JPH04130630A - Oxide film for integrated circuit device and its formation method - Google Patents

Oxide film for integrated circuit device and its formation method

Info

Publication number
JPH04130630A
JPH04130630A JP25095490A JP25095490A JPH04130630A JP H04130630 A JPH04130630 A JP H04130630A JP 25095490 A JP25095490 A JP 25095490A JP 25095490 A JP25095490 A JP 25095490A JP H04130630 A JPH04130630 A JP H04130630A
Authority
JP
Japan
Prior art keywords
film
oxide film
oxidation
resistant
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25095490A
Other languages
Japanese (ja)
Inventor
Takao Sakai
坂井 隆夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP25095490A priority Critical patent/JPH04130630A/en
Publication of JPH04130630A publication Critical patent/JPH04130630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To prevent the white ribbon defects on the margin of an oxide film and the defects in the insulating film or the wiring film on a step by forming the margin of an oxide film into an incline with steps, and making the maximum step of each step below 0.5mum. CONSTITUTION:The surface of a semiconductor substrate 10 is oxidized to form a silicon oxide film, and this is made a buffer film 21. Thereon, an oxidation-resistant silicon nitride film is grown, and is patterned into mask for oxidation. An oxide film 30 is grown in the range not covered with an oxidation-resistant film 20. It is made such that the incline 31 at the margin gets under the margin of the film 20. A film 21 is removed. A buffer film 23 and an oxidation-resistant film 24 are attached, and the film 24 is patterned so that the cover range may surely widen than the first time. With the film 24 as a mask, an oxide film 30 is stacked additionally, and the incline 32 at the second stage is formed below the film 24 at the margin. The film 24 is removed, and the part corresponding to the film 23 is removed from the surface of the film 30. The film 30 is made into an incline 33 with steps, where the margin has two pieces of inclines 31 and 32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路装置内の回路素子の相互間を表面側
から分離する素子骨lI!1膜等に用いられる酸化膜、
正確にはシリコンの半導体基体の表面の所定範囲を覆い
下側のシリコンの酸化により形成される酸化膜およびそ
の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides an element structure for separating circuit elements in an integrated circuit device from each other from the surface side. Oxide film used for 1 film etc.
More precisely, the present invention relates to an oxide film that covers a predetermined area of the surface of a silicon semiconductor substrate and is formed by oxidizing the underlying silicon, and a method for forming the same.

[従来の技術〕 周知のように、半導体装置内で酸化シリコン膜は種々な
機能を果たすが、シリコンの半導体基体の表面を直接覆
う酸化シリコン膜はふつうはシリコンを高温酸化して得
られる酸化膜で、いわゆるプロセス酸化膜、ゲート酸化
膜、フィールド酸化膜等として用いられる。また集積回
路装置では、そのトランジスタ等の回路素子の相互間を
表面側から分離するだめの素子分離膜としても酸化膜が
用いられる。よく知られていることであるが、第3図を
参照して酸化膜を素子分離膜に用いた例を簡単に説明す
る。
[Prior Art] As is well known, silicon oxide films perform various functions in semiconductor devices, but the silicon oxide film that directly covers the surface of a silicon semiconductor substrate is usually an oxide film obtained by high-temperature oxidation of silicon. It is used as a so-called process oxide film, gate oxide film, field oxide film, etc. In integrated circuit devices, an oxide film is also used as an element isolation film for separating circuit elements such as transistors from each other from the surface side. As is well known, an example in which an oxide film is used as an element isolation film will be briefly described with reference to FIG.

第3図の回路素子ばnチャネル形のFETで、図示しな
い基板の上にエピタキシャル層11を成長させたウェハ
やチップである半導体基体10に組み込まれる。この組
み込みに先立ち、半導体基体lOの表面にFETの範囲
を取り囲むように酸化11!30を付け、その開口内に
ウェル12とゲート酸化膜13とゲー[4と接Mjit
sとI対のソース・ドレイン層16を備えるFETを作
り込んで層間絶縁膜17で覆った後に、その上に配設し
た配線膜18を介して他の回路素子と接続する。
The circuit element shown in FIG. 3 is an n-channel type FET and is incorporated into a semiconductor substrate 10, which is a wafer or chip, on which an epitaxial layer 11 is grown on a substrate (not shown). Prior to this incorporation, an oxide film 11!30 is applied to the surface of the semiconductor substrate IO so as to surround the area of the FET, and a well 12, a gate oxide film 13, a gate oxide film 13, a gate oxide film 13, and a contact Mjit
After fabricating an FET with an S and I pair of source/drain layers 16 and covering it with an interlayer insulating film 17, it is connected to other circuit elements via a wiring film 18 disposed thereon.

このように、素子分11111Qとしての酸化@30は
各凹路素子を紐み込む範囲を画成する役目を果たすが、
その上に配線膜18が配設されるので、それを絶縁しか
つ半導体基体10に対するその電位の影響を遮断するい
わゆるフィールド酸化膜の役目をも兼ねる。このため、
かかる酸化膜30には回路電圧にもよるがふつう1−程
度の膜厚を持たせ、いわゆるLOCO5法によって窒化
シリコン膜等をマスクとして半導体基体10のシリコン
の表面を高温酸化してこれを成膜するのが通例である。
In this way, the oxidation@30 as the element part 11111Q serves to define the range in which each concave path element is tied,
Since the wiring film 18 is disposed on the wiring film 18, it also serves as a so-called field oxide film that insulates the wiring film and blocks the influence of the potential on the semiconductor substrate 10. For this reason,
The oxide film 30 is usually made to have a thickness of about 1-100 nm, depending on the circuit voltage, and is formed by oxidizing the silicon surface of the semiconductor substrate 10 at high temperature using a silicon nitride film or the like as a mask using the so-called LOCO5 method. It is customary to do so.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上のような素子分離膜等に用いる酸化膜の膜厚は通常よ
りも厚めにされるが、最近では集積回路装置の用途拡大
に伴いその使用回路電圧を100 V以上にも上げる必
要が生し、これに応して酸化膜の膜厚を1−以上に増し
て行くと、以下のような間H点が出て来た。
The film thickness of the oxide film used for the element isolation film etc. above is made thicker than usual, but recently, with the expansion of applications for integrated circuit devices, it has become necessary to increase the circuit voltage used to 100 V or more. In response to this, when the thickness of the oxide film was increased to 1- or more, the following point H appeared.

第1の問題点は酸化膜の周縁にホワイトリボンと呼ばれ
る欠陥が出やすくなることであり、これを第4図に示す
0図はエピタキシャル層11の表面に上述のLOCO3
法により成膜した酸化膜30の周縁の拡大断面図である
8図のように窒化シリコン等の耐酸化性1120をマス
クとしてシリコンの表面を高温酸化すると、酸化830
がシリコン表面に食い込みかつI′!1縁が耐酸化性膜
20の下に潜り込むように成長する。この酸化膜30の
周縁には図示のように喫状の(頃斜面が形成されるが、
11M以上の膜厚にこれを成長させると模の先端部に図
の前後方向に延びる白っぽいホワイトリボン−Rが非常
に発生しやすくなって来る。
The first problem is that a defect called a white ribbon tends to appear on the periphery of the oxide film, and this is shown in Figure 4, where the above-mentioned LOCO3 is formed on the surface of the epitaxial layer 11.
As shown in FIG. 8, which is an enlarged cross-sectional view of the periphery of the oxide film 30 formed by the method, when the surface of silicon is oxidized at high temperature using an oxidation-resistant material such as silicon nitride as a mask, oxidation 830
bites into the silicon surface and I'! It grows so that one edge goes under the oxidation-resistant film 20. At the periphery of this oxide film 30, a slanted slope is formed as shown in the figure.
When this film is grown to a thickness of 11M or more, a whitish white ribbon -R extending in the front-rear direction of the figure becomes very likely to occur at the tip of the pattern.

この示ワイドリボン■は、酸化ff130の酸化シリコ
ンと耐酸化性膜2oとの反応生成物、とくにその窒化シ
リコン中の窒素との反応生成物であって、酸化シリコン
とは著しく性状が異なっていて回路素子の耐圧低下を招
きゃす(、その上の絶縁膜等のM!覆が不完全になりゃ
すく、がっ除去が非常に困難な問題がある。
This wide ribbon (■) is a reaction product between the silicon oxide of the oxide FF130 and the oxidation-resistant film 2o, especially the reaction product with nitrogen in the silicon nitride, and its properties are significantly different from that of silicon oxide. This may lead to a decrease in the withstand voltage of the circuit elements (and the M! covering of the insulating film, etc. thereon may become incomplete, making it extremely difficult to remove it).

第2の問題点は、酸化膜の膜厚を増すとそれによる段差
も大きくなり、その上の絶縁膜や配線膜に欠陥が発生し
ゃすいことにある。第5図にこの様子を示す、酸化膜3
oの周縁は斜面ではあるが、酸化膜30の膜厚が1−を
越えると段差Sが0.5−以上になるので、それを覆う
層間絶縁膜17に応力が掛かってクラックCIが発生し
ゃすくなり、その上の配線膜18に断線Bが誘発されや
すい、また、配線1121B内にも応力が発生してクラ
ンクc2が発生しやすくなる。
The second problem is that as the thickness of the oxide film increases, the resulting step difference also increases, making it more likely that defects will occur in the overlying insulating film and wiring film. This situation is shown in Figure 5, where the oxide film 3
Although the periphery of the oxide film 30 is sloped, if the thickness of the oxide film 30 exceeds 1-, the step S becomes 0.5- or more, so stress is applied to the interlayer insulating film 17 covering it, which prevents crack CI from occurring. This tends to cause disconnection B in the wiring film 18 thereon, and stress is also generated in the wiring 1121B, making it easy to generate crank c2.

本発明の目的は、酸化膜の周縁部上のホワイトリボン欠
陥の発生および段差上の絶縁膜や配線膜中の欠陥の発生
を防止することにある。
An object of the present invention is to prevent the occurrence of white ribbon defects on the periphery of an oxide film and the occurrence of defects in an insulating film or wiring film on a step.

CnBを解決するための手段〕 本発明は酸化膜の周縁を段付き傾斜面に形成してその各
段の最大段差を0.5−以下にすることにより上述の目
的を達成するもので、酸化膜のこの段付き傾斜面は、耐
酸化性膜をマスクとしてシリコンの表面を酸化して酸化
膜を形成する際、1回の酸化で形成する酸化膜の膜厚限
度を1−とし、膜厚がこれを越えるごとに耐酸化性膜を
被覆範囲を順次広げながら付け直した上で、酸化を重ね
て酸化膜を積み増すことにより形成される。
Means for Solving CnB] The present invention achieves the above object by forming the periphery of the oxide film into a stepped inclined surface and making the maximum step difference of each step 0.5- or less. This stepped inclined surface of the film is created by using the oxidation-resistant film as a mask to oxidize the surface of silicon to form an oxide film. It is formed by reapplying the oxidation-resistant film while sequentially expanding the coverage area each time it exceeds this range, and then repeating oxidation to increase the number of oxide films.

なお、上記の段付き傾斜面は各段ごとに傾斜面を横方向
に段差以上ずらせた形状に形成するのが望ましい。また
、耐酸化性膜には窒化シリコン膜が好適で、これを薄い
酸化シリコンのバッファ股上に被着してマスクとするの
がよい。
Note that it is preferable that the stepped sloped surface is formed in such a shape that the sloped surface is shifted in the lateral direction by more than a step difference for each step. Further, a silicon nitride film is suitable as the oxidation-resistant film, and it is preferable to apply this film to the top of a thin silicon oxide buffer and use it as a mask.

〔作用〕[Effect]

本発明は、膜厚が大な酸化膜を複数回に分けて形成する
ことにより酸化膜周縁のホワイトリボンの発生を防止し
ながら、段差を複数段に分割して絶縁膜や配線膜の欠陥
を防止するものである。
The present invention prevents the generation of white ribbons around the oxide film by forming a thick oxide film in multiple steps, and at the same time prevents defects in the insulating film and wiring film by dividing the step into multiple steps. It is intended to prevent

このため、前項の構成にいうように1回の酸化により形
成する酸化膜の膜厚の限度を14.段差の限度にして0
.51Mとし、この限度を越えるごとに酸化工程を分け
て酸化膜を積み増すようにし、かつそれを利用して酸化
膜の周縁を段付き傾斜面に形成する。すなわち、酸化膜
を積み増すごとに酸化用マスクとしての耐酸化性膜をそ
の被覆範囲を順次広げながら付け直すことにより、酸化
膜の周縁を段付き傾斜面に形成する。
For this reason, as mentioned in the configuration in the previous section, the limit of the thickness of the oxide film formed by one oxidation is set to 14. 0 as the limit of the step
.. 51M, and each time this limit is exceeded, the oxidation process is divided to increase the oxide film, and this is used to form the periphery of the oxide film into a stepped slope. That is, each time an oxide film is accumulated, an oxidation-resistant film serving as an oxidation mask is reattached while sequentially expanding its coverage area, thereby forming the periphery of the oxide film into a stepped slope.

〔実施例〕〔Example〕

以下、図を参照しながら本発明の詳細な説明する。第1
図に周縁が段付き傾斜面に形成された本発明の集積回路
装置用酸化830を半導体基板10上に付けた状態を示
し、第2図にこの状態にするまでの主な工程ごとの状態
を示す、いずれも前に説明した第3図に対応して半導体
基体10内に回路素子を作り込む範囲を取り囲んで酸化
膜30を付ける部分の拡大断面である。説明の便宜上、
以下の実施例の説明を第2図の方から主な工程を追って
順次に進めることとする。
Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
The figure shows the state in which the oxide 830 for integrated circuit devices of the present invention, which has a stepped sloped peripheral edge, is applied on the semiconductor substrate 10, and FIG. 2 shows the state of each main process to achieve this state. These are enlarged cross-sectional views of the portion where the oxide film 30 is attached surrounding the area where circuit elements are to be formed in the semiconductor substrate 10, corresponding to FIG. 3 described above. For convenience of explanation,
The following description of the embodiment will proceed sequentially, following the main steps starting from FIG.

この実施例では2回の酸化工程により約1.4−の膜厚
の酸化M30を形成するものとし、第2図(a)は1回
目の酸化工程用のマスクを形成した状態を示す、まず、
例えば第3図のエピタキシャル層11である半導体基板
IOの表面を900°C程度の温度下で短時間酸化する
ことにより、0.04−程度の薄い酸化シリコン膜を形
成してバッファ膜21とする。
In this example, oxidation M30 with a film thickness of approximately 1.4 mm is formed by two oxidation steps, and FIG. 2(a) shows the state in which a mask for the first oxidation step has been formed. ,
For example, by oxidizing the surface of the semiconductor substrate IO, which is the epitaxial layer 11 in FIG. .

次に、その上に耐酸化性膜22用に例えば窒化シリコン
を減圧CVD法等により0.15−の膜厚に成長させ、
フォトプロセスとドライエツチングにより回路素子を作
り込むべき範囲を覆う図のパターンに形成して酸化用マ
スクとする。
Next, silicon nitride, for example, is grown on it to a thickness of 0.15 for the oxidation-resistant film 22 by low-pressure CVD or the like.
By photoprocessing and dry etching, the pattern shown in the figure is formed to cover the area where circuit elements are to be fabricated, and is used as an oxidation mask.

第2図(b)は1回目の酸化工程の終了時の状態を示す
、この酸化は1000°C程度の高温下で行ない、この
例では酸化膜30の1回目の酸化による膜厚【lをホワ
イトリボンの発生を完全に防止できるよう薄い目の0.
6−程度とする。酸化ll!30はもちろん耐酸化性膜
20で覆われていない範囲に成長され、その周縁の傾斜
面31を耐酸化性膜20の周縁の下に潜り込ませるよう
にして形成される。
FIG. 2(b) shows the state at the end of the first oxidation process. This oxidation is performed at a high temperature of about 1000°C, and in this example, the film thickness of the oxide film 30 due to the first oxidation [l] Thin 0.0mm to completely prevent the occurrence of white ribbons.
It should be about 6-. Oxidation! 30 is of course grown in an area not covered by the oxidation-resistant film 20, and is formed so that the inclined surface 31 at its peripheral edge is submerged under the peripheral edge of the oxidation-resistant film 20.

第2図(C)は2回−目の酸化工程用のマスクを形成し
た状態を示す、もちろん、この状態にする前に同図(ロ
)の状態からまず耐酸化性1!121を取り除く。
FIG. 2(C) shows a state in which a mask for the second oxidation process has been formed.Of course, before changing to this state, the oxidation resistance 1!121 is first removed from the state in FIG. 2(B).

また、バッファ11!I21は酸化膜30内に取り込ま
れた状態になっているが、それに相当する部分もごく短
時間のウェットエツチングにより除去するのが望ましい
、以後、第1図(a)で述べたと同じ要領でバッファ膜
23と耐酸化性膜24を付け、かつ後者をフォトエツチ
ングして図示の状態とするが、この2回目の酸化用の耐
酸化性Wi24を被覆範囲が必ず1回目よりも広がるよ
うにパターンニングする。
Also, buffer 11! Although I21 is now incorporated into the oxide film 30, it is desirable to remove the corresponding portion by wet etching for a very short period of time. A film 23 and an oxidation-resistant film 24 are attached, and the latter is photo-etched to obtain the state shown in the figure.The oxidation-resistant Wi 24 for the second oxidation is patterned so that the covered area is always wider than the first oxidation. do.

例えば、この実施例では被覆範囲が片側で1,5−程度
ずつ広げられる。
For example, in this embodiment, the coverage area is increased by about 1.5-degrees on each side.

第2図(d)は2回目の酸化工程の終了時の状態を示す
、耐酸化性膜24をマスクとする酸化は同図(blの1
回目と同じ要領でよく、この例では酸化I!30をl1
9[t2=0.8−分だけ積み増して、全体の膜厚をt
l + L2= 1.4−とする。この2回目の酸化工
程により、酸化膜30の周縁の耐酸化性膜24の下側に
2段目の傾斜面32が形成される。
FIG. 2(d) shows the state at the end of the second oxidation step. Oxidation using the oxidation-resistant film 24 as a mask is shown in FIG.
You can follow the same procedure as the previous time, but in this example, oxidation I! 30 to l1
9 [t2 = 0.8-minute increase to make the total film thickness t
Let l + L2 = 1.4-. Through this second oxidation step, a second sloped surface 32 is formed on the lower side of the oxidation-resistant film 24 at the periphery of the oxide film 30.

以陵は第2図(ハ)の状態から耐酸化性H24を取り除
き、かつ望ましくは酸化膜30の表面から同図(C)の
バッファ膜23に相当する部分を取り除くことにより第
1図の状態とする。
The state shown in FIG. 1 is then obtained by removing the oxidation resistance H24 from the state shown in FIG. shall be.

以上のように形成された酸化膜30は、第1図に示すよ
うにその周縁が2個の傾斜面31と32をもつ段付き傾
斜面33に形成され、その2段の段差slと32は上述
の1回目と2回目の酸化工程による膜厚tlとt2のそ
れぞれ約半分のこの実施例では0.3゜と0.41!m
程度になる。また、2個の傾斜面31と32の相互間の
ずれshは前述の1.5,1mとなる。かがる傾斜面間
のずれshは、段差slやs2と同程度以上とする必要
があるが、この実施例のように2倍以上とするのが望ま
しい。
As shown in FIG. 1, the oxide film 30 formed as described above is formed into a stepped inclined surface 33 having two inclined surfaces 31 and 32 at its periphery, and the two steps sl and 32 are In this example, the film thicknesses tl and t2 from the first and second oxidation steps described above are about half, respectively, 0.3° and 0.41! m
It will be about. Further, the deviation sh between the two inclined surfaces 31 and 32 is the aforementioned 1.5.1 m. The deviation sh between the sloped surfaces needs to be equal to or more than the steps sl and s2, but it is desirable to make it twice or more as in this embodiment.

なお、集積回路装置の回路電圧が200 V程度までの
場合は酸化II!30を第1図のような2段構成とする
ことで充分であるが、回路電圧が数百V程度にまで高く
なって酸化膜30の全体膜厚・を2−近くないしそれ以
上に増加させる必要がある場合は、3段以上の構成が採
用される。
In addition, if the circuit voltage of the integrated circuit device is up to about 200 V, oxidation II! It is sufficient to have the oxide film 30 in a two-stage configuration as shown in FIG. 1, but the circuit voltage increases to several hundreds of volts, increasing the overall thickness of the oxide film 30 to nearly 2- or more. If necessary, a configuration with three or more stages is adopted.

本発明による酸化膜の試作実験結果によれば、第1図の
ように酸化工程を2回に分けて成長させた酸化It!3
0には第4図のようなホワイトリボンの発生は見られず
、半導体基体lOの酸化膜30で取り囲まれた範囲内に
第3図と同じ要領で回路素子を作り込むことができる。
According to the experimental results of the oxide film according to the present invention, it was found that the oxide It! was grown in two oxidation steps as shown in FIG. 3
0, no white ribbon as shown in FIG. 4 is observed, and circuit elements can be fabricated in the same manner as in FIG. 3 within the area surrounded by the oxide film 30 of the semiconductor substrate IO.

この要領でFETを作り込んだ試作結果では、酸化H3
0の周縁上に配設した層間絶縁1117や配線1118
に第5図のような欠陥が発生する確率が従来より約1桁
減少し、第1図の段付き傾斜面33の効果がf1認され
た。
The prototype results of fabricating an FET in this manner show that oxidized H3
Interlayer insulation 1117 and wiring 1118 arranged on the periphery of 0
The probability of occurrence of a defect as shown in FIG. 5 was reduced by about one order of magnitude compared to the conventional method, and the effect of the stepped inclined surface 33 shown in FIG. 1 was recognized as f1.

〔発明の効果〕〔Effect of the invention〕

以上述べたとおり本発明では、集積回路装置用酸化膜の
周縁を段付き傾斜面に形成してその各段の段差を0.5
p以下にし、この酸化膜を耐酸化性膜をマスクとしてシ
リコン表面を酸化して酸化膜を形成する際に、1回の酸
化で形成する酸化膜の膜厚限度を1−とじ、膜厚がそれ
を越えるごとに耐酸化性膜をその被覆範囲を順次広げな
がら付け直した上で、酸化を重ねて酸化膜を積み増すこ
とにより、以下の効果が得られる。
As described above, in the present invention, the peripheral edge of the oxide film for an integrated circuit device is formed into a stepped inclined surface, and the step difference between each step is 0.5.
p or less, and when forming an oxide film by oxidizing the silicon surface using the oxidation-resistant film as a mask, the film thickness limit of the oxide film formed in one oxidation is set as 1-, and the film thickness is The following effects can be obtained by reapplying the oxidation-resistant film while sequentially expanding its coverage each time the range is exceeded, and then increasing the number of oxide films by repeating oxidation.

(a)膜厚が大な酸化膜を複数回の工程に分けて酸化を
重ねつつ順次積み増して形成することにより、1回の酸
化工程で形成する膜厚限度を1−に制限して酸化膜の周
縁におけるホワイトリボンの発生を皆無にすることがで
きる。
(a) By dividing a thick oxide film into multiple steps and stacking the oxide layer sequentially, the oxide film can be formed by limiting the film thickness that can be formed in one oxidation step to 1-. It is possible to completely eliminate the occurrence of white ribbons at the periphery of the paper.

(b)*数回の酸化工程ごとにマスク用の耐酸化性膜を
被覆範囲を順次広げつつ付け直すことにより、酸化膜の
周縁を段(−jき傾斜面に形成して各段差を0.5−以
下に制限するので、その上に配設される絶&!膜や配線
膜内の応力を緩和して、被覆不足や断線欠陥の発生を有
効に防止できる。
(b) *By reapplying the oxidation-resistant film for the mask every several oxidation steps while gradually expanding the coverage area, the periphery of the oxide film is formed into a step (-j) slope, and each step is reduced to 0. Since it is limited to .5- or less, it is possible to relieve the stress in the insulation &! film and wiring film disposed thereon, and effectively prevent the occurrence of insufficient coverage and disconnection defects.

(C)集積回路装置内の場所に応じて、酸化膜形成のた
めの酸化工程の回数を選択してその膜厚の切り換え設定
ができるので、集積回路装置内に複数個の電圧下で動作
する回路素子や回路部分を非常に合理的に作り込むこと
ができる。
(C) The number of oxidation steps to form an oxide film can be selected and the film thickness can be switched depending on the location within the integrated circuit device, so the integrated circuit device can operate under multiple voltages. Circuit elements and circuit parts can be built very rationally.

かかる特長を俯える本発明による酸化膜は集積回路装置
内の素子分離膜やフィールド酸化膜への適用にとくに有
利であり、欠陥の発生を防止して耐圧や性能を向上さ廿
ることができる。
The oxide film according to the present invention, which has such features, is particularly advantageous in application to element isolation films and field oxide films in integrated circuit devices, and can prevent the occurrence of defects and improve breakdown voltage and performance. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図が本発明に関し、第1図は半導体基
体上に形成した本発明の集積回路装置用酸化膜の実施例
を示す断面図、第2図(al〜(d)はこの第1図に対
応する本発明の集積回路装置酸化膜の形成方法の実施例
を主な工程ごとの状態で示す半導体基体の断面図である
。第3図以降は従来の技術に関し、第3図は従来の酸化
膜を素子分離膜に用いたFETの断面図、第4図および
第5図は従来技術の問題点を示すための第3図に対応す
るそれぞれ要部の拡大断面図である。これらの図におい
て、 10:半導体基体、20.22,24 :耐酸化性膜な
いし窒化シリコン膜、21,23 :耐酸化性膜の下地
用のバッファ膜、30:酸化膜、31.32F酸化膜の
周縁の傾斜面、33:段付き傾斜面、sl、s2:各傾
斜面の段差、sh:傾斜面相互間のずれ、tl:1回目
の酸化による酸化膜の膜厚、t2:2回目の酸化にょ′
;f7z図
1 and 2 relate to the present invention, FIG. 1 is a cross-sectional view showing an embodiment of an oxide film for an integrated circuit device of the present invention formed on a semiconductor substrate, and FIGS. 3 is a cross-sectional view of a semiconductor substrate showing the state of each main step in an embodiment of the method for forming an oxide film in an integrated circuit device of the present invention corresponding to FIG. 1. FIG. 1 is a cross-sectional view of a conventional FET using an oxide film as an isolation film, and FIGS. 4 and 5 are enlarged cross-sectional views of essential parts corresponding to FIG. 3 for illustrating problems of the prior art. In these figures, 10: semiconductor substrate, 20. 22, 24: oxidation-resistant film or silicon nitride film, 21, 23: buffer film for base of oxidation-resistant film, 30: oxide film, 31. 32F oxide film. 33: Stepped slope, sl, s2: Step difference between each slope, sh: Displacement between slopes, tl: Thickness of oxide film due to first oxidation, t2: Second oxidation Oxidation
;f7z diagram

Claims (1)

【特許請求の範囲】 1)シリコンの半導体基体の表面の所定範囲を覆い下側
のシリコンの酸化により形成される酸化膜であって、周
縁が段付き傾斜面に形成され、各段の最大段差が0.5
μm以下にされたことを特徴とする集積回路装置用酸化
膜。 2)請求項1に記載の酸化膜において、各段ごとに傾斜
面が横方向に段差以上ずらされたことを特徴とする集積
回路装置用酸化膜。 3)耐酸化性膜をマスクとしてシリコンの半導体基体の
表面を酸化してその所定範囲を覆い周縁に耐酸化性膜下
に潜り込む傾斜面をもつ酸化膜を形成する方法であって
、1回の酸化で形成する酸化膜の膜厚限度を1μmとし
て膜厚がこれを越えるごとに耐酸化性膜を被覆範囲を順
次広げながら付け直した上で酸化を重ねて酸化膜を積み
増し、酸化膜の周縁を段付き傾斜面に形成することを特
徴とする集積回路装置用酸化膜の形成方法。
[Scope of Claims] 1) An oxide film that covers a predetermined area of the surface of a silicon semiconductor substrate and is formed by oxidizing the underlying silicon, the periphery of which is formed into a stepped slope, and the maximum step difference between each step. is 0.5
An oxide film for an integrated circuit device, characterized in that the oxide film has a thickness of μm or less. 2) An oxide film for an integrated circuit device according to claim 1, wherein the slanted surface of each step is shifted laterally by more than a step. 3) A method in which the surface of a silicon semiconductor substrate is oxidized using an oxidation-resistant film as a mask to form an oxide film having a sloped surface that covers a predetermined area and goes under the oxidation-resistant film at the periphery. The thickness limit of the oxide film formed by oxidation is set at 1 μm, and each time the film thickness exceeds this, the oxidation-resistant film is reapplied while sequentially expanding the coverage area, and then oxidation is repeated to increase the oxide film and remove the periphery of the oxide film. 1. A method for forming an oxide film for an integrated circuit device, the method comprising forming an oxide film on a stepped inclined surface.
JP25095490A 1990-09-20 1990-09-20 Oxide film for integrated circuit device and its formation method Pending JPH04130630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25095490A JPH04130630A (en) 1990-09-20 1990-09-20 Oxide film for integrated circuit device and its formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25095490A JPH04130630A (en) 1990-09-20 1990-09-20 Oxide film for integrated circuit device and its formation method

Publications (1)

Publication Number Publication Date
JPH04130630A true JPH04130630A (en) 1992-05-01

Family

ID=17215482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25095490A Pending JPH04130630A (en) 1990-09-20 1990-09-20 Oxide film for integrated circuit device and its formation method

Country Status (1)

Country Link
JP (1) JPH04130630A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468675A (en) * 1993-05-26 1995-11-21 Rohm Co., Ltd. Method for manufacturing a device separation region for semiconductor device
US5700733A (en) * 1995-06-27 1997-12-23 Micron Technology, Inc. Semiconductor processing methods of forming field oxide regions on a semiconductor substrate
US5714414A (en) * 1996-08-19 1998-02-03 Micron Technology, Inc. Semiconductor processing method of forming field isolation oxide relative to a semiconductor substrate
US5789306A (en) * 1996-04-18 1998-08-04 Micron Technology, Inc. Dual-masked field isolation
US6387777B1 (en) 1998-09-02 2002-05-14 Kelly T. Hurley Variable temperature LOCOS process
US7229895B2 (en) 2005-01-14 2007-06-12 Micron Technology, Inc Memory array buried digit line
US7247570B2 (en) 2004-08-19 2007-07-24 Micron Technology, Inc. Silicon pillars for vertical transistors
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
US7368344B2 (en) 2004-12-13 2008-05-06 Micron Technology, Inc. Methods of reducing floating body effect
US7371627B1 (en) 2005-05-13 2008-05-13 Micron Technology, Inc. Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468675A (en) * 1993-05-26 1995-11-21 Rohm Co., Ltd. Method for manufacturing a device separation region for semiconductor device
US5700733A (en) * 1995-06-27 1997-12-23 Micron Technology, Inc. Semiconductor processing methods of forming field oxide regions on a semiconductor substrate
US5909629A (en) * 1995-06-27 1999-06-01 Micron Technology, Inc. Semiconductor processing method of forming field oxide regions on a semiconductor substrate
US6103020A (en) * 1996-04-18 2000-08-15 Micron Technology, Inc. Dual-masked field isolation
US5789306A (en) * 1996-04-18 1998-08-04 Micron Technology, Inc. Dual-masked field isolation
US5909630A (en) * 1996-04-18 1999-06-01 Micron Technology, Inc. Dual-masked isolation
US5989980A (en) * 1996-08-19 1999-11-23 Micron Technology, Inc. Semiconductor processing method of forming field isolation oxide relative to a semiconductor substrate
US5714414A (en) * 1996-08-19 1998-02-03 Micron Technology, Inc. Semiconductor processing method of forming field isolation oxide relative to a semiconductor substrate
US6387777B1 (en) 1998-09-02 2002-05-14 Kelly T. Hurley Variable temperature LOCOS process
US7413480B2 (en) 2004-08-19 2008-08-19 Micron Technology, Inc. Silicon pillars for vertical transistors
US8847298B2 (en) 2004-08-19 2014-09-30 Micron Technology, Inc. Pillars for vertical transistors
US7247570B2 (en) 2004-08-19 2007-07-24 Micron Technology, Inc. Silicon pillars for vertical transistors
US8629533B2 (en) 2004-08-19 2014-01-14 Micron Technology, Inc. Pillars for vertical transistors
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
US7521322B2 (en) 2004-09-02 2009-04-21 Micron Technology, Inc. Vertical transistors
US7368344B2 (en) 2004-12-13 2008-05-06 Micron Technology, Inc. Methods of reducing floating body effect
US7626223B2 (en) 2004-12-13 2009-12-01 Micron Technology, Inc. Memory structure for reduced floating body effect
US7601608B2 (en) 2005-01-14 2009-10-13 Micron Technologies, Inc. Memory array buried digit line
US7768073B2 (en) 2005-01-14 2010-08-03 Micron Technology, Inc. Memory array buried digit line
US8102008B2 (en) 2005-01-14 2012-01-24 Micron Technology, Inc. Integrated circuit with buried digit line
US7368365B2 (en) 2005-01-14 2008-05-06 Wells David H Memory array buried digit line
US7229895B2 (en) 2005-01-14 2007-06-12 Micron Technology, Inc Memory array buried digit line
US7371627B1 (en) 2005-05-13 2008-05-13 Micron Technology, Inc. Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US10515801B2 (en) 2007-06-04 2019-12-24 Micron Technology, Inc. Pitch multiplication using self-assembling materials

Similar Documents

Publication Publication Date Title
JPS62257768A (en) Manufacture of eprom cell composed of oxide-nitride-oxide dielectric and eprom cell manufactured by the method
JPH04130630A (en) Oxide film for integrated circuit device and its formation method
JPS60234372A (en) Manufacture of semiconductor device
JPS598065B2 (en) MOS integrated circuit manufacturing method
JPS59130465A (en) Manufacture of metal insulator semiconductor device
JP3104791B2 (en) Method for manufacturing semiconductor device
JP3853916B2 (en) Manufacturing method of semiconductor device
JPS6042855A (en) Semiconductor device
JPH04111445A (en) Manufacture of semiconductor device
US10777450B2 (en) Semiconductor substrate and method of processing the same
US6174792B1 (en) Method of manufacturing a semiconductor device
JP2001102570A (en) Semiconductor transistor and manufacturing method therefor
KR940008320B1 (en) Manufacturing method of semiconductor device
KR980012255A (en) Device isolation method of semiconductor device
JPH08293595A (en) Manufacture of semiconductor device
JPS63197365A (en) Manufacture of semiconductor device
JPS62219576A (en) Manufacture of eprom
KR940006082B1 (en) Semiconductor device isolation method
KR940001254B1 (en) Isolation method of semiconductor device using polysilicon
JPS615574A (en) Manufacture of semiconductor device
JPS6165447A (en) Manufacture of semiconductor device
JPS62242335A (en) Formation of element isolating region of semiconductor integrated circuit
JPH02213158A (en) Manufacture of semiconductor device
JPH02268435A (en) Selective oxidation for isolation of semiconductor element
JPH0218587B2 (en)