JPH04124232A - Method for starting continuous type half solidified metal producing apparatus - Google Patents

Method for starting continuous type half solidified metal producing apparatus

Info

Publication number
JPH04124232A
JPH04124232A JP2240102A JP24010290A JPH04124232A JP H04124232 A JPH04124232 A JP H04124232A JP 2240102 A JP2240102 A JP 2240102A JP 24010290 A JP24010290 A JP 24010290A JP H04124232 A JPH04124232 A JP H04124232A
Authority
JP
Japan
Prior art keywords
flow rate
discharge flow
metal
semi
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2240102A
Other languages
Japanese (ja)
Other versions
JP3037729B2 (en
Inventor
Ryuji Yamaguchi
隆二 山口
Yasuo Fujikawa
藤川 安生
Katsuhiro Takebayashi
克浩 竹林
Masazumi Hirai
平居 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leotec KK
Original Assignee
Leotec KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leotec KK filed Critical Leotec KK
Priority to JP2240102A priority Critical patent/JP3037729B2/en
Publication of JPH04124232A publication Critical patent/JPH04124232A/en
Application granted granted Critical
Publication of JP3037729B2 publication Critical patent/JP3037729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the yield of production by increasing and decreasing the discharge flow rate of a molten metal after starting of an operation and maintaining the discharge outflow rate thereof when a prescribed solid phase rate is obtd., then stably discharging a half solidified metal having the specified solid phase rate. CONSTITUTION:While the molten metal is supplied to the spacing between the inside wall of a stirring and cooling tank 2 and a stirrer 5 by the tank 2 and the stirrer 5, the cooling and stirring effect is applied thereto to continuously produce the half solidified metal. The discharge flow rate at which the molten metal is discharged as a melt in a specified short period of time is set at the time of starting the operation and thereafter, the discharge flow rate is increased at the point of the time when the solid phase rate of the half solidified metal begun to be discharged at the time when the decreased discharge flow rate attains 0.1 to 0.2. This discharge flow rate is maintained when the prescribed solid phase rate is attained and thereafter, the half solidified metal of the specified solid phase rate is discharged. The half solidified metal having the target solid phase rate is discharged in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、非樹技状初晶が金属融体中に分散した固体
−液体金属混合物(簡単のため単に半凝固金属と呼ぶ)
を絶えず安定に製造するための連続式半凝固金属製造装
置のスタート方法を提案するものである。
Detailed Description of the Invention (Industrial Application Field) This invention is directed to a solid-liquid metal mixture (simply referred to as a semi-solid metal for simplicity) in which non-dendritic primary crystals are dispersed in a metal melt.
This paper proposes a method for starting a continuous semi-solid metal manufacturing apparatus for constantly and stably manufacturing metals.

半凝固金属は溶融金属(一般には合金)を冷却しながら
激しく攪拌して、融体中で生成しつつある樹枝状晶を、
その枝部が消失ないしは縮小して丸味を帯びた形態に破
砕、分散し金属融体と混在させることにより形成させる
ものである。
Semi-solid metals are produced by vigorously stirring a molten metal (generally an alloy) while cooling it to remove dendrites that are forming in the molten metal.
It is formed by crushing and dispersing the branches into a rounded shape by disappearing or shrinking them, and mixing them with the molten metal.

(従来の技術) 半凝固金属を連続的に製造する装置は従来より種々提案
されている(たとえば特公昭56−20944号公報)
が、このような装置を用いて半凝固金属を連続的に製造
する場合、−船釣に製造を開始する方法は、攪拌冷却槽
内に攪拌子を挿入し、その攪拌冷却槽内で溶融金属を冷
却するとともに、攪拌子により攪拌が加えられ、排出弁
より半凝固金属として排出させる(第8図参照)。一般
にこのような連続式半凝固金属製造装置において、排出
される半凝固金属の固相の量(固相率と呼ぶ)は攪拌冷
却槽から抜熱される熱量と排出される半凝固金属の排出
流量の変化により大きく影響され、特に操業のスタート
時には熱的に非定常のため攪拌冷却槽からの抜熱量が大
きく、適切に半凝固金属の排出量をコントロールしなけ
れば完全溶融状態のままで排出されたり、また固相率が
ある限界以上になると半凝固金属の粘性が急激に増加し
、もはや流体としての挙動ではなくなり、半凝固金属製
造装置より排出不可能となるトラブルが発生することも
あった。
(Prior Art) Various apparatuses for continuously producing semi-solid metal have been proposed in the past (for example, Japanese Patent Publication No. 56-20944).
However, when manufacturing semi-solid metal continuously using such equipment, the method of starting production on a boat is to insert a stirrer into a stirring cooling tank, and to cool the molten metal in the stirring cooling tank. At the same time, the metal is cooled and stirred by a stirrer, and is discharged as semi-solid metal from the discharge valve (see Fig. 8). Generally, in such continuous semi-solid metal manufacturing equipment, the amount of solid phase of semi-solid metal discharged (called the solid phase ratio) is determined by the amount of heat removed from the stirring cooling tank and the discharge flow rate of semi-solid metal discharged. The amount of heat removed from the stirring cooling tank is large because it is thermally unsteady at the start of operation, and unless the amount of semi-solid metal discharged is properly controlled, it will be discharged in a completely molten state. In addition, when the solid phase ratio exceeds a certain limit, the viscosity of the semi-solid metal increases rapidly, and it no longer behaves like a fluid, causing problems such as being unable to be discharged from the semi-solid metal manufacturing equipment. .

(発明が解決しようとする課題) 発明者らは溶融金属から半凝固金属の製造を開始するス
タート時において、上記のようにして半凝固金属が排出
不能になるのを回避するとともに、安定した固相率をも
った半凝固金属を製造初期がら排出させることを課題と
して開発研究を進め、この発明に到達したものである。
(Problem to be Solved by the Invention) The inventors have avoided the semi-solid metal from becoming impossible to discharge as described above at the start of the production of semi-solid metal from molten metal, and also created a stable solid state. This invention was achieved through research and development aimed at discharging semi-solid metal with a phase ratio during the early stages of production.

(課題を解決するための手段) この発明は冷却手段を有する溶融金属の槽とその中心に
おいて回転する攪拌子とによって、槽の内壁と攪拌子と
の隙間に溶融金属を供給しつつ冷却攪拌効果を与え、半
凝固金属を連続的に製造する装置において、 操業のスタートに際し一定の短時間にわたり溶融金属が
一たん溶湯として排出される排出流量を設定し、その後
に減少させた排出流量の下で排出され始める半凝固金属
の固相率が0.1〜0.2に達した時点で、再度排出流
量を増加させ、所定の固相率が得られるに至ってその排
出流量を持続させ、その後は一定の固相率を持った半凝
固金属を安定に排出させることを特徴とする連続式半凝
固金属製造装置のスタート方法であり、ここに初期溶湯
の排出時間が10秒以上、なかでも15〜30秒である
であることが望ましい。
(Means for Solving the Problems) This invention provides a cooling stirring effect while supplying molten metal to the gap between the inner wall of the tank and the stirrer by using a molten metal tank having a cooling means and a stirrer rotating at the center of the tank. In a device that continuously produces semi-solid metal by giving When the solid phase ratio of the semi-solid metal that begins to be discharged reaches 0.1 to 0.2, the discharge flow rate is increased again, and the discharge flow rate is maintained until the predetermined solid phase ratio is obtained, and after that, This is a starting method for a continuous semi-solid metal manufacturing apparatus characterized by stably discharging semi-solid metal having a constant solid phase ratio, and in which the initial molten metal discharging time is 10 seconds or more, especially 15 to 15 seconds. Preferably it is 30 seconds.

ここで溶融金属の槽の内壁と攪拌子との隙間に溶融金属
を供給しつつ、冷却攪拌効果を与え、半まま10〜20
秒間程度にわたり排出されるような排出流量を設定し、
その後排出流量を減少させ、排出される半凝固金属の固
相率が0.1〜0.2に達した時点で、再度排出流量を
増加させることが有利である。
Here, while supplying the molten metal to the gap between the inner wall of the molten metal tank and the stirrer, a cooling stirring effect is given,
Set the discharge flow rate so that it is discharged for about seconds,
It is advantageous to reduce the discharge flow rate thereafter and increase the discharge flow rate again when the solid fraction of the discharged semi-solid metal reaches 0.1 to 0.2.

(作 用) 以下に発明者らがこの発明に至った経緯にあわせ作用に
ついて述べる。まず第2図に示すような、冷却手段を有
する固定した溶融金属の槽とその中心において回転する
攪拌子とによって槽の内壁と攪拌子との隙間に溶融金属
を供給しつつ、冷却攪拌効果を与え、半凝固金属を連続
的に製造する装置において、攪拌冷却槽2での伝熱解析
により保温槽1と攪拌槽2間で半凝固金属の混合が生じ
ていることが明らかとなり、製造条件すなわち半凝固金
属の排出流量と半凝固金属の排出固相率にこの混合度合
いが太き(影響していることが判った。
(Function) The function will be described below in conjunction with the circumstances that led the inventors to arrive at this invention. First, as shown in Figure 2, a fixed molten metal tank with a cooling means and a stirring bar rotating at the center supply the molten metal to the gap between the inner wall of the tank and the stirring bar, thereby producing a cooling stirring effect. In a device that continuously manufactures semi-solid metal, heat transfer analysis in stirring cooling tank 2 reveals that mixing of semi-solid metal occurs between heat-retaining tank 1 and stirring tank 2, and the manufacturing conditions, i.e. It was found that this degree of mixing has a large influence on the discharge flow rate of semi-solid metal and the discharge solid phase ratio of semi-solid metal.

具体的に第3図に示すように保温槽1と攪拌冷却槽2間
での半凝固金属の混合度合いは、排出流量および排出固
相率が大きいほど小さくなり、したがって半凝固金属は
ピストンフロー的に流れる傾向が大きくなる。
Specifically, as shown in Fig. 3, the degree of mixing of the semi-solid metal between the heat-retaining tank 1 and the stirring cooling tank 2 becomes smaller as the discharge flow rate and the discharge solid phase ratio become larger. There is a growing tendency to move toward

一方排出流量および排出固相率が小さいほど、この混合
度合いは大きくなり半凝固金属は保温槽1と攪拌冷却槽
2間で完全混合状態になる傾向か大きくなる。
On the other hand, the smaller the discharge flow rate and the discharge solid fraction, the greater the degree of mixing, and the greater the tendency for the semi-solid metal to be in a completely mixed state between the heat-retaining tank 1 and the stirring cooling tank 2.

この保温槽1と攪拌冷却槽2間における混合度合いの意
味することは、すなわちこの混合度合いが大きい場合、
攪拌冷却槽2で抜熱され温度降下した半凝固金属が保温
槽1の高温溶湯と混合され温度上昇することを意味して
いる。
What is meant by the degree of mixing between the heat-retaining tank 1 and the stirring cooling tank 2 is that if this degree of mixing is large,
This means that the semi-solid metal whose temperature has been lowered by removing heat in the stirring cooling tank 2 is mixed with the high temperature molten metal in the heat retaining tank 1 and its temperature is increased.

すなわち攪拌冷却槽2で所定の抜熱をしているにもかか
わらず、見かけ上被熱されていないものが排出されるこ
とになる。
That is, even though a predetermined amount of heat is removed in the agitation cooling tank 2, material that is apparently not heated is discharged.

しかし、冷却槽から所定の抜熱量を溶湯から取っている
ため最終的には保温槽1の溶湯温度が低下し、かくして
保温槽1と攪拌冷却槽2を含めて熱的に定常状態になっ
た時には所定の固相率を持った半凝固金属か排出される
ことになるが、しかしこの状態に達するまでには長時間
を要するわけである。
However, since a predetermined amount of heat is removed from the molten metal from the cooling tank, the temperature of the molten metal in the heat retention tank 1 eventually decreases, and thus the temperature of the heat retention tank 1 and the agitation cooling tank 2 reaches a thermally steady state. Sometimes semi-solid metal with a predetermined solid fraction is discharged, but it takes a long time to reach this state.

また保温槽l内の溶湯量が多ければ、さらにこの傾向が
大きくなり、所定の固相率を持った半凝固金属を得るま
での時間が長くかかり、製造歩留りが低下することにな
る。
Moreover, if the amount of molten metal in the heat-retaining tank l is large, this tendency becomes even more pronounced, and it takes a long time to obtain a semi-solid metal having a predetermined solid phase ratio, resulting in a decrease in manufacturing yield.

そこでこの発明は、第3図に示したような、保温槽1と
攪拌冷却槽2間の半凝固金属の混合度合いにおよぼす半
凝固金属の排出流量と固相率の関係から、第4図にて模
式的に示すような排出流量制御方法を取れば、操業のス
タートのごく初期から所定の固相率を持った半凝固金属
を排出させ得ることを究明したのである。
Therefore, the present invention is based on the relationship between the discharge flow rate of semi-solid metal and the solid phase ratio, which affects the degree of mixing of semi-solid metal between the heat-retaining tank 1 and the stirring cooling tank 2, as shown in Fig. 4. It was discovered that if a discharge flow rate control method as schematically shown is adopted, it is possible to discharge semi-solid metal with a predetermined solid phase ratio from the very beginning of operation.

具体的には、操業のスタートの際、攪拌冷却槽およびそ
の他の耐火物は溶湯温度以下に冷えているのが通常であ
るため、排出流量を多回にして半凝固金属ではなく溶湯
の状態で排出させる。すなわち、例えば第4図に示すA
点の状態で操業をスタートすることである。なお、この
後排出流量を徐々に減少させるようにして半凝固金属を
排出させようとしても、このとき保温槽と攪拌冷却槽間
の混合が大きくなるので結果として第4図の直線AB上
を変化するだけで、排出固相率は変化せず、溶湯だけが
依然として排出されることになる。
Specifically, at the start of operations, the stirring cooling tank and other refractories are usually cooled below the molten metal temperature, so the discharge flow rate is increased multiple times to maintain the molten metal rather than semi-solid metal. Let it drain. That is, for example, A shown in FIG.
The goal is to start operations in a stable condition. Note that even if you attempt to discharge the semi-solid metal by gradually decreasing the discharge flow rate after this, the mixing between the heat insulating tank and the stirring cooling tank will increase, resulting in a change on the straight line AB in Figure 4. By simply doing this, the discharged solid phase rate will not change and only the molten metal will still be discharged.

したがって製造初期から目標固相率falを持った半凝
固金属を排出するためには、A点の状態からB点の状態
まで短時間で排出流量W2に減少させ、その後目標固相
率fs+が排出される排出流量W3の0点の状態まで変
化させた上で、その後目標としている排出流量W4まで
排出流量を増加させることより、所定の排出流量で目標
とする排出固相率を持った半凝固金属が排出可能となる
。ここで注目すべき点は0点からD点まで排出流量を増
加させても保温槽と攪拌冷却槽の混合のため排出される
固相率は変化せず、常にfa+の固相率が排出されるこ
とである。
Therefore, in order to discharge semi-solid metal with the target solid fraction fal from the initial stage of production, the discharge flow rate must be reduced from point A to point B in a short time to W2, and then the target solid fraction fs+ is discharged. By changing the discharge flow rate W3 to the 0 point state and then increasing the discharge flow rate to the target discharge flow rate W4, semi-solidified solids with the target discharge solid phase ratio at a predetermined discharge flow rate can be obtained. Metals can be discharged. The point to note here is that even if the discharge flow rate is increased from point 0 to point D, the solid phase rate discharged does not change due to the mixing of the heat retention tank and the stirring cooling tank, and the solid phase rate of fa+ is always discharged. Is Rukoto.

(実施例) この発明に供用した半凝固金属製造装置を第2図に示す
。この装置は溶融金属溜用タンデイツシュを介して注入
される溶融金属9を保温するための保温槽1の下部に攪
拌子5により攪拌されまた冷却水IOにより冷却される
攪拌冷却槽2を配置し、その下部に半凝固金属を排出す
るための排出槽3を配置し、半凝固金属の排出流量をコ
ントールするための内径20mmのスライド弁4をそな
え、また攪拌子5を回転させるための駆動用モータ7を
有している。
(Example) FIG. 2 shows a semi-solid metal manufacturing apparatus used in the present invention. This device has a stirring cooling tank 2 which is stirred by a stirrer 5 and cooled by cooling water IO at the bottom of a heat-retaining tank 1 for keeping molten metal 9 injected through a tundish for molten metal reservoir warm. A discharge tank 3 for discharging the semi-solid metal is arranged at the bottom thereof, a slide valve 4 with an inner diameter of 20 mm is provided to control the discharge flow rate of the semi-solid metal, and a driving motor for rotating the stirrer 5 is provided. 7.

この発明を実施するにあたり、第5図に示すようなスラ
イド弁4の開度操作方法により排出量を変化させた。す
なわち、スライド弁4の開度を15闘の状態で溶融金属
を保温槽1内に注入し、初期非定常状態を回避するため
10秒間にわたりスライド弁4の開度を一定に保持した
後、スライド弁4の開度を一たん8Inff+まで短時
間で絞り、その後にA点で示される値の固相率を持った
半凝固金属が排出されはじめた時点より、スライド弁4
の開度をBであられした種々な開度まで開け、排出流量
を増加させる方法で実施した。この時A点固相率および
スライド弁開度Bの値に応じて排出される半凝固金属の
固相率変化を調査した。その結果を第6図に示す。
In carrying out this invention, the amount of discharge was varied by controlling the opening of the slide valve 4 as shown in FIG. That is, the molten metal is injected into the heat-retaining tank 1 with the slide valve 4 opening at 15 degrees, and after holding the slide valve 4 at a constant opening for 10 seconds to avoid an initial unsteady state, the slide valve 4 is Once the opening degree of the valve 4 is reduced to 8Inff+ in a short time, the slide valve 4 starts to be discharged from the point where semi-solid metal having a solid phase ratio of the value shown at point A begins to be discharged.
This was carried out by increasing the discharge flow rate by increasing the opening degree of B to various opening degrees. At this time, changes in the solid phase rate of the semi-solid metal discharged according to the solid phase rate at point A and the value of the slide valve opening degree B were investigated. The results are shown in FIG.

排出される半凝固金属の固相率変化は3つの領域(工、
■、■)に分けることができる。すなわち領域Iでは一
たん半凝固金属が排出されるがスライド弁開度Bの値が
大きく排出量が大きすぎて、最終的には溶湯金属に変化
してしまう領域である。
The solid phase rate change of the discharged semi-solid metal is divided into three regions (engineering,
It can be divided into ■, ■). That is, in region I, semi-solid metal is discharged once, but the value of the slide valve opening degree B is large and the discharge amount is too large, so that the semi-solid metal eventually changes to molten metal.

また、領域■はスライド弁開度が小さすぎて、最終的に
は半凝固金属の固相率が増加しすぎ、攪拌冷却槽内で閉
塞する領域である。
In addition, region (3) is a region in which the opening degree of the slide valve is too small, and the solid phase ratio of the semi-solid metal ultimately increases too much, resulting in blockage in the stirring cooling tank.

したがって領域■で示される操作で製造をスタートすれ
ば、製造スタートの初期から所定の固相率を持った半凝
固金属が安定に排出できることが判った。
Therefore, it has been found that if production is started using the operation shown in region (3), semi-solid metal having a predetermined solid phase ratio can be stably discharged from the initial stage of production.

製造スタート時に本発明による排出流量制御を行なうこ
とによる効果としては第7図に示すような効果が発揮で
きる。すなわち従来法のような製造初期にスライド弁開
度を操作しない場合には曲線αのように製造開始後80
秒以降になってから半凝固金属が排出されだすのに比べ
、本発明のスライド弁開度操作すなわち排出流量操作方
法を実施した場合には曲線βのように製造開始15秒を
経ただけのごく初期から半凝固金属が排出されることが
判る。
The effects shown in FIG. 7 can be achieved by controlling the discharge flow rate according to the present invention at the start of production. In other words, if the slide valve opening degree is not controlled at the beginning of production as in the conventional method, the opening degree of the slide valve will be 80% after the start of production as shown by curve α.
Compared to semi-solid metal that begins to be discharged after 15 seconds, when the slide valve opening control method of the present invention, that is, the discharge flow rate control method, is carried out, the semi-solid metal starts to be discharged only after 15 seconds from the start of production, as shown by curve β. It can be seen that semi-solid metal is discharged from the initial stage.

(発明の効果) したかって本発明によってつぎに列記するような効果を
発揮する。
(Effects of the Invention) Therefore, the present invention exhibits the following effects.

1)製造初期の短時間において目標とする固相率を持っ
た半凝固金属か排出可能である。
1) It is possible to discharge semi-solid metal with a target solid phase ratio in a short period of time at the initial stage of production.

2)製造される半凝固金属の製造歩留りが向上する。2) The production yield of the semi-solid metal produced is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における製造初期の排出流量制御方法を
示す模式図、 第2図は実施例で用いた連続式半凝固金属製造装置の説
明図、 第3図は攪拌冷却槽と保温槽間の半凝固金属の混合度合
いにおよぼす排出流量と排出固相率の関係図、 第、1図は本発明における製造スタート時の排出流量制
御方法を示す模式図、 第5図は本発明の実施例における排出流量制御を実施す
るためのスライド弁開度操作図、第6図は半凝固金属を
安定排出するためのA点固相率とスライド弁開度の関係
図、 第7図は本発明の効果を示すスライド弁開度操作方法と
半凝固金属の排出固相率の関係を示すクフフ、 第8図は従来の連続式半凝固金属製造装置の説明図であ
る。 ■・・・保温槽      2・・・攪拌冷却槽3・・
・排出槽      4・・・スライド弁5・・・攪拌
用攪拌子   6・・・タンデイツシュ7・・・撹拌子
駆動用モータ 訃・・攪拌子トルク検出器 9・・・溶湯       lO・・・冷却水第3図 第5図 ↑ 第6図 スライド弁開環<mm)
Figure 1 is a schematic diagram showing the discharge flow rate control method in the early stage of production according to the present invention, Figure 2 is an explanatory diagram of the continuous semi-solid metal manufacturing apparatus used in the example, and Figure 3 is the gap between the stirring cooling tank and the heat retention tank. Figure 1 is a schematic diagram showing the method of controlling the discharge flow rate at the start of production according to the present invention, and Figure 5 is an example of the present invention. Fig. 6 is a diagram of the relationship between the A point solid phase ratio and the slide valve opening for stably discharging semi-solid metal, and Fig. 7 is a diagram of the slide valve opening for controlling the discharge flow rate in Figure 8 is an explanatory diagram of a conventional continuous semi-solid metal manufacturing apparatus. ■・・・Heating tank 2...Agitation cooling tank 3...
・Discharge tank 4...Slide valve 5...Stirrer for stirring 6...Tundish 7...Motor for driving stirrer...Stirrer torque detector 9...Molten metal 1O...Cooling water Figure 3 Figure 5 ↑ Figure 6 Slide valve opening <mm)

Claims (1)

【特許請求の範囲】 1、冷却手段を有する溶融金属の槽とその中心において
回転する攪拌子とによって、槽の内壁と攪拌子との隙間
に溶融金属を供給しつつ冷却攪拌効果を与え、半凝固金
属を連続的に製造する装置において、 操業のスタートに際し一定の短時間にわた り溶融金属が一たん溶湯として排出される排出流量を設
定し、その後に減少させた排出流量の下で排出され始め
る半凝固金属の固相率が0.1〜0.2に達した時点で
、再度排出流量を増加させ、所定の固相率が得られるに
至ってその排出流量を持続させ、その後は一定の固相率
を持った半凝固金属を安定に排出させることを特徴とす
る連続式半凝固金属製造装置のスタート方法。 2、初期溶湯の排出時間が10秒以上、なかでも15〜
30秒である請求項1に記載した連続式半凝固金属製造
装置のスタート方法。
[Scope of Claims] 1. A molten metal tank having a cooling means and a stirring bar rotating at the center of the tank supply the molten metal to the gap between the inner wall of the tank and the stirring bar while providing a cooling stirring effect. In equipment that continuously manufactures solidified metal, at the start of operation, the discharge flow rate is set so that the molten metal is discharged as molten metal for a certain short period of time, and then the discharge flow rate is set at which the discharge flow rate is reduced and the discharge rate begins to rise. When the solid phase ratio of the solidified metal reaches 0.1 to 0.2, the discharge flow rate is increased again, and the discharge flow rate is maintained until the predetermined solid phase ratio is obtained, and after that, the solid phase ratio remains constant. A method for starting a continuous semi-solid metal manufacturing device characterized by stably discharging semi-solid metal at a certain rate. 2. The initial molten metal discharge time is 10 seconds or more, especially 15 seconds or more.
2. The method for starting a continuous semi-solid metal manufacturing apparatus according to claim 1, wherein the starting time is 30 seconds.
JP2240102A 1990-09-12 1990-09-12 Starting method of continuous semi-solid metal production equipment Expired - Lifetime JP3037729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2240102A JP3037729B2 (en) 1990-09-12 1990-09-12 Starting method of continuous semi-solid metal production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2240102A JP3037729B2 (en) 1990-09-12 1990-09-12 Starting method of continuous semi-solid metal production equipment

Publications (2)

Publication Number Publication Date
JPH04124232A true JPH04124232A (en) 1992-04-24
JP3037729B2 JP3037729B2 (en) 2000-05-08

Family

ID=17054524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2240102A Expired - Lifetime JP3037729B2 (en) 1990-09-12 1990-09-12 Starting method of continuous semi-solid metal production equipment

Country Status (1)

Country Link
JP (1) JP3037729B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550888A (en) * 2015-01-30 2015-04-29 林荣英 Method capable of continuously producing semisolid metal slurry
CN104841896A (en) * 2015-05-28 2015-08-19 林荣英 Method for producing metal semisolid slurry
CN110449562A (en) * 2019-09-05 2019-11-15 广州和德轻量化成型技术有限公司 Rheological pulping equipment and rheological pulping method for aluminum alloy extrusion casting machine
CN111826535A (en) * 2020-06-04 2020-10-27 浙大宁波理工学院 Forming system based on low-melting-point alloy semi-solid melt
CN112846127A (en) * 2020-12-30 2021-05-28 杨杰 Die casting method of 5G base station radiating shell and semi-solid die casting method applied by die casting method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104550888A (en) * 2015-01-30 2015-04-29 林荣英 Method capable of continuously producing semisolid metal slurry
WO2016119579A1 (en) * 2015-01-30 2016-08-04 林荣英 Method for continuously producing metal semi-solid slurry
CN104550888B (en) * 2015-01-30 2016-08-31 林荣英 A kind of method that can produce semi-solid metal slurrg continuously
CN104841896A (en) * 2015-05-28 2015-08-19 林荣英 Method for producing metal semisolid slurry
WO2016188125A1 (en) * 2015-05-28 2016-12-01 林荣英 Method of producing semi-solid metal slurry
CN110449562A (en) * 2019-09-05 2019-11-15 广州和德轻量化成型技术有限公司 Rheological pulping equipment and rheological pulping method for aluminum alloy extrusion casting machine
CN111826535A (en) * 2020-06-04 2020-10-27 浙大宁波理工学院 Forming system based on low-melting-point alloy semi-solid melt
CN112846127A (en) * 2020-12-30 2021-05-28 杨杰 Die casting method of 5G base station radiating shell and semi-solid die casting method applied by die casting method

Also Published As

Publication number Publication date
JP3037729B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US4434839A (en) Process for producing metallic slurries
US6595266B2 (en) Method of manufacturing metallic slurry for casting
US5144998A (en) Process for the production of semi-solidified metal composition
KR20000048914A (en) Apparatus and method for semi-solid material production
US20050167073A1 (en) Rheoforming apparatus
JPH04124232A (en) Method for starting continuous type half solidified metal producing apparatus
JPH1133693A (en) Method and device for injection molding of semi-solidified metal
KR100209996B1 (en) Process and apparatus for the production of semi-solidified metal composition
US5865240A (en) Rheocasting method and apparatus
JPH01170547A (en) Manufacturing device for semi-solidified metal slurry
JPH04124233A (en) Manufacture of half-solidified metal
KR100625174B1 (en) Continuous fabrication equipment of rheology material with continuous rotational pressure automatic control type
JP3249866B2 (en) Method and apparatus for producing semi-solid metal
JPH04124234A (en) Manufacture of half-solidified metal
JP2927863B2 (en) Semi-solid metal production method
JPH01313164A (en) Casting method for semimolten metal
JPH04120224A (en) Manufacture of half-solidified metal
JP2004255422A (en) Apparatus and method for producing solid-liquid metallic slurry
JPH02147147A (en) Apparatus for continuously producing high solid phase ratio semi-solidified metal
JP3062339B2 (en) Method for producing semi-solid metal
JPH01313141A (en) Method for casting semi-molten metal
JP2008254040A (en) Method for casting eutectic alloy
JPH04274842A (en) Method and apparatus for producing half-solidified metal
JPH07251241A (en) Device for producing half-solidified metal
JPH06297097A (en) Production of half solidified metal