JPH04123475A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module

Info

Publication number
JPH04123475A
JPH04123475A JP2242384A JP24238490A JPH04123475A JP H04123475 A JPH04123475 A JP H04123475A JP 2242384 A JP2242384 A JP 2242384A JP 24238490 A JP24238490 A JP 24238490A JP H04123475 A JPH04123475 A JP H04123475A
Authority
JP
Japan
Prior art keywords
conversion module
thermoelectric
thermoelectric conversion
elements
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2242384A
Other languages
Japanese (ja)
Inventor
Mitsuo Hayashibara
光男 林原
Asako Koyanagi
阿佐子 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2242384A priority Critical patent/JPH04123475A/en
Publication of JPH04123475A publication Critical patent/JPH04123475A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To remove cause of a loss and to eliminate a cause of loss of power due to difference of heat dissipating conditions caused by modularizing by providing a structure for disturbing invasion of thermal medium at the end of a thermoelectric conversion module. CONSTITUTION:Electrodes 2 for electrically connecting thermoelectric elements 1, a board 3 for securing the elements 1, leads 4 for producing outputs of the element 1, and a shielding plate 5 are provided. Since the elements 1 can be isolated from the flow of thermal medium (air, etc.,) around a thermoelectric conversion module, an irregularity in the outputs of the elements due to the difference of heat dissipating conditions can be suppressed. Accordingly, the decrease in the output or efficiency accompanying modularization can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱を直接電気に変換する熱電変換モジュールの
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a thermoelectric conversion module that directly converts heat into electricity.

〔従来の技術〕[Conventional technology]

本発明に最も近い公知例は、「直接エネルギ変換」好学
社 p157に記載の熱電変換モジュールがある。これ
は、第2図に示す様に、p型およびn型の両者を高温接
点電極、および、低温接点電極を介して直列に接続し、
リード線を低温側の電極から取り出す構造である。
The known example closest to the present invention is a thermoelectric conversion module described in "Direct Energy Conversion", Kogakusha, p. 157. As shown in Figure 2, this connects both p-type and n-type in series via a high temperature contact electrode and a low temperature contact electrode,
The structure is such that the lead wire is taken out from the electrode on the low temperature side.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の熱電変換モジュールを実際に使用すると、熱電変
換モジュールの内部に位置する熱電素子と周辺部に位置
する熱電素子の放熱条件が異なるため、内部の素子と周
辺部の素子の出力特性に差が生じる。一般に、熱電変換
モジュールは多数の素子を高密度に実装した構成をとる
が、内部の熱電素子の間隔は極めて狭いため、熱電素子
の側面は、はとんど断熱に近い状態になる。一方、熱電
変換モジュールの周辺部の熱電素子は、空気などの冷却
媒体の流れに曝されるため、モジュール内部の熱電素子
とは異なる温度分布が生じる。第3図はその解析結果で
ある。これは、熱電素子1の左側に強制的な空気の流れ
を生じた場合の、熱電素子1の温度分布を等混線で示し
た図である。
When the above thermoelectric conversion module is actually used, the heat dissipation conditions of the thermoelectric elements located inside the thermoelectric conversion module and the thermoelectric elements located in the peripheral area are different, so there is a difference in the output characteristics of the internal element and the peripheral element. arise. Generally, a thermoelectric conversion module has a configuration in which a large number of elements are mounted at high density, but because the intervals between the thermoelectric elements inside are extremely narrow, the sides of the thermoelectric elements are almost in a state of insulation. On the other hand, the thermoelectric elements in the periphery of the thermoelectric conversion module are exposed to the flow of a cooling medium such as air, and therefore have a different temperature distribution than the thermoelectric elements inside the module. Figure 3 shows the analysis results. This is a diagram showing the temperature distribution of the thermoelectric element 1 using equimixture lines when a forced air flow is generated on the left side of the thermoelectric element 1.

一般に、第3図の様な温度分布になると、温度差が増す
ため、開放電圧は増加する。しかし、低温となる領域が
増すため、素子の内部抵抗も増加する。一般に、この場
合は熱電素子単体の出力はわずかに増加するが、熱電変
換モジュールの出力は、はとんどの場合低下する。−例
として、出力0.25W  (開放電圧1v、短絡電流
IA)(7)熱電素子を子側直列に接続し、その内の一
個の熱電素子の8力が0.27W(開放電圧2v、短絡
電流0.54A)に増加した場合を考える。全ての熱電
素子の出力が等しい場合は、熱電変換モジュールとして
の出力は第4図の実線になり、最大出力は2.5Wであ
る。一方、−個の熱電素子の出力が0.27Wになった
場合は、モジュール出力は第4図の点線となり、最大出
力は2.36W となる。
Generally, when the temperature distribution becomes as shown in FIG. 3, the open circuit voltage increases because the temperature difference increases. However, since the area where the temperature becomes low increases, the internal resistance of the element also increases. Generally, in this case, the output of the thermoelectric element itself increases slightly, but the output of the thermoelectric conversion module decreases in most cases. - As an example, output 0.25W (open circuit voltage 1V, short circuit current IA) (7) Thermoelectric elements are connected in series on the child side, and the 8 power of one thermoelectric element is 0.27W (open circuit voltage 2V, short circuit current IA). Consider the case where the current increases to 0.54 A). When the outputs of all thermoelectric elements are equal, the output of the thermoelectric conversion module is shown by the solid line in FIG. 4, and the maximum output is 2.5W. On the other hand, when the output of - thermoelectric elements becomes 0.27W, the module output becomes the dotted line in FIG. 4, and the maximum output becomes 2.36W.

このことは、熱電素子単体の出力が増加したにもかかわ
らず、モジュールとしては約6%出力が低下することを
意味する。
This means that even though the output of the thermoelectric element itself has increased, the output of the module will decrease by about 6%.

本発明の目的は、損失要因を除き、モジュール化によっ
て起こる放熱条件の違いに起因する電力の損失要因を排
除する構造を提供することにある。
An object of the present invention is to provide a structure that eliminates power loss factors caused by differences in heat dissipation conditions caused by modularization.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成する第一の手段は、冷却熱媒体が熱電
素子に接触しないように、熱媒体の流れを遮へいする構
造物を熱電素子の周囲に装着することである。
A first means for achieving the above object is to install a structure around the thermoelectric element that blocks the flow of the heat transfer medium so that the cooling heat transfer medium does not come into contact with the thermoelectric element.

上記の目的を達成する第二の手段は、断熱材を熱電素子
の側面に装着することである。
A second means of achieving the above objective is to apply thermal insulation to the sides of the thermoelectric element.

〔作用〕[Effect]

第一の手段によれば、熱媒体による熱雷素子の側面から
の放熱を低減できるため、上記の目的を達成できる。
According to the first means, it is possible to reduce the heat radiation from the side surface of the thermal lightning element due to the heat medium, so that the above object can be achieved.

第二の手段によっても、熱電素子側面からの放熱量を低
減できるため、上記の目的を達成できる。
The second means can also reduce the amount of heat dissipated from the side surface of the thermoelectric element, so that the above object can be achieved.

第5図は、第3図に示した熱電素子に断熱材8を装着し
、第3図と同一条件にした時の5熱電素子1に生じる温
度分布を等混線で示した図である。
FIG. 5 is a diagram showing the temperature distribution generated in the thermoelectric elements 1 shown in FIG. 3 using equal crosstalk lines when the thermoelectric elements shown in FIG. 3 are equipped with a heat insulating material 8 and the same conditions as in FIG.

第3図と比べると、温度分布が平坦化されていることが
わかる。これは、断熱材8を装着することにより、熱電
対1の側面からの放熱量を低減したことによる。
When compared with FIG. 3, it can be seen that the temperature distribution is flattened. This is because the heat radiation amount from the side surface of the thermocouple 1 is reduced by installing the heat insulating material 8.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。第1図は、熱電素子1
.熱電素子1を電気的に接続する電極2、熱電素子1を
固定する基板3.熱電素子1の出力を取り出すリード線
4.遮蔽板5からなる熱電変換モジュールの基本構成を
示す。本実施例によれば、遮蔽板5によって、熱電変換
モジュールの周囲の熱媒体(空気等)の流れから熱電素
子1を隔離できるため、放熱条件の違いに起因する熱電
素子の出力のばらつきを押さえることができる。
The present invention will be explained in detail below. Figure 1 shows a thermoelectric element 1
.. an electrode 2 for electrically connecting the thermoelectric element 1; a substrate 3 for fixing the thermoelectric element 1; Lead wire 4 for taking out the output of the thermoelectric element 1. The basic configuration of a thermoelectric conversion module consisting of a shielding plate 5 is shown. According to this embodiment, the shielding plate 5 can isolate the thermoelectric element 1 from the flow of heat medium (air, etc.) around the thermoelectric conversion module, thereby suppressing variations in the output of the thermoelectric element due to differences in heat dissipation conditions. be able to.

第6図は、第1図の遮蔽板5の熱電素子の上側の基板3
とを一体物とした実施例である。第1図の実施例の場合
、高温で使用する熱電変換モジュールは、材料の熱膨張
率の違いから異種材料の界面では熱応力が発生しやすい
が、第6図の実施例では、遮蔽板と基板3とを一体物と
しており、遮蔽板や基板が破損する可能性は小さい。
FIG. 6 shows the substrate 3 above the thermoelectric element of the shielding plate 5 of FIG.
This is an example in which these are integrated. In the case of the embodiment shown in Fig. 1, thermal stress is likely to occur at the interface of different materials in the thermoelectric conversion module used at high temperatures due to the difference in the coefficient of thermal expansion of the materials, but in the embodiment shown in Fig. 6, thermal stress is likely to occur at the interface between different materials. Since it is integrated with the substrate 3, there is little possibility that the shielding plate or the substrate will be damaged.

第7図は第6図の変形例で、上側の基板3に同一材質の
遮蔽板7を接着する構造を示す。この実施例の場合、第
6図の実施例に比べ、製造が容易である。
FIG. 7 is a modification of FIG. 6, showing a structure in which a shielding plate 7 made of the same material is adhered to the upper substrate 3. This embodiment is easier to manufacture than the embodiment shown in FIG.

第8図は、熱電素子1に断熱材8を装着した実施例で、
作用でも述べたように、熱電素子の側面からの放熱量を
低減することができ、熱電素子の出力のばらつきを押さ
えることができる。
FIG. 8 shows an example in which a heat insulating material 8 is attached to the thermoelectric element 1.
As described in the operation, the amount of heat dissipated from the side surface of the thermoelectric element can be reduced, and variations in the output of the thermoelectric element can be suppressed.

[発明の効果〕 本発明によれば、放熱条件の違いに起因する熱電素子の
出力のばらつきを押さえることができるため、モジュー
ル化に伴う出力、あるいは、効率の低下を防ぐことがで
きる。
[Effects of the Invention] According to the present invention, it is possible to suppress variations in the output of thermoelectric elements due to differences in heat dissipation conditions, so it is possible to prevent a decrease in output or efficiency due to modularization.

【図面の簡単な説明】 第1図は本発明の一実施例の断面図、第2図は従来例の
説明図、第3図は熱電素子内部の温度分布図、第4図は
熱電変換モジュールの出力特性図、第5図は熱電素子内
部の温度分布図、第6図ないし第8図は本発明の他の実
施例の断面図を示す。 1・・・熱電素子、2・・・電極、3・・・基板、4・
・・リード線、5・・・遮蔽板、6・・・基板、7・・
・遮蔽板、8・・・断熱材。 第 口 R1mノ 都3 図 (itI$4’J) 第4図 電 CV) 茶 図 ゲ 3−基線 4−−クー1゛兼 7−4へ・・胆
[Brief Description of the Drawings] Figure 1 is a sectional view of an embodiment of the present invention, Figure 2 is an explanatory diagram of a conventional example, Figure 3 is a temperature distribution diagram inside a thermoelectric element, and Figure 4 is a thermoelectric conversion module. FIG. 5 is a temperature distribution diagram inside the thermoelectric element, and FIGS. 6 to 8 are sectional views of other embodiments of the present invention. DESCRIPTION OF SYMBOLS 1... Thermoelectric element, 2... Electrode, 3... Substrate, 4...
... Lead wire, 5... Shielding plate, 6... Board, 7...
- Shielding plate, 8...insulation material. 3rd exit R1m no capital 3 figure (itI$4'J) 4th figure electric CV) Brown figure game 3 - base line 4 - Ku 1゛ and 7-4... bile

Claims (1)

【特許請求の範囲】 1、複数の熱電素子を相互に接続し、前記各熱電素子の
一端を加熱し、他端を冷却することにより熱エネルギを
電気エネルギに変換して発電する熱電変換モジュールに
おいて、 前記熱電変換モジュールの端面に熱媒体の侵入を妨害す
る構造物を設けたことを特徴とする熱電変換モジュール
。 2、請求項1において、前記熱媒体の侵入を妨害する構
造物として前記熱電素子よりも熱伝導度の低い材料を用
いた熱電変換モジュール。
[Claims] 1. In a thermoelectric conversion module that connects a plurality of thermoelectric elements to each other, heats one end of each thermoelectric element, and cools the other end to convert thermal energy into electrical energy and generate electricity. . A thermoelectric conversion module, characterized in that a structure is provided on an end face of the thermoelectric conversion module to prevent a heat medium from entering. 2. The thermoelectric conversion module according to claim 1, wherein a material having lower thermal conductivity than the thermoelectric element is used as the structure for blocking the intrusion of the heat medium.
JP2242384A 1990-09-14 1990-09-14 Thermoelectric conversion module Pending JPH04123475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2242384A JPH04123475A (en) 1990-09-14 1990-09-14 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242384A JPH04123475A (en) 1990-09-14 1990-09-14 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JPH04123475A true JPH04123475A (en) 1992-04-23

Family

ID=17088364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242384A Pending JPH04123475A (en) 1990-09-14 1990-09-14 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JPH04123475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037918A1 (en) * 1995-05-26 1996-11-28 Matsushita Electric Works, Ltd. Peltier module
JP2016164947A (en) * 2015-03-06 2016-09-08 株式会社Kelk Electrothermal power generation unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996037918A1 (en) * 1995-05-26 1996-11-28 Matsushita Electric Works, Ltd. Peltier module
US5841064A (en) * 1995-05-26 1998-11-24 Matsushita Electric Works, Ltd. Peltier module
JP2016164947A (en) * 2015-03-06 2016-09-08 株式会社Kelk Electrothermal power generation unit

Similar Documents

Publication Publication Date Title
JP6230660B2 (en) Power semiconductor module
JP5147996B2 (en) Power semiconductor module
JP2006286996A (en) Terminal box for solar panel
JP2006271063A (en) Cooling structure of bus bar
JP2012182449A (en) Photoelectromotive force junction box
JP5777580B2 (en) Terminal box
US20100037931A1 (en) Method and Apparatus for Generating Electric Power Using Solar Energy
JPH0529667A (en) Thermoelectric conversion module
JPH0951126A (en) Thermoelectric conversion device
JP2006332176A (en) Semiconductor device
JPH04123475A (en) Thermoelectric conversion module
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
JP5581822B2 (en) Semiconductor device
JP2015006017A (en) Power conversion device
KR101904361B1 (en) Apparatus for cooling distribution panel in Solar Photovoltaic Generator
JP3085453B2 (en) Semiconductor module and inverter device using the same
KR102150308B1 (en) Thermoelectric power generating module
JP6524406B2 (en) Thermoelectric conversion module
JP2010192776A (en) Structure of thick film type thermoelectric power generation module
JP7314748B2 (en) Condenser cooling structure
JP2004022983A (en) Semiconductor device
JP7281715B2 (en) Thermoelectric conversion module
CN210805903U (en) Battery pack
TWI657657B (en) Solar cell module
WO2023184251A1 (en) Battery control assembly, battery pack and electric device