JPH04124290A - Production of manganese dioxide - Google Patents

Production of manganese dioxide

Info

Publication number
JPH04124290A
JPH04124290A JP2242522A JP24252290A JPH04124290A JP H04124290 A JPH04124290 A JP H04124290A JP 2242522 A JP2242522 A JP 2242522A JP 24252290 A JP24252290 A JP 24252290A JP H04124290 A JPH04124290 A JP H04124290A
Authority
JP
Japan
Prior art keywords
electrolytic
soln
manganese dioxide
manganese
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2242522A
Other languages
Japanese (ja)
Inventor
Atsushi Demachi
敦 出町
Koichi Miyashita
公一 宮下
Kenji Sato
健児 佐藤
Minoru Noguchi
実 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2242522A priority Critical patent/JPH04124290A/en
Publication of JPH04124290A publication Critical patent/JPH04124290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain MnO2 with a mother sheet made of stock having inferior acid resistance such as stainless steel by specifying the pH of an electrolytic soln. when electrolysis is carried out with an aq. Mn salt soln. as the electrolytic soln. CONSTITUTION:Electrolysis is carried out with an aq. Mn salt soln. adjusted to pH 2-6 as an electrolytic soln. In the case of pH<2, a mother sheet made of stock having inferior acid resistance causes leaching. In the case of pH>6, MnO2 is not formed. The pH adjustment of the electrolytic soln. may be carried out by adding a lithium hydroxide soln. to a sulfuric acid soln. By this method, a mother sheet made of stock having inferior acid resistance such as stainless steel can be used and the resulting MnO2 has superior properties as an active material for the positive electrode of a manganese cell, a lithium-manganese cell, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばマンガン電池またはリチウムマンガン
電池などの正極活物質として使用される二酸化マンガン
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing manganese dioxide, which is used as a positive electrode active material in, for example, manganese batteries or lithium manganese batteries.

〔従来の技術〕[Conventional technology]

二酸化マンガンは、保存性に優れかつ安価であるなどの
理由でマンガン電池またはアルカリマンガン電池の正極
活物質として汎用されているが、その−船釣な製造にあ
たっては、硫酸マンガンおよび硫酸溶液を電解液に使用
して電解を行っており、この電解液のpHは、前述した
ように硫酸溶液を使用しているため、通常、pH1未満
て約1.3V (vs  NHE)以上の電解となる。
Manganese dioxide is widely used as a positive electrode active material for manganese batteries or alkaline manganese batteries because of its excellent storage stability and low cost. Since the sulfuric acid solution is used as described above, the pH of this electrolytic solution is usually less than 1 and the electrolysis is about 1.3 V (vs NHE) or higher.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前述したように電解液のpHは、硫酸溶液の
使用しより、通常、pH1以下となっているため、この
二酸化マンガンの製造に使用される電解基板は、耐酸性
に優れたチタンやカーボンなどに限定されていた。
By the way, as mentioned above, the pH of the electrolytic solution is usually less than 1 compared to when a sulfuric acid solution is used, so the electrolytic substrate used for manufacturing manganese dioxide is made of titanium or carbon, which has excellent acid resistance. etc. was limited.

本発明は、このような従来技術を背景になされたもので
、不錆鋼などの耐酸性に劣る素材からなる電解基板の使
用ができる二酸化マンガンの製造方法を提供することを
目的とする。
The present invention was made against the background of such conventional technology, and an object of the present invention is to provide a method for manufacturing manganese dioxide that allows the use of an electrolytic substrate made of a material with poor acid resistance, such as rust-free steel.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、pH2〜6に調整されたマンガン塩水溶液を
電解液として電解を行うことを特徴とする二酸化マンガ
ンの製造方法を提供するものである。
The present invention provides a method for producing manganese dioxide, which is characterized in that electrolysis is performed using an aqueous manganese salt solution adjusted to pH 2 to 6 as an electrolyte.

本発明でいうマンガン塩水溶液としては、例えば硫酸マ
ンガン水溶液、塩化マンガン水溶液、硝酸マンガン水溶
液などが挙げられる。
Examples of the manganese salt aqueous solution in the present invention include manganese sulfate aqueous solution, manganese chloride aqueous solution, manganese nitrate aqueous solution, and the like.

電解液中のマンガン濃度は、0.5〜4モル/!、特に
1〜2モル/!が好ましく、0.1モル/!未満では電
解、析出できず、一方4モル/lを超えると利用率が低
下する。
The manganese concentration in the electrolyte is 0.5 to 4 mol/! , especially 1-2 mol/! is preferably 0.1 mol/! If it is less than 4 mol/l, electrolysis and precipitation will not be possible, while if it exceeds 4 mol/l, the utilization rate will decrease.

電解液のpHは、pH2〜6、特にpH4〜5が好まし
く、pH2未満では耐酸性に劣る素材からなる電解基板
の溶出が起こり、一方pH6を超えると二酸化マンガン
は生成しない。
The pH of the electrolytic solution is preferably 2 to 6, particularly 4 to 5. If the pH is less than 2, the electrolytic substrate made of a material with poor acid resistance will elute, whereas if the pH exceeds 6, no manganese dioxide will be produced.

この電解液のpHの調整は、例えば硫酸溶液に水酸化リ
チウム溶液を加えることにより行われる。
The pH of the electrolytic solution is adjusted, for example, by adding a lithium hydroxide solution to a sulfuric acid solution.

正負の電極としては、このように電解液のPHがpH2
〜6に調整されているために、従来使用されているチタ
ンやカーボンのほか、例えばステンレスなどの不wj綱
のような耐酸性に劣る素材からなる電解基板の使用もで
きる。
As the positive and negative electrodes, the pH of the electrolyte is pH2 in this way.
6, it is possible to use electrolytic substrates made of materials with poor acid resistance, such as stainless steel and other non-ferrous metals, in addition to the conventionally used titanium and carbon.

また、二酸化マンガンの電解条件としては、収量を増加
させるために80〜95°C′Cに加熱し、また電解電
位を二酸化マンガンの生成電位である1V−1,4V(
vs  NHE)に設定し、二酸化マンガンの製造を行
い、製造後、合成時の歪み、ストレス、粒塊を餘去する
ために、大気中で250〜350°Cで熱処理すること
が好ましい。
In addition, the electrolytic conditions for manganese dioxide include heating to 80 to 95°C'C to increase the yield, and the electrolytic potential is 1V - 1.4V (which is the production potential of manganese dioxide).
vs. NHE) to produce manganese dioxide, and after production, it is preferable to heat-treat at 250 to 350°C in the atmosphere to remove distortion, stress, and agglomerates during synthesis.

このように、pH2〜6に調整されたマンガン塩水溶液
を電解液に用いて電解を行うことで、例えば不錆鋼など
の耐酸性に劣る素材からなる電解基板の使用ができる。
By performing electrolysis using an aqueous manganese salt solution adjusted to pH 2 to 6 as an electrolytic solution in this manner, it is possible to use an electrolytic substrate made of a material with poor acid resistance, such as rust-free steel.

なお、例えばマンガン電池などの正極基板として一般使
用されている前記ステンレス製の基板に、直接、二酸化
マンガンを生成できるために、この二酸化マンガンの皮
膜ができた電解基板を、直接、正極として使用したり、
またこの二酸化マンガンの皮膜を正極集電体として、該
皮膜上にさらに正極活物質を積層してより良好な放電容
量を有するものとなすこともできる。
Furthermore, since manganese dioxide can be generated directly on the stainless steel substrate, which is generally used as a positive electrode substrate for manganese batteries, the electrolytic substrate on which this manganese dioxide film has been formed can be used directly as a positive electrode. Or,
Further, this manganese dioxide film can be used as a positive electrode current collector, and a positive electrode active material can be further laminated on the film to have better discharge capacity.

次に、本発明の製造方法により製造された二酸化マンガ
ンを用いるリチウムマンガン二次電池を説明する。
Next, a lithium manganese secondary battery using manganese dioxide produced by the production method of the present invention will be described.

すなわち、本発明の正極活物質を使用したリチウムマン
ガン二次電池は、まずマンガン塩水溶液を電解液とし、
かつステンレス製の電解基板を使用して電解を行うこと
で、第1図に示す裏面に二酸化マンガンからなる正極活
物質の皮膜10を積層した正極板20を設けて正極30
を形成し、そののちこの正極板20と、ステンレス製の
負極板40とをエポキシ樹脂からなる側面封止材50を
介して離反状態に配置し、一方この負極板40の裏面側
にリチウム合金からなる負極活物質60を圧着して負極
70を形成し、しかもこれらの正極活物質の皮膜10と
負極活物質60との間にセパレータ80を介在させたも
のである。
That is, in a lithium manganese secondary battery using the positive electrode active material of the present invention, first, a manganese salt aqueous solution is used as an electrolyte,
By performing electrolysis using a stainless steel electrolytic substrate, a positive electrode plate 20 having a positive electrode active material film 10 made of manganese dioxide laminated on the back side shown in FIG. 1 is provided, and a positive electrode 30 is formed.
After that, the positive electrode plate 20 and the negative electrode plate 40 made of stainless steel are placed in a separated state through the side sealing material 50 made of epoxy resin, and on the other hand, a lithium alloy is formed on the back side of the negative electrode plate 40. The negative electrode 70 is formed by pressing together negative electrode active materials 60, and a separator 80 is interposed between the film 10 of these positive electrode active materials and the negative electrode active material 60.

なお、負極活物質60として使用されるリチウム合金と
しては、リチウムを含むIIa、nb、mb、rvb、
vb族の金属またはその2種以上の合金が使用可能であ
るが、特にリチウムを含むAj!、In5Sn、Pb、
Bi、Cd、Znまたはこれらの2種以上の合金が好ま
しく、また正極活物質の皮膜10中にも含有可能な汎用
されている非水電解質を含んでいる。
Note that lithium alloys used as the negative electrode active material 60 include IIa, nb, mb, rvb, and lithium-containing lithium alloys.
Vb group metals or alloys of two or more thereof can be used, especially Aj! containing lithium! , In5Sn, Pb,
Bi, Cd, Zn, or an alloy of two or more of these is preferable, and includes a commonly used nonaqueous electrolyte that can also be contained in the film 10 of the positive electrode active material.

前記セパレータ80としては、シート状の高分子架橋体
に電解質を含浸させてなるゲル状電解質から構成された
ものや、−船便用されている多孔質で電解液を通したり
含んだりすることのできる、例えばポリテトラフルオロ
エチレン、ポリプロピレンやポリエチレンなどの合成樹
脂製の不織布、織布および編布などを使用することがで
きる。
The separator 80 may be made of a gel-like electrolyte obtained by impregnating a sheet-like polymeric cross-linked material with an electrolyte, or a porous material used by ships that can pass or contain an electrolyte. For example, nonwoven fabrics, woven fabrics, and knitted fabrics made of synthetic resins such as polytetrafluoroethylene, polypropylene, and polyethylene can be used.

〔作用〕[Effect]

本発明の二酸化マンガンの製造方法は、まずpH2〜6
に調整されたマンガン塩水溶液を設け、そののちこのマ
ンガン塩水溶液を電解液として電解を行うことで、不錆
鋼などの耐酸性に劣る素材からなる電解基板を使用する
ことができ、得られる電解二酸化マンガンは正極活物質
として優れている。
The method for producing manganese dioxide of the present invention starts with pH 2 to 6.
By providing an aqueous manganese salt solution adjusted to Manganese dioxide is an excellent positive electrode active material.

〔実施例〕〔Example〕

以下、本発明の詳細な説明するが、本発明はこれらの実
施例に限定されない。
The present invention will be described in detail below, but the present invention is not limited to these Examples.

実施例1 加温装置を設けた電解槽内に、正極および負極として5
US304製の基板をそれぞれ交互に懸吊し、電解槽の
底部に電解液として、トータル液量が600M!で、か
つpH5の硫酸マンガンの1モル水溶液を入れ、1.2
V (vs、 Ag/AgCf)の定電位電解を室温で
15時間行い、正極に電解二酸化マンガンを生成させた
Example 1 In an electrolytic cell equipped with a heating device, 5 cells were placed as a positive electrode and a negative electrode.
The US304 substrates are suspended alternately, and the electrolyte is placed at the bottom of the electrolytic cell for a total liquid volume of 600M! and add a 1 molar aqueous solution of manganese sulfate with a pH of 5 to 1.2
Constant potential electrolysis of V (vs, Ag/AgCf) was performed at room temperature for 15 hours to generate electrolytic manganese dioxide at the positive electrode.

この際、電解液のpHは2に低下しており、電流の消費
量は1,050クーロンであった。
At this time, the pH of the electrolytic solution had decreased to 2, and the current consumption was 1,050 coulombs.

得られた電解二酸化マンガンを取り出し、80°Cで1
0時間の真空乾燥を行ってから、250〜350°Cで
4時間の熱処理を行った。
The obtained electrolytic manganese dioxide was taken out and heated at 80°C for 1
After performing vacuum drying for 0 hours, heat treatment was performed at 250 to 350°C for 4 hours.

得られた二酸化マンガンおよび比較用市販品の二酸化マ
ンガンを、それぞれMn0z/アセチレンブラツク/テ
フロンバインダー=8/1/1の重量比で混合してφ1
5++aのペレットを作製し、放電容量を測定した。す
なわち、密閉型ガラスビーカーセル中に、非水電解質と
して1モルLiCl!、04のPC/DME溶液(プロ
ピレンカーボネート/ジメトキシエタン(重量比)−1
/1)を入れ、作用極として前記ベレットをクリップで
吊るしたものを用い、対極としてポーラスカーボンを使
用し、参照極としてはAg/AgCfを使用した。ここ
で、放電電流として5mAの一定電流を流して、放電終
止電位が−IV  vsAg/AgCff1を示すまで
の放電容量を測定した。
The obtained manganese dioxide and a commercially available manganese dioxide for comparison were mixed at a weight ratio of Mn0z/acetylene black/Teflon binder = 8/1/1, and φ1
5++a pellets were prepared and the discharge capacity was measured. That is, 1 mol LiCl! as a non-aqueous electrolyte in a closed glass beaker cell. , 04 PC/DME solution (propylene carbonate/dimethoxyethane (weight ratio) -1
/1), the pellet suspended with a clip was used as a working electrode, porous carbon was used as a counter electrode, and Ag/AgCf was used as a reference electrode. Here, a constant current of 5 mA was passed as a discharge current, and the discharge capacity was measured until the discharge end potential showed -IV vsAg/AgCff1.

その結果、放電容量は、市販品が185Ah/眩である
のに対し、本発明品は該市販品と同程度(7)184A
h/kgの放電容量が得られた。
As a result, the discharge capacity of the commercially available product was 185Ah/dazzle, whereas the product of the present invention had a discharge capacity of 184Ah (7), which was the same as that of the commercially available product.
A discharge capacity of h/kg was obtained.

実施例2 二酸化マンガンの合成にあたって、90℃で2〜3時間
の定電位電解を行って(電流の消費量=3.500クー
ロン)、二酸化マンガンを電解合成し、生成後の熱処理
を行わない以外は、実施例1と同様にして放電容量の測
定を行った。
Example 2 Manganese dioxide was electrolytically synthesized by performing constant potential electrolysis at 90°C for 2 to 3 hours (current consumption = 3.500 coulombs), and no heat treatment was performed after production. The discharge capacity was measured in the same manner as in Example 1.

その結果、205Ah/)cgの良好な放電容量が得ら
れた。
As a result, a good discharge capacity of 205Ah/)cg was obtained.

実施例3 電解合成した二酸化マンガンを250〜350°Cで4
時間の熱処理を行った以外は、実施例2と同様にして二
酸化マンガンを合成し、放電容量の測定を行った。その
結果、267Ah/kgと、さらに良好な放電容量が得
られた。
Example 3 Electrolytically synthesized manganese dioxide was heated at 250 to 350°C.
Manganese dioxide was synthesized in the same manner as in Example 2, except that the heat treatment was performed for a period of time, and the discharge capacity was measured. As a result, an even better discharge capacity of 267 Ah/kg was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の二酸化マンガンの製造方法は、このようにpH
2〜6に調整されたマンガン塩水溶液を電解液として電
解を行うことで、不錆鋼などの耐酸性に劣る素材からな
る電解基板の使用ができ、しかも正極活物質として優れ
た電解二酸化マンガンが得られる。
In the method for producing manganese dioxide of the present invention, the pH
By performing electrolysis using a manganese salt aqueous solution adjusted to 2 to 6 as an electrolyte, it is possible to use electrolytic substrates made of materials with poor acid resistance, such as rust-free steel, and electrolytic manganese dioxide, which is excellent as a positive electrode active material, can be used. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の二酸化マンガンの製造方法により得た
リチウム二次電池の断面図である。 10;正極活物質の皮膜 20;正極板 特許出願人  本田技研工業株式会社 代理人 弁理士  白 井  重 隆 第 図
FIG. 1 is a cross-sectional view of a lithium secondary battery obtained by the method for producing manganese dioxide of the present invention. 10; Film of positive electrode active material 20; Positive electrode plate patent applicant: Honda Motor Co., Ltd., agent, patent attorney, Takashi Shirai, Figure

Claims (1)

【特許請求の範囲】[Claims] (1)pH2〜6に調整されたマンガン塩水溶液を電解
液として電解を行うことを特徴とする二酸化マンガンの
製造方法。
(1) A method for producing manganese dioxide, which comprises carrying out electrolysis using an aqueous manganese salt solution adjusted to pH 2 to 6 as an electrolyte.
JP2242522A 1990-09-14 1990-09-14 Production of manganese dioxide Pending JPH04124290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2242522A JPH04124290A (en) 1990-09-14 1990-09-14 Production of manganese dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242522A JPH04124290A (en) 1990-09-14 1990-09-14 Production of manganese dioxide

Publications (1)

Publication Number Publication Date
JPH04124290A true JPH04124290A (en) 1992-04-24

Family

ID=17090362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242522A Pending JPH04124290A (en) 1990-09-14 1990-09-14 Production of manganese dioxide

Country Status (1)

Country Link
JP (1) JPH04124290A (en)

Similar Documents

Publication Publication Date Title
US6680145B2 (en) Lithium-ion batteries
EP0664768B1 (en) Process for producing manganese dioxide
US20020015889A1 (en) Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode structural body is used, and a process for producing said rechargeable lithium battery
CN104220381A (en) Methods of making metal-doped nickel oxide active materials
CN104205433A (en) Metal-doped nickel oxide active materials
CN104272505A (en) Metal-doped nickel oxide active materials
KR100602921B1 (en) Positive electrode active material and use thereof
WO2019227332A1 (en) Transitional metal-doped prussian blue homologous series, preparation method for same, applications thereof, and secondary ion battery
JP2000294242A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery
JPH11292547A (en) Lithium cobaltate, its production and lithium cell using that
US6071649A (en) Method for making a coated electrode material for an electrochemical cell
KR100639060B1 (en) Method for preparing lithium manganate having spinel structure
JP4274630B2 (en) Method for producing spinel type lithium manganate
CN114203976A (en) Mixed solution capable of improving stability of metal lithium cathode, preparation method and application
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JPH10134812A (en) Nonaqueous electrolyte lithium secondary cell and manufacture of its positive electrode material
JPS63102166A (en) Secondary battery
US6361822B1 (en) Method of producing an electrode for non-aqueous electrolyte battery
JPH04124290A (en) Production of manganese dioxide
JP4695237B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
CN113488653A (en) High-stability flexible zinc negative electrode material and preparation method and application thereof
CN112940281A (en) Lithium battery precursor, lithium battery positive electrode material, preparation method and application
JPS6151387B2 (en)
JP3983779B2 (en) Manganese oxide for cathode active material
JP3030141B2 (en) Non-aqueous battery