2 (en) 2011-12-13 2017-09-12 Finley Lee Ledbetter System and method to predict a usable life of a vacuum interrupter in the field
CN109490934A (en) * 2018-12-19 2019-03-19 上海平高天灵开关有限公司 A kind of vacuum interrupter X-ray detection platform

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759773B2 (en) 2011-12-13 2017-09-12 Finley Lee Ledbetter System and method to predict a usable life of a vacuum interrupter in the field
GB2520097A (en) * 2011-12-13 2015-05-13 Finley Lee Ledbetter Flexible magnetic field coil for measuring ionic quantity
WO2013090408A1 (en) * 2011-12-13 2013-06-20 Finley Lee Ledbetter Flexible magnetic field coil for measuring ionic quantity
US9031795B1 (en) 2011-12-13 2015-05-12 Finley Lee Ledbetter Electromagnetic test device to predict a usable life of a vacuum interrupter in the field
US9797865B2 (en) 2011-12-13 2017-10-24 Finley Lee Ledbetter Electromagnetic test device to predict a usable life of a vacuum interrupter in the field
US9335378B2 (en) 2011-12-13 2016-05-10 Finley Lee Ledbetter Flexible magnetic field coil for measuring ionic quantity
GB2520097B (en) * 2011-12-13 2016-11-30 Lee Ledbetter Finley Electromagnetic testing device for determining a life expectancy of a vacuum interrupter
US9952178B2 (en) 2011-12-13 2018-04-24 Finley Lee Ledbetter Method to predict a usable life of a vacuum interrupter in the field
US9026375B1 (en) 2011-12-13 2015-05-05 Finley Lee Ledbetter Method to predict a usable life of a vacuum interrupter in the field
US10712312B2 (en) 2011-12-13 2020-07-14 Finley Lee Ledbetter Flexible magnetic field coil for measuring ionic quantity
US10036727B2 (en) 2011-12-13 2018-07-31 Finley Lee Ledbetter System and method to predict a usable life of a vacuum interrupter in the field
CN103557988A (en) * 2013-11-09 2014-02-05 宁夏天地经纬电力设备工程有限公司 Rotary electric field probe
GB2556520A (en) * 2015-06-15 2018-05-30 Lee Ledbetter Finley System and method to predict a useable life a vacuum interrupter in the field
WO2016205420A1 (en) * 2015-06-15 2016-12-22 Finley Lee Ledbetter System and method to predict a usable life of a vacuum interrupter in the field
GB2556520B (en) * 2015-06-15 2021-10-13 Vacuum Interrupters Inc System and method to predict a useable life of a vacuum interrupter in the field
CN109490934A (en) * 2018-12-19 2019-03-19 上海平高天灵开关有限公司 A kind of vacuum interrupter X-ray detection platform
CN109490934B (en) * 2018-12-19 2022-11-25 上海平高天灵开关有限公司 X-ray detection platform for vacuum arc-extinguishing chamber

Also Published As

Publication number Publication date
JPH0748341B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
US4163130A (en) Vacuum interrupter with pressure monitoring means
US4440995A (en) Vacuum circuit interrupter with on-line vacuum monitoring apparatus
CN101256895B (en) Novel high voltage combined independent electronic type current, voltage mutual inductor
US5399973A (en) Method and apparatus for detecting a reduction in the degree of vacuum of a vacuum valve while in operation
GB2221569A (en) Starting electrode for electrodeless lamps
CN109188057A (en) A kind of phase sequence zero sequence integration voltage sensor
US4403124A (en) Vacuum circuit interrupter with insulated vacuum monitor resistor
JPH04132131A (en) Vacuum pressure measuring device for vacuum circuit breaker vacuum bulb
US3358104A (en) Heating means for compressed-gas circuit interrupters
US5332970A (en) Method for measuring the impedance of an electrodeless arc discharge lamp
US4471309A (en) Vacuum detector
CN106771813A (en) A kind of Tesla transformer secondary coils break-make measuring method
US1904059A (en) Method and apparatus for testing incandescent lamps and similar articles
CN108493956A (en) The control system of synchro capacitor switch
US3678289A (en) Magnetic field control circuit for crossed field switching devices
US2289813A (en) Electric switch
Florez et al. Impact of the transformer in the current mode supply of dielectric barrier discharge excimer lamps
US3872350A (en) Ballast having integral time delay relay
JPS5811065B2 (en) Switch device using crossed magnetic fields
JPH08180777A (en) Vacuum degradation detecting apparatus for vacuum switchgear
US2060506A (en) Electric discharge device
US2535169A (en) Alternating current supply system
CN112670126B (en) Digital alternating-current voltage relay
CN214750778U (en) High-voltage current transformer calibrating device
JPS5895266A (en) Hybrid current sensor for measuring intensity of alternating current current flowing through electric wire

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees