JPH0412621B2 - - Google Patents

Info

Publication number
JPH0412621B2
JPH0412621B2 JP59055709A JP5570984A JPH0412621B2 JP H0412621 B2 JPH0412621 B2 JP H0412621B2 JP 59055709 A JP59055709 A JP 59055709A JP 5570984 A JP5570984 A JP 5570984A JP H0412621 B2 JPH0412621 B2 JP H0412621B2
Authority
JP
Japan
Prior art keywords
ball
wire
corrosion
hardness
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59055709A
Other languages
Japanese (ja)
Other versions
JPS60198851A (en
Inventor
Masatoshi Tsucha
Masateru Suwa
Hitoshi Oonuki
Kazuo Taguchi
Tomio Iizuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59055709A priority Critical patent/JPS60198851A/en
Publication of JPS60198851A publication Critical patent/JPS60198851A/en
Publication of JPH0412621B2 publication Critical patent/JPH0412621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85053Bonding environment
    • H01L2224/85054Composition of the atmosphere
    • H01L2224/85075Composition of the atmosphere being inert
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To obtain an aluminum alloy wire having high bonding strength and high corrosion-resisting property by a method wherein the second noble element having no solubility for Al and the third element having solubility for Al are contained in Al. CONSTITUTION:In order to improve the corrosion-resisting property of a corrosion-resisting Al alloy wire, the second noble element having no substantial solubility for Al is contained in Al. The second element consists of one or two kinds selected from the group of Au, Ni and Pd. Also, the third element having solubility for Al is added for the purpose of increasing the degree of hardness of a ball without impairing the corrosion-resisting property of the corrosion- resisting Al alloy wire. Said third element is the element which is selected from the group of Cu, Mg, Ti and Zr. As a result, the corrosion-resisting Al alloy wire having the hardness of Hv30 or above in the ball hardness in normal temperature can be obtained. Accordingly, high bonding strength and a high corrosion-resisting property can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、半導体用高耐食高硬度ボール付アル
ミニウム合金ワイヤに係り、特に、半導体素子上
の配線膜に高いボンデイング強度で接続すること
ができる半導体用高耐食高硬度ボール付アルミニ
ウム合金ワイヤに関する。 〔発明の背景〕 従来、半導体素子上に形成されたAl蒸着膜か
らなる配線膜と外部リードとの接続はAu細線が
用いられ、そのボールボンデイング法による熱圧
着又は超音波接合が行われている。近年、Au線
の代りに安価なAl細線を使用する検討が行われ
ている。しかし、エポキシ樹脂等の合成樹脂によ
つて封止される半導体装置では、Al細線に腐食
が生じることが問題となり、半導体用耐食Al細
線の検討が行われている。耐食Al細線としては、
Al−Au、Al−Pd合金およびAl−Ni合金が知ら
れている。 しかしながら、これらのアルミニウム合金ワイ
ヤは、Au線に比べてボールボンデイング強度が
低いという欠点がある。さらに、ワイヤの先端に
形成するボールが軟いため、ボールボンデイング
する際に、ボールがつぶれ過ぎてパツドのはみ出
しを生ずる。そのため、はみ出したパツドが周辺
のAl配線膜と接触して破壊させ、断線不良を起
すという問題があつた。 〔発明の目的〕 本発明の目的は、耐食性を低めることなくボー
ルボンデイング強度のすぐれたボール付アルミニ
ウム合金ワイヤを提供することにある。 〔発明の概要〕 本発明は、レジンモールド半導体用コネクタワ
イヤとして開発した耐食アルミニウム合金であつ
て、耐食性と、高いボンデイング強度を備えた
Au線代替材として非常に有効であるアルミニウ
ム合金ワイヤである。 本発明者らは、耐食アルミニウム合金のボンデ
イング強度について詳しく検討した結果、ボンデ
イング強度はボール硬さに依存していることを見
い出した。 第1図は、直径50μmのAu線におけるボール硬
さとせん断強度との関係を示す線図である。ボー
ルのひずみは0.5〜0.9がよいことが経験的に知ら
れている。このボールのひずみは次の式から求め
られる。 ボールのひずみ=2ln(D1/D0) …… なお、D0はボンデイング前のボール径、D1
ボンデイング後のボール径である。 Au線のボールのひずみが0.6で、せん断強度を
140g以上にするには、ボールの硬さは30Hv以上
必要である。 すなわち、耐食アルミ合金のボール硬さを増加
すれば、ボールボンデイング強度を向上すること
ができることがわかつた。 そこで、発明者らは耐食アルミ合金ワイヤの耐
食性を損うことなくボール硬度を増すためには固
溶体強化が有効と考え、Alに対して溶解度を有
するCu、Mg、Ti及びZrの添加効果について検討
した。その結果、これらの元素の添加はボール硬
度を増すのに極めて有効であることがわかつた。 ボール形成はワイヤ先端をアーク放電又は火花
放電等の加熱溶解によつてボールを短時間で形成
させるため、合金元素が固溶すると結晶格子がひ
ずみ、そのために転位の運動を妨害して硬化する
ものと考えられる。合金元素の固溶の影響として
見のがせないものに加工硬化能が大きくなること
である。本発明のAl合金は極細線として用いる
ため、特に塑性加工性の高いことが重要となる。
したがつて硬化元素であるCu、Mg、Ti、Zrの量
が多いと塑性加工性が著しく悪化し細線加工が困
難になり、しかも耐食性も悪くなる。ボール硬さ
(Hv)30以上と良い塑性加工性を得るにはCu、
Mg、Zr、Tiの量を1種又は2種以上の総量で
0.3〜3重量%がよい。0.3%以下では、ボールの
硬さが不足し、高いボンデイング強度が得られな
い反面、3重量%を越えると、アルミニウム基地
中に単体又は常温時効により化合物が析出し、塑
性加工性を著しく劣化し極細線加工ができない。
従つて、良好な塑性加工性、十分なボール硬さお
よび耐食性を得るには、Cu、Mg、Ti、およびZr
の群から選ばれた1種又は2種以上の総量は、
0.5〜2.0重量%の範囲が最適である。 本発明は、さらに耐食性を改善するため、アル
ミニウムに対して実質的に溶解度を有しない貴の
第2元素として、Au、NiおよびPdの群から選ば
れた1種又は2種以上であつて、総量で0.1〜5
重量%含有されている。0.1重量%以下では、腐
食を防止する効果が少ない一方、5重量%を越え
ると、アルミ基地中に不均一に分散し、かえつて
耐食性の向上が得られないばかりでなく、塑性加
工が困難になるので、0.1〜5重量%の添加が必
要であつて、特に高い耐食性と良好な塑性加工性
を得るには、総量で0.1〜3重量%の範囲が好ま
しい。 なお、高い耐食性と良好な塑性加工性及び十分
なボンデイング強度を得るためのボール硬さを確
保するためには第2元素と第3元素の総量を0.5
〜6重量%の範囲とするのが最適である。 本発明のアルミニウム合金ワイヤはそれ自身の
不動態化とこれを促進する元素を含むので、硬化
元素と合せて強い不動態皮膜を形成し、すぐれた
耐食性を有しボンデイング強度はAu線と同程度
が確保でき、信頼性の高いアルミニウムボールボ
ンデイングが得られる。 本発明のアルミニウム合金からなり先端にボー
ルを形成した極細線は、そのボールを半導体素子
上に形成された配線膜に固相接合し、他端を外部
リード端子に固相接合するボールボンデイング用
ワイヤに最適である。極細線の直径は合金の種類
によつても異なるが20〜100μmが好ましく、特
に直径30〜70μmが好ましい。この中で比抵抗等
を考慮してワイヤ径が選定される。 ワイヤは前述のような合金元素を含むので、焼
純されたものがよい。焼鈍温度は加工歪の除去が
行なえる温度以上で再結晶温度以下の温度がよ
い。特にボールボンデイング等の取扱時に塑性変
形しない程度に軟かくするには、最終冷間加工後
に100〜350℃で焼鈍され、焼なまし状態で室温の
伸びが60%以下であることを特徴とするボールボ
ンデイング用ワイヤにある。これによつてワイヤ
全体が軟かくなり、局部的な変形がなく断線等の
問題が解消される。 ワイヤは前述のように非常に細径で軟かいので
これを保護するため半導体素子とワイヤ及び外部
端子の一部を合成樹脂又はセラミツクスで被うこ
とが行われる。合成樹脂は注型(キヤステイン
グ)又は成形(モールド)し硬化させ、セラミツ
クスは通常の方法でキヤツプシール接合される。 〔発明の実施例〕 純度99.999%の純Alおよび純度99.9〜99.99%の
Au、Ni、Pdを用いて各元素の含有量を0、0.5、
1、2、5、10重量%の二元合金を溶製すると共
に、各2元合金に純度99.9%のCCu、Mg、Tiお
よびZrをそれぞれ単独に0、2、0.5、1、3、
5重量%を添加した3元合金を溶製した。この溶
製に際しては、Ar雰囲気中の水冷銅鋳型でアー
ク溶解し、次いで、合金を均一に固溶させるた
め、580℃×24hrソーキング処理を施した後急冷
し、室温でスエージング後、580℃×2Hrの焼鈍
と線引を繰り返すことによつて直径30μmと50μ
mのワイヤを製造した。なお、合金元素の総量が
10重量%以上を含む合金はスエージング加工及び
線引加工が、これより少ないものに比べ困難であ
つた。合金元素の総量が8重量%以下の合金の塑
性加工性は良好で線引加工が容易であつた。 以上のように製造した各ワイヤを不活性ガス中
で200〜400℃×1hr加熱による焼なまし処理を施
したものについて、ワイヤ先端にボールを形成
し、各合金についても10個のビツカース硬さを測
定した。 第2図はアーク放電によりワイヤ先端にボール
を形成する装置を示す断面図である。 この装置は、密封チヤンバー1内にW電極2と
キヤピラリ3とが離間して列設されており、この
キヤピラリ3にワイヤ4が支持され、W電極2と
ワイヤ4との間に電源が接続されている。 放電は、真空排気後、7体積%のH2を含むAr
ガス雰囲気中で電圧1000V、電流1〜10Aで放電
時間はW電極2の移動速度及びパルスの周波数に
よつてコントロールした。ボール5は表面に光沢
があり、真球に近い良好な形状のものが得られ
た。 第3図〜第5図は各アルミニウム合金ワイヤに
おけるボール硬さ(Hv)と添加元素(%)との
関係を示す線図である。 これらの図から明らかなように、耐食アルミニ
ウム合金にCu、Mg、Zr及びTiの添加はボール硬
度の増加に有効であることが判明した。しかし、
これらの元素の添加量が0.2重量%以下では硬化
が不十分でHv:30以上を得るには0.3重量%以上
を添加する必要がある。特にCu、Mgの添加がボ
ールの高硬度化に有効であることが確認できた。
なお、前記合金元素を複合添加しても前記と同じ
効果が得られる。 第10図は、各アルミニウム合金ワイヤにおけ
るボールの硬さとせん断強度の関係を示す。第1
0図によれば、上記関係を示す曲線は、第1図に
示すAuに関するものとほぼ同一線上にあり、せ
ん断強度はボールの硬さにより一義的に決まるこ
とがわかる。 実施例 2 実施例1で製作した直径30μmのワイヤをAr雰
囲気中で150〜350℃、1時間加熱して焼なました
ものについて、120℃、2気圧の水蒸気中で200時
間放置するプレシヤクツカーテスト(PCT)試
験し、ワイヤ自身の腐食性を測定した。試験後、
走査型電子顕微鏡によりワイヤ表面の状態を観察
した。第6図に観察結果の一例を示す。第6図a
は粒界から優先的に腐食が進行して著しく腐食さ
れている場合である。これに対し本発明合金は第
6図bに示すAl−1Pd−2Cu合金と同じくほとん
ど腐食されていないことが観察された。 第1表はボール硬さと耐食性に及ぼす添加元素
の影響を示す線図である。耐食アルミ合金にCu、
Mg、TiおよびZrを添加しても耐食性は同等ある
いは耐食性が改善される傾向にあり、これらの硬
化元素を添加しても耐食性を悪化させないことが
わかる。さらに、ボール硬さと耐食性の評価から
Cu、Mgの添加がすぐれていることが確認でき
た。
[Field of Application of the Invention] The present invention relates to an aluminum alloy wire with highly corrosion resistant and hard balls for semiconductors, and particularly to an aluminum alloy wire with highly corrosion resistant hard balls for semiconductors that can be connected to a wiring film on a semiconductor element with high bonding strength. Regarding aluminum alloy wire. [Background of the Invention] Conventionally, thin Au wires have been used to connect external leads to wiring films made of Al vapor-deposited films formed on semiconductor elements, and thermocompression bonding or ultrasonic bonding using the ball bonding method has been performed. . In recent years, studies have been conducted to use inexpensive Al thin wires instead of Au wires. However, in semiconductor devices sealed with synthetic resins such as epoxy resins, corrosion of Al thin wires becomes a problem, and corrosion-resistant Al thin wires for semiconductors are being investigated. As a corrosion-resistant Al thin wire,
Al-Au, Al-Pd alloys and Al-Ni alloys are known. However, these aluminum alloy wires have a drawback of having lower ball bonding strength than Au wires. Furthermore, since the ball formed at the tip of the wire is soft, the ball is crushed too much during ball bonding, causing the pad to protrude. Therefore, there was a problem in that the protruding pad came into contact with the surrounding Al wiring film and broke it, causing disconnection. [Object of the Invention] An object of the present invention is to provide an aluminum alloy wire with balls that has excellent ball bonding strength without reducing corrosion resistance. [Summary of the Invention] The present invention is a corrosion-resistant aluminum alloy developed as a connector wire for resin-molded semiconductors, which has corrosion resistance and high bonding strength.
This is an aluminum alloy wire that is very effective as a substitute for Au wire. The present inventors conducted a detailed study on the bonding strength of corrosion-resistant aluminum alloys and found that the bonding strength depends on the hardness of the ball. FIG. 1 is a diagram showing the relationship between ball hardness and shear strength in an Au wire with a diameter of 50 μm. It is empirically known that a ball strain of 0.5 to 0.9 is good. The strain of this ball can be calculated from the following formula. Ball strain = 2ln (D 1 /D 0 )... Note that D 0 is the ball diameter before bonding, and D 1 is the ball diameter after bonding. The strain of the Au wire ball is 0.6, and the shear strength is
In order to weigh over 140g, the hardness of the ball must be over 30Hv. That is, it has been found that ball bonding strength can be improved by increasing the ball hardness of the corrosion-resistant aluminum alloy. Therefore, the inventors believed that solid solution strengthening would be effective in increasing the ball hardness without impairing the corrosion resistance of the corrosion-resistant aluminum alloy wire, and investigated the effects of adding Cu, Mg, Ti, and Zr, which have solubility in Al. did. As a result, it was found that the addition of these elements is extremely effective in increasing ball hardness. Ball formation involves heating and melting the tip of a wire using arc discharge or spark discharge to form a ball in a short time. When alloying elements dissolve in solid solution, the crystal lattice becomes distorted, which obstructs the movement of dislocations and hardens the wire. it is conceivable that. One of the effects of the solid solution of alloying elements that cannot be ignored is that the work hardening ability increases. Since the Al alloy of the present invention is used as an ultrafine wire, it is especially important that it has high plastic workability.
Therefore, when the amount of hardening elements Cu, Mg, Ti, and Zr is large, plastic workability deteriorates significantly, making thin wire processing difficult, and corrosion resistance also deteriorates. To obtain a ball hardness (Hv) of 30 or higher and good plastic workability, Cu,
The amount of Mg, Zr, and Ti can be adjusted by one type or the total amount of two or more types.
It is preferably 0.3 to 3% by weight. If it is less than 0.3%, the hardness of the ball will be insufficient and high bonding strength will not be obtained. On the other hand, if it exceeds 3% by weight, compounds will precipitate in the aluminum base or by aging at room temperature, significantly deteriorating the plastic workability. Unable to process ultra-fine wires.
Therefore, to obtain good plastic workability, sufficient ball hardness and corrosion resistance, Cu, Mg, Ti, and Zr
The total amount of one or more species selected from the group of
A range of 0.5-2.0% by weight is optimal. In order to further improve corrosion resistance, the present invention provides one or more noble second elements selected from the group of Au, Ni and Pd, which have substantially no solubility in aluminum. 0.1 to 5 in total
Contains % by weight. If it is less than 0.1% by weight, it will have little effect in preventing corrosion, while if it exceeds 5% by weight, it will be dispersed unevenly in the aluminum matrix, and not only will corrosion resistance not be improved, but plastic working will become difficult. Therefore, it is necessary to add 0.1 to 5% by weight, and in order to obtain particularly high corrosion resistance and good plastic workability, the total amount is preferably in the range of 0.1 to 3% by weight. In addition, in order to ensure ball hardness to obtain high corrosion resistance, good plastic workability, and sufficient bonding strength, the total amount of the second and third elements should be 0.5.
The optimum range is 6% by weight. Since the aluminum alloy wire of the present invention contains its own passivation and elements that promote this, it forms a strong passive film in combination with hardening elements, has excellent corrosion resistance, and has a bonding strength comparable to that of Au wire. can be ensured, resulting in highly reliable aluminum ball bonding. The ultra-fine wire made of the aluminum alloy of the present invention and having a ball formed at its tip is a ball bonding wire that solid-phase bonds the ball to a wiring film formed on a semiconductor element and solid-phase bonds the other end to an external lead terminal. Ideal for Although the diameter of the ultrafine wire varies depending on the type of alloy, it is preferably 20 to 100 μm, particularly preferably 30 to 70 μm. Among these, the wire diameter is selected in consideration of specific resistance and the like. Since the wire contains the above-mentioned alloying elements, it is preferable that the wire be sintered and purified. The annealing temperature is preferably higher than the temperature at which processing strain can be removed and lower than the recrystallization temperature. In order to make it soft enough not to undergo plastic deformation during handling such as ball bonding, it is annealed at 100 to 350°C after final cold working, and is characterized by an elongation at room temperature of 60% or less in the annealed state. Found in ball bonding wire. As a result, the entire wire becomes soft and there is no local deformation, eliminating problems such as wire breakage. As mentioned above, the wire is very thin and soft, so to protect it, the semiconductor element, the wire, and a portion of the external terminal are covered with synthetic resin or ceramics. The synthetic resin is casted or molded and cured, and the ceramic is cap-sealed using a conventional method. [Embodiments of the invention] Pure Al with a purity of 99.999% and pure Al with a purity of 99.9 to 99.99%
Using Au, Ni, and Pd, the content of each element was adjusted to 0, 0.5,
1, 2, 5, and 10% by weight of binary alloys are melted, and 0, 2, 0.5, 1, 3, and 99.9% pure CCu, Mg, Ti, and Zr are individually added to each binary alloy, respectively.
A ternary alloy containing 5% by weight was produced. This process involves arc melting in a water-cooled copper mold in an Ar atmosphere, followed by soaking at 580°C for 24 hours in order to uniformly dissolve the alloy, followed by rapid cooling, swaging at room temperature, and heating at 580°C. By repeating ×2Hr annealing and wire drawing, the diameter is 30μm and 50μm.
m wires were produced. Note that the total amount of alloying elements is
Alloys containing more than 10% by weight were more difficult to swag and wire-draw than those containing less. Alloys in which the total amount of alloying elements was 8% by weight or less had good plastic workability and were easy to wire-draw. Each of the wires produced as described above was annealed by heating at 200 to 400°C for 1 hour in an inert gas, a ball was formed at the tip of the wire, and 10 bits of Vickers hardness was determined for each alloy. was measured. FIG. 2 is a sectional view showing an apparatus for forming a ball at the tip of a wire by arc discharge. In this device, a W electrode 2 and a capillary 3 are arranged in a row in a spaced manner in a sealed chamber 1, a wire 4 is supported by the capillary 3, and a power source is connected between the W electrode 2 and the wire 4. ing. After evacuation, the discharge is performed using Ar containing 7% by volume of H2.
The discharge time was controlled by the moving speed of the W electrode 2 and the pulse frequency at a voltage of 1000 V and a current of 1 to 10 A in a gas atmosphere. Ball 5 had a glossy surface and a good shape close to a perfect sphere. FIGS. 3 to 5 are diagrams showing the relationship between ball hardness (Hv) and additive elements (%) in each aluminum alloy wire. As is clear from these figures, the addition of Cu, Mg, Zr, and Ti to the corrosion-resistant aluminum alloy was found to be effective in increasing ball hardness. but,
If the amount of these elements added is less than 0.2% by weight, curing will be insufficient, and in order to obtain Hv: 30 or more, it is necessary to add 0.3% by weight or more. In particular, it was confirmed that the addition of Cu and Mg is effective in increasing the hardness of the ball.
Note that the same effect as described above can be obtained even if the alloying elements are added in combination. FIG. 10 shows the relationship between ball hardness and shear strength in each aluminum alloy wire. 1st
According to FIG. 0, the curve showing the above relationship is almost on the same line as the curve for Au shown in FIG. 1, and it can be seen that the shear strength is uniquely determined by the hardness of the ball. Example 2 The wire with a diameter of 30 μm produced in Example 1 was annealed by heating at 150 to 350°C for 1 hour in an Ar atmosphere, and then left in steam at 120°C and 2 atm for 200 hours. The corrosion resistance of the wire itself was measured using Tsukur test (PCT). After the exam,
The state of the wire surface was observed using a scanning electron microscope. Figure 6 shows an example of the observation results. Figure 6a
This is a case where corrosion progresses preferentially from the grain boundaries and is severely corroded. On the other hand, it was observed that the alloy of the present invention was hardly corroded like the Al-1Pd-2Cu alloy shown in FIG. 6b. Table 1 is a diagram showing the influence of additive elements on ball hardness and corrosion resistance. Corrosion-resistant aluminum alloy with Cu,
Even when Mg, Ti, and Zr are added, the corrosion resistance tends to be the same or improved, indicating that the addition of these hardening elements does not deteriorate the corrosion resistance. Furthermore, from the evaluation of ball hardness and corrosion resistance,
It was confirmed that the addition of Cu and Mg was excellent.

【表】 実施例 3 実施例1で製作した直径50μmのAl−1PdAl−
1Pd−2Cu、Al−1Au、Al−1Au−1Mg、Al−
0.5Ni、Al−0.5Ni−2Mg合金ワイヤを用いてN2
中で350℃、1時間焼なまし処理を施したものに
ついて第2図に示す方法でワイヤ先端にボールを
形成し、半導体素子上に設けたAl配線膜にボー
ルボンデイングを行なつた。その後、テンシヨン
ゲージを用いてせん断強度を測定した。せん断強
度の測定結果は第2表に示す通りである。
[Table] Example 3 Al-1PdAl- with a diameter of 50 μm manufactured in Example 1
1Pd−2Cu, Al−1Au, Al−1Au−1Mg, Al−
N2 using 0.5Ni, Al−0.5Ni−2Mg alloy wire
A ball was formed at the tip of the wire by the method shown in FIG. 2, and ball bonding was performed on the Al wiring film provided on the semiconductor element. Thereafter, the shear strength was measured using a tension gauge. The measurement results of shear strength are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれ
ば、高いボンデイング強度と高い耐食性が得ら
れ、特に、レジンモールド型半導体装置のボール
ボンデイング用ワイヤとして優れた効果を発揮す
る。
As is clear from the above description, according to the present invention, high bonding strength and high corrosion resistance can be obtained, and the present invention exhibits particularly excellent effects as a ball bonding wire for resin molded semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAu細線のボール硬さとせん断強度と
の関係を示す線図、第2図はアーク放電によるボ
ール形成装置の一例を示す概略説明図、第3図〜
第5図はボール硬さに及ぼす添加元素量との関係
を示す線図、第6図A,BはPCT試験後のワイ
ヤの外観図、第7図は代表的なレジンモールド型
半導体装置の断面図、第8図はボールボンデイン
グされた状態を示す半導体装置の部分断面図、第
9図はワイヤ焼鈍温度と硬さとの関係を示す線
図、第10図は各アルミニウム合金ワイヤのボー
ルの硬さとせん断強度の関係を示す線図である。 1……密閉チヤンバー、2……W電極、3……
キヤピラリー、4……ワイヤ、5……ボール、6
……Al蒸着膜、7……Si素子、8……Agメツキ
層、9……リードフレーム。
Fig. 1 is a diagram showing the relationship between ball hardness and shear strength of thin Au wire, Fig. 2 is a schematic diagram showing an example of a ball forming device using arc discharge, and Figs.
Figure 5 is a diagram showing the relationship between the amount of added elements and the effect on ball hardness, Figures 6A and B are external views of the wire after the PCT test, and Figure 7 is a cross section of a typical resin molded semiconductor device. 8 is a partial cross-sectional view of a semiconductor device in a ball-bonded state, FIG. 9 is a diagram showing the relationship between wire annealing temperature and hardness, and FIG. 10 is a diagram showing the relationship between the hardness of each aluminum alloy wire ball and FIG. 3 is a diagram showing the relationship between shear strengths. 1... Sealed chamber, 2... W electrode, 3...
Capillary, 4...Wire, 5...Ball, 6
...Al vapor deposited film, 7...Si element, 8...Ag plating layer, 9...lead frame.

Claims (1)

【特許請求の範囲】 1 半導体素子上にボールボンデイング法により
接続されるアルミニウム合金ワイヤにおいて、ア
ルミニウムを主成分とし、アルミニウムに対して
実質的に溶解度を有しない貴の第2元素と、アル
ミニウム基地に実質的に固溶する第3元素を含
み、先端に溶融して形成され常温における硬さが
Hv30以上のボールを有することを特徴とする半
導体用高耐食高硬度ボール付アルミニウム合金ワ
イヤ。 2 特許請求の範囲第1項において、貴の第2元
素はAu、Ni、Pdの群から選ばれる1種又は2種
以上であり、第3元素はCu、Mg、Ti、Zrの群か
ら選ばれる元素を含有することを特徴とする半導
体用高耐食高硬度ボール付アルミニウム合金ワイ
ヤ。 3 特許請求の範囲第1項および第2項におい
て、貴の第2元素は、トータル重量比で0.1〜5
%を含有し、第3元素はトータル重量比で0.3〜
3%を含有することを特徴とする半導体用高耐食
高硬度ボール付アルミニウム合金ワイヤ。 4 貴の第2元素と第3元素の含有総量が0.5〜
6重量%であることを特徴とする特許請求の範囲
第1項〜第3項のいずれかに記載の半導体用高耐
食高硬度ボール付アルミニウム合金ワイヤ。
[Claims] 1. An aluminum alloy wire that is connected to a semiconductor element by a ball bonding method, the main component of which is aluminum, a noble second element that has substantially no solubility in aluminum, and an aluminum base. Contains a third element that is substantially dissolved in solid solution, is formed by melting at the tip, and has a hardness at room temperature.
An aluminum alloy wire with high corrosion resistance and high hardness balls for semiconductors, characterized by having balls of Hv30 or higher. 2 In claim 1, the second element is one or more selected from the group of Au, Ni, and Pd, and the third element is selected from the group of Cu, Mg, Ti, and Zr. An aluminum alloy wire with high corrosion resistance and high hardness balls for semiconductors, which is characterized by containing an element that is 3 In claims 1 and 2, the noble second element has a total weight ratio of 0.1 to 5.
%, and the third element has a total weight ratio of 0.3 to
An aluminum alloy wire with high corrosion resistance and high hardness balls for semiconductors, characterized by containing 3%. 4 The total amount of secondary and tertiary elements contained is 0.5~
6% by weight of the highly corrosion resistant and highly hard balled aluminum alloy wire for semiconductors according to any one of claims 1 to 3.
JP59055709A 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor Granted JPS60198851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055709A JPS60198851A (en) 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055709A JPS60198851A (en) 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor

Publications (2)

Publication Number Publication Date
JPS60198851A JPS60198851A (en) 1985-10-08
JPH0412621B2 true JPH0412621B2 (en) 1992-03-05

Family

ID=13006406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055709A Granted JPS60198851A (en) 1984-03-23 1984-03-23 High corrosion resistant high hardness aluminum alloy wire for semiconductor

Country Status (1)

Country Link
JP (1) JPS60198851A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG182272A1 (en) 2010-01-20 2012-08-30 Semiconductor Energy Lab Semiconductor device
JP5680138B2 (en) * 2013-05-15 2015-03-04 田中電子工業株式会社 Corrosion resistant aluminum alloy bonding wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812720A (en) * 1982-06-16 1983-01-24 Mitsubishi Plastics Ind Ltd Lining method for metallic tube
JPS5961939A (en) * 1982-09-30 1984-04-09 Tanaka Denshi Kogyo Kk Aluminum lead for bonding of semiconductor element
JPS6095950A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095954A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095955A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812720A (en) * 1982-06-16 1983-01-24 Mitsubishi Plastics Ind Ltd Lining method for metallic tube
JPS5961939A (en) * 1982-09-30 1984-04-09 Tanaka Denshi Kogyo Kk Aluminum lead for bonding of semiconductor element
JPS6095950A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095954A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element
JPS6095955A (en) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk Al wire for bonding semiconductor element

Also Published As

Publication number Publication date
JPS60198851A (en) 1985-10-08

Similar Documents

Publication Publication Date Title
US4912544A (en) Corrosion-resistant aluminum electronic material
JP2714560B2 (en) Copper alloy with good direct bonding properties
US6210637B1 (en) Gold alloy thin wire for semiconductor devices
JP3673368B2 (en) Gold-silver alloy fine wire for semiconductor devices
US5989364A (en) Gold-alloy bonding wire
JPH0412621B2 (en)
JP2656236B2 (en) Semiconductor device
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JPH11186314A (en) Bonding wire
JPS6365036A (en) Fine copper wire and its production
JPH02170934A (en) Copper alloy having superior direct bonding property
JPH02170932A (en) Copper alloy having superior direct bonding property
JPH0717982B2 (en) Conductive rolled material for leadframes, connectors or switches
JPH034612B2 (en)
JPS6026640A (en) Corrosion resistant electronic aluminum material
Kumar et al. Novel coated silver (Ag) bonding wire: bondability and reliability
JPH0254667B2 (en)
US5491034A (en) Bonding wire for semiconductor element
JPH03291340A (en) Copper alloy extra fine wire for semiconductor device and semiconductor device
JP2661247B2 (en) Gold alloy fine wire for semiconductor element bonding
JP2920783B2 (en) Bonding wire
JPH02170936A (en) Copper alloy having superior direct bonding property
JPH02170935A (en) Copper alloy having superior direct bonding property
JPS61136653A (en) Hyperfine aluminum wire
JPS62130249A (en) Copper fine wire for bonding