JPH04122897A - Impurities remover - Google Patents

Impurities remover

Info

Publication number
JPH04122897A
JPH04122897A JP2242385A JP24238590A JPH04122897A JP H04122897 A JPH04122897 A JP H04122897A JP 2242385 A JP2242385 A JP 2242385A JP 24238590 A JP24238590 A JP 24238590A JP H04122897 A JPH04122897 A JP H04122897A
Authority
JP
Japan
Prior art keywords
coolant
cesium
trap
cylinder
cold trap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2242385A
Other languages
Japanese (ja)
Inventor
Takayoshi Hikichi
引地 貴義
Yasuo Yamagata
山形 保男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2242385A priority Critical patent/JPH04122897A/en
Publication of JPH04122897A publication Critical patent/JPH04122897A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To achieve a lighter weight and a smaller size of a plant equipment according to the present invention by assembling a cold trap into a cesium trap to control the flow of a coolant with a vertical movement of the cold trap. CONSTITUTION:A cold trap cylinder 9 is pulled up in a direction of the black arrow and under such a condition, a cylinder top coolant outflow hole 13 of the trap cylinder 9 is closed with an upper stopper 18 of a cesium trap cylinder 8. On the other hand, a lower coolant inflow hole 14 of the trap cylinder 9 and an upper coolant outflow hole 11 are opened. As a result, the coolant flows from a coolant inlet piping 6 as indicated by the arrow and cooled down with a cooling pipe through which a fluid such as cooling gas flows between an outer cylinder 1 and an external side wall of the cesium trap cylinder 8 reaching a lower end, where with the direction of the flow thereof reversed, the coolant enters a radioactive impurities removing material 10 passing through the lower coolant inflow hole 14 of the cesium trap cylinder 8 to remove radioactive substance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速増殖炉における冷却材中の酸素等不純物
を除去する不純物除去装置に係り、特に、炉心燃料破損
等の発生時には冷却材中に含まれる放射性核***生成物
であるセシウム137等の放射性物質(放射性不純物)
をも除去するに好適な不純物除去装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an impurity removal device that removes impurities such as oxygen from the coolant in a fast breeder reactor. Radioactive substances (radioactive impurities) such as cesium 137, which is a radioactive fission product contained in
The present invention relates to an impurity removal device suitable for also removing impurities.

〔従来の技術〕[Conventional technology]

高速増殖炉の冷却材中に存在する酸素等の不純物の除去
は、一般に、例えば、不純物除去材としてステンレス鋼
などの金属製ワイヤメツシュ等を充填し、その中を流れ
る冷却材の温度を低くしたコールドトラップと呼ばれる
不純物除去装置により行われている。その装置の概略断
面構造は第3図に示す通りである。第3図で、コールド
トラップは外筒1の内部に内筒2を内蔵しており、さら
に、内筒2の下部多孔板3と上部多孔板4との間に不純
物除去材5が充填され、保持されている。
Generally, impurities such as oxygen present in the coolant of a fast breeder reactor are removed using a cold method, for example, which is filled with a metal wire mesh such as stainless steel as the impurity removal material and lowers the temperature of the coolant flowing through it. This is done using an impurity removal device called a trap. A schematic cross-sectional structure of the device is shown in FIG. In FIG. 3, the cold trap has an inner cylinder 2 built into an outer cylinder 1, and an impurity removing material 5 is filled between a lower perforated plate 3 and an upper perforated plate 4 of the inner cylinder 2. Retained.

冷却材は図中矢印で示すようにコールドトラップ内を流
れる。即ち、冷却付人に配管6よりコールドトラップ内
に流れ込んだ冷却材は、外筒1と内筒2の間を矢印のよ
うに下降する。この間に冷却材は図示しない外筒1と内
筒2の間に設けられた冷却ガス等の流体が流れる冷却管
により熱をうばわれて冷却されながら最下端に至る。こ
こでは冷却材の流れは逆転し、下部多孔板3より内筒2
の不純物除去材5中に入り、ここを通って上部多孔材4
より冷却材出口配管7へ流れ出て行く。冷却材中の不純
物の捕獲機構は冷却材が不純物の飽和溶解温度以下に冷
却されることによりその温度では不溶の不純物が冷却材
中に析出し、これを不純物除去材5が物理吸着等により
捕獲され、保持すると考えられている。
The coolant flows inside the cold trap as shown by the arrow in the figure. That is, the coolant flowing into the cold trap through the cooling pipe 6 descends between the outer cylinder 1 and the inner cylinder 2 as shown by the arrow. During this time, the coolant reaches the lowest end while being cooled by removing heat from a cooling pipe, which is provided between the outer cylinder 1 and the inner cylinder 2 (not shown) and through which fluid such as cooling gas flows. Here, the flow of coolant is reversed, from the lower perforated plate 3 to the inner cylinder 2.
enters the impurity removing material 5 and passes through this to the upper porous material 4.
The coolant flows out to the coolant outlet pipe 7. The mechanism for capturing impurities in the coolant is that when the coolant is cooled below the saturated dissolution temperature of the impurities, impurities that are insoluble at that temperature precipitate in the coolant, and the impurity removing material 5 captures these by physical adsorption, etc. It is believed that it will be retained.

一方、冷却材中には酸素等の不純物の他、炉心燃料破損
の発生時には核***生成物であるセシウム137等の放
射性物質が放射性不純物として含まれてくる。これらの
除去には、例えば、セシウムに対しては日刊工業新聞社
発行「原子カニ業」第33巻、第11号、62〜79ペ
ージ(1987年)に記載されているように、コールド
トラップと概略よく似た構造が許されて不純物除去材と
してセシウム捕獲力の強い網状ガラス質カーボン等を用
いる放射性不純物除去装置(セシウムトラップ)が用い
られており、今後作られる高速増殖炉プラントではコー
ルドトラップの他にこの装置が必須の設備となりつつあ
る。
On the other hand, in addition to impurities such as oxygen, the coolant contains radioactive substances such as cesium 137, which is a nuclear fission product, as radioactive impurities when a core fuel failure occurs. To remove these, for example, for cesium, cold traps and A radioactive impurity removal device (cesium trap) is used, which allows a roughly similar structure and uses reticulated vitreous carbon, which has a strong cesium-capturing ability, as an impurity removal material, and in future fast breeder reactor plants, cold traps will be used. This device is becoming an essential piece of equipment.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は冷却材中の除去を必要とする不純物の種
類によってコールドトラップとセシウムトラップという
二つの不純物除去装置を、例えば冷却材の純化系に別個
に直列あるいは並列に設け、必要に応じて切換えて冷却
材の純化運転をせざるを得なかった。これは両装置の運
転条件の違い(温度条件はコールドトラップは通常12
0〜150℃前後、セシウムトラップに使うカーボンは
冷却材中の非放射性セシウムをも捕獲し、炉心燃料破損
が発生し放射性セシウムが冷却材中に放出されこの除去
が必要な時に非放射性セシウムによりすでに捕獲能力が
飽和してしまい、放射性セシウムが近づいてもそれを捕
獲しない可能性がある。このため、通常冷却材の流れを
止めておかねばならないため、従来技術では運転のしや
すいこと等から別々に二つの装置を設置せざるを得なか
った。このため、切換えバルブや付属する冷却材流通配
管等付帯設備が多くて複雑となり、プラント設備として
の軽量小型化が図れず、コストががかり、設備増大、大
型化をとらざるを得ないという問題があった。
In the above conventional technology, two impurity removal devices, a cold trap and a cesium trap, are installed separately in a coolant purification system in series or parallel, depending on the type of impurity that needs to be removed from the coolant, and are switched as necessary. Therefore, we had no choice but to perform a coolant purification operation. This is due to the difference in the operating conditions of both devices (temperature conditions are usually 12
At around 0 to 150 degrees Celsius, the carbon used in the cesium trap also captures non-radioactive cesium in the coolant, and when a core fuel failure occurs and radioactive cesium is released into the coolant and needs to be removed, the non-radioactive cesium has already been removed. There is a possibility that the capture capacity will be saturated and radioactive cesium will not be captured even if it approaches. For this reason, it is usually necessary to stop the flow of coolant, and in the prior art, two separate devices had to be installed for ease of operation. For this reason, there are many incidental equipment such as switching valves and attached coolant distribution piping, making them complicated, making it impossible to reduce the weight and size of plant equipment, increasing costs, and forcing equipment to increase in size and size. there were.

本発明の目的は、かかる問題を解決し、プラント設備を
大幅に小型化することができる、コールドトラップとセ
シウムトラップの両機能をもった小型一体型不純物除去
装置を提供することにある。
An object of the present invention is to provide a compact integrated impurity removal device having both cold trap and cesium trap functions, which can solve these problems and significantly downsize plant equipment.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、両機能をもつ不純物除去装
置の構造を以下のようにした。即ち、冷却材中に存在す
る酸素等不純物の除去材を充填した筒をコールドトラッ
プ筒として、通常原子炉が正常に運転されている場合に
は、冷却材はこの部分を流れるようにし、このコールド
トラップ筒の外側に通常は冷却材が流れないセシウム等
放射性物質の除去材を充填した筒をセシウムトラップ筒
として設けた。また、コールドトラップ筒が、セシウム
トラップ筒内でこの内壁にそって上下に移動できる構造
とした。コールドトラップ筒上部にはコールドトラップ
筒の上昇時にはセシウムトラップ筒の内側の壁面で閉塞
される冷却材上部流出孔を設け、コールドトラップ筒の
下降時にはセシウムトラップ筒冷却材流出孔を閉塞する
盲栓をコールドトラップ筒上部に設け、さらにこの時セ
シウムトラップ筒冷却材流入孔をコールドトラップ筒の
壁面で閉塞させる構造とした。なお、第3図においてコ
ールドトラップ筒内に流入する冷却材を冷却する図示し
ない冷却管の内部流体を冷却材をセシウムトラップ筒に
流す時には加熱したガス等の流体を用いるようにした。
In order to achieve the above object, an impurity removal device having both functions was constructed as follows. In other words, a cylinder filled with a material to remove impurities such as oxygen present in the coolant is used as a cold trap cylinder, and when the reactor is normally operating, the coolant is allowed to flow through this part, and this cold trap cylinder is used as a cold trap cylinder. A tube filled with a removal material for radioactive substances such as cesium, through which coolant does not normally flow, was provided as a cesium trap tube outside the trap tube. In addition, the structure was such that the cold trap tube could move up and down along the inner wall within the cesium trap tube. A coolant upper outlet hole is provided at the top of the cold trap tube, which is blocked by the inner wall of the cesium trap tube when the cold trap tube is ascending, and a blind plug is provided to close the coolant outlet hole of the cesium trap tube when the cold trap tube is descending. The cold trap tube is provided at the upper part of the cold trap tube, and the cesium trap tube coolant inflow hole is closed with the wall surface of the cold trap tube. In FIG. 3, a fluid such as heated gas is used to flow the internal fluid of a cooling pipe (not shown) that cools the coolant flowing into the cold trap cylinder into the cesium trap cylinder.

〔作用〕[Effect]

上記本発明の構成によれば、通常原子炉が正常に運転さ
れている場合にはコールドトラップ筒をセシウムトラッ
プ筒内で押し下げることによりセシウムトラップ筒の冷
却材の流入孔及び流出孔が閉塞されるため、冷却材はコ
ールドトラップ筒内を流れ、本発明になる装置は冷却材
中の酸素等不純物を除去するコールドトラップとしての
働きをする。しかるに、炉心燃料破損等原子炉での異常
が発生した場合には、コールドトラップ筒をセシウムト
ラップ筒内で引き上げることによりコールドトランプ筒
の冷却材上部流出孔が閉塞されてコールドトラップ内へ
の冷却材の流れが止まる。これに変わってセシウムトラ
ップ筒の冷却材流入孔、及び、流出孔が開き、冷却材は
セシウムトラップ筒内を流れることになり、本発明にな
る装置は冷却材中のセシウム等放射性不純物を除去する
セシウムトラップとして働くようになる。前述のように
、冷却管を流れる流体の温度、あるいは種類を変えるこ
とで冷却材中の不純物除去材へ流入する冷却材温度を高
くしたり低くしたり(その温度差はわずか100℃前後
で温度制御は比較的簡単)することが任意にでき、対象
とする冷却材中の不純物除去に最適な冷却材温度条件が
選定できる。
According to the above configuration of the present invention, when the nuclear reactor is normally operating, the cold trap tube is pushed down inside the cesium trap tube, thereby closing the coolant inlet and outlet holes of the cesium trap tube. Therefore, the coolant flows inside the cold trap cylinder, and the device of the present invention functions as a cold trap that removes impurities such as oxygen from the coolant. However, if an abnormality occurs in the reactor, such as a core fuel failure, the cold trap tube is pulled up inside the cesium trap tube, and the upper coolant outflow hole of the cold tramp tube is blocked, preventing the coolant from flowing into the cold trap. The flow stops. Instead, the coolant inlet and outlet holes of the cesium trap tube are opened, and the coolant flows inside the cesium trap tube, and the device of the present invention removes radioactive impurities such as cesium from the coolant. It begins to work as a cesium trap. As mentioned above, by changing the temperature or type of fluid flowing through the cooling pipes, the temperature of the coolant flowing into the impurity removal material in the coolant can be raised or lowered (the temperature difference is only around 100°C). Control is relatively simple) and the optimum coolant temperature conditions for removing impurities in the target coolant can be selected.

以上のように、本発明の作用により通常は酸素等不純物
の除去を、一方、原子炉の異常時にはセシウム等放射性
不純物の除去を一つの不純物除去装置内で簡単に、す早
く切換えて行うことができ、従来技術では犠牲にしてい
たプラント設備としての小型軽量化が図れ、大幅なコス
トダウンに結びつく。
As described above, the effects of the present invention enable the removal of impurities such as oxygen during normal operations, and the removal of radioactive impurities such as cesium in the event of an abnormality in the reactor, by easily and quickly switching within a single impurity removal device. This makes it possible to reduce the size and weight of plant equipment, which was sacrificed with conventional technology, leading to significant cost reductions.

〔実施例〕〔Example〕

以下、本発明にかかる不純物除去装置の一実施例につい
て説明する。第1図は本発明になる不純物除去装置の断
面図である。第1図において、外筒1の内部にセシウム
トラップ筒8が設けられており、このセシウムトラップ
筒8の内側にはこの筒の内壁面にそって上下に動くこと
のできるコールドトラップ筒9が設けられている。セシ
ウムトラップ筒8の内部には冷却材中のセシウム等放射
性物質を除去する網状ガラス質カーボン等で作られた放
射性不純物除去材10が充填されている。
An embodiment of the impurity removal apparatus according to the present invention will be described below. FIG. 1 is a sectional view of an impurity removal device according to the present invention. In FIG. 1, a cesium trap tube 8 is provided inside the outer tube 1, and a cold trap tube 9 is provided inside the cesium trap tube 8, which can move up and down along the inner wall surface of the tube. It is being The inside of the cesium trap tube 8 is filled with a radioactive impurity removing material 10 made of reticulated vitreous carbon or the like that removes radioactive substances such as cesium from the coolant.

コールドトラップ筒9の内部にはステンレス鋼等金属製
ワイヤメツシュ等で作られた不純物除去材5が充填され
ており、これは下部多孔板3と上部多孔板4間に保持さ
れている。コールドトラップ筒9、上部にはセシウムト
ラップ筒8の上部冷却材流出孔11を塞ぐことができる
盲栓12及びコールドトラップ筒上部冷却材流出孔13
が設けられている。なお、セシウムトラップ筒8の下部
のコールドトラップ筒9側には下部冷却材流入孔14が
設けられている。第1図において、コールドトラップ筒
9は図示しない上、下駆動機構によって図中黒ぬり矢印
方向の下方にセシウムトラップ筒8内で押し下げられて
いる。なお1本発明になる不純物除去装置の気密はフラ
ンジ15及び上下に伸び縮みするベローズ16によって
保持されている。また、コールドトラップ筒9が下方に
押し下げられた時の位置はセシウムトラップ筒8下部に
設けた下部ストッパ17によって定められ、逆に、コー
ルドトラップ筒9が上方に引き上げられた時の位置はセ
シウムトラップ筒8上部に設けられた上部ストッパ18
によって定められている。
The inside of the cold trap tube 9 is filled with an impurity removing material 5 made of wire mesh made of metal such as stainless steel, and is held between the lower perforated plate 3 and the upper perforated plate 4. The cold trap tube 9 has a blind plug 12 that can close the upper coolant outlet hole 11 of the cesium trap tube 8 and a coolant outlet hole 13 at the upper part of the cold trap tube.
is provided. Note that a lower coolant inflow hole 14 is provided at the lower part of the cesium trap tube 8 on the cold trap tube 9 side. In FIG. 1, the cold trap tube 9 is pushed down within the cesium trap tube 8 in the direction of the black arrow in the figure by an upper and lower drive mechanism (not shown). Note that the airtightness of the impurity removing device according to the present invention is maintained by the flange 15 and the bellows 16 that expand and contract vertically. Further, the position when the cold trap tube 9 is pushed down is determined by the lower stopper 17 provided at the bottom of the cesium trap tube 8, and conversely, the position when the cold trap tube 9 is pulled upward is determined by the cesium trap tube 8. Upper stopper 18 provided on the upper part of the cylinder 8
It is determined by

このような本発明の構造になる不純物除去装置において
、第1図は装置をコールドトラップとして使用する場合
を示したものである。即ち、冷却材の流れは第1図の、
図中矢印で示すように、冷却材入口配管6より流入し、
外筒1とセシウムトラップ筒8の外側壁の間を、図示し
ない冷却ガス等流体が流れる冷却管により冷却されて下
端に至り、ここで流れ方向が逆転して下部多孔板3を通
つて不純物除去材5の充填部に入り、ここで酸素等の冷
却材中の不純物が除去される。その後、冷却材は上部多
孔板4を通り、コールドトラップ筒上部冷却材流出孔1
3より出て冷却材出口配管7側に流出していく。即ち、
第1図ではセシウムトラップ筒8の下部冷却材流入孔1
4及び上部冷却材流出孔11が、コールドトラップ筒9
の下部外壁面及び上部に設けられた盲栓12によってそ
れぞれ閉塞されているため冷却材は放射性不純物除去材
10の充填部内には流入できない。このため、冷却材は
コールドトラップ筒9内のみを流れ、結果として従来技
術のコールドトラップと同じように酸素等の不純物を除
去する不純物除去装置となる。
In the impurity removal apparatus having the structure of the present invention, FIG. 1 shows the case where the apparatus is used as a cold trap. That is, the flow of coolant is as shown in Figure 1.
As shown by the arrow in the figure, the coolant flows in from the inlet pipe 6,
A fluid such as a cooling gas (not shown) flows between the outer cylinder 1 and the outer wall of the cesium trap cylinder 8 through a cooling pipe to cool it and reach the lower end, where the flow direction is reversed and impurities are removed through the lower perforated plate 3. The material 5 enters the filling section where impurities in the coolant such as oxygen are removed. After that, the coolant passes through the upper perforated plate 4 and coolant outlet hole 1 at the upper part of the cold trap cylinder.
3 and flows out to the coolant outlet pipe 7 side. That is,
In Fig. 1, the lower coolant inflow hole 1 of the cesium trap tube 8 is shown.
4 and the upper coolant outflow hole 11 are connected to the cold trap tube 9.
The coolant cannot flow into the filled part of the radioactive impurity removal material 10 because it is blocked by the blind plug 12 provided on the lower outer wall surface and the upper part of the refrigerant. Therefore, the coolant flows only within the cold trap tube 9, resulting in an impurity removal device that removes impurities such as oxygen in the same way as the conventional cold trap.

次に、第2図で、炉心燃料破損等の原子炉の異常時に対
応するため第1図で説明した本発明になる不純物除去装
置を働かせる場合を説明する。
Next, with reference to FIG. 2, a case will be described in which the impurity removal apparatus according to the present invention, which was explained in FIG.

第2図において、コールドトラップ筒9は図示しない上
・下機構によって図中黒ぬり矢印方向に引き上げられて
おり、シセウムトラップ筒8上部に設けた上部2ストツ
パ18により上方に引き上げられた時の位置が定められ
ている。この状態では、コールドトラップ筒9のコール
ドトラップ筒上部冷却材流出孔13はセシウムトラップ
筒8の上部ストッパ18によって閉塞され、冷却材のコ
ールドトラップ内流通が阻止される。一方、第1図では
コールドトラップ筒9の下部外壁面及び盲栓12によっ
て閉塞されていた下部冷却材流入孔14及び上部冷却材
流出孔11が開放される。これによって冷却材は第2図
の図中矢印で示すように、冷却材入口配管6より流入し
、外筒1とセシウムトラップ筒8の外側壁の間を図示し
ない冷却ガス等流体が流れる冷却管により冷却(第1図
の状態より第2図の状態に移行した場合は流体の温度を
上げてこれにより加熱)されて下端に至り、ここで流れ
方向が逆転してセシウムトラップ筒8の下部冷却材流入
孔14を通って放射性不純物除去材10内に入り、ここ
で放射性物質が除去される。この後、冷却材は上部冷却
材流出孔11を通ってセシウムトラップ筒8を出て冷却
材出口配管7側に流出していく。このようにして従来技
術の単体設備であるセシウムトラップと同じように放射
性不純物を除去する不純物除去装置となる。
In FIG. 2, the cold trap tube 9 is pulled up in the direction of the black arrow in the figure by an up/down mechanism (not shown), and when it is pulled upward by the upper two stopper 18 provided on the top of the system trap tube 8. The location is determined. In this state, the cold trap tube upper coolant outflow hole 13 of the cold trap tube 9 is closed by the upper stopper 18 of the cesium trap tube 8, and the coolant is prevented from flowing through the cold trap. On the other hand, the lower coolant inflow hole 14 and the upper coolant outflow hole 11, which were closed by the lower outer wall surface of the cold trap cylinder 9 and the blind plug 12 in FIG. 1, are opened. As a result, the coolant flows from the coolant inlet pipe 6 as shown by the arrow in FIG. (If the state changes from the state shown in Fig. 1 to the state shown in Fig. 2, the temperature of the fluid is increased and thereby heated) and reaches the lower end, where the flow direction is reversed and the lower part of the cesium trap tube 8 is cooled. The material enters the radioactive impurity removal material 10 through the material inflow hole 14, and the radioactive material is removed here. Thereafter, the coolant passes through the upper coolant outflow hole 11, exits the cesium trap tube 8, and flows out to the coolant outlet pipe 7 side. In this way, it becomes an impurity removal device that removes radioactive impurities in the same way as the cesium trap, which is a single piece of equipment in the prior art.

即ち、本発明の不純物除去装置は、第1図で示したよう
に従来のコールドトラップとしての働きと、第2図で示
したようにセシウムトラップとしての働きを、装置内部
に設けたコールドトラップ筒を上下に移動させるだけで
両機能を使い分けることができる。なお、本発明の不純
物除去装置は第2図で示したセシウムトラップとして働
かせて必要量の放射性物質を冷却材中より除去した後は
セシウムトラップ筒を動かして第1図で示したコールド
トラップとして働く状態にもどすことにより放射性不純
物を装置内にとじ込めることができ(ここで放射能の減
衰が図られる)、かつ、コールドトラップ筒内より冷却
材温度上昇により冷却材中に溶出した酸素等の不純物を
再び捕獲することができる。
That is, the impurity removal device of the present invention functions as a conventional cold trap as shown in FIG. 1, and as a cesium trap as shown in FIG. You can use both functions by simply moving up or down. The impurity removal device of the present invention is operated as a cesium trap as shown in Fig. 2, and after removing the required amount of radioactive materials from the coolant, the cesium trap tube is moved to function as a cold trap as shown in Fig. 1. By restoring the condition, radioactive impurities can be contained within the equipment (radiation is attenuated here), and impurities such as oxygen that have been eluted into the coolant due to the rise in coolant temperature from inside the cold trap cylinder. can be recaptured.

以上は本発明になる放射性不純物除去材としてセシウム
等の放射性核***生成物を対象とする網状ガラス質カー
ボン材を用いた場合を説明したが、不純物除去材の材質
をニッケル系の金属材料とすることにより、マンガンを
主体とする放射性腐食生成物を対象とする除去装置から
なり、本発明と類似の構造で単独で放射性腐食生成物を
除去する装置と同効果が得られることはいうまでもない
The above describes the case where a reticulated vitreous carbon material for radioactive fission products such as cesium is used as the radioactive impurity removal material of the present invention, but the material of the impurity removal material may be a nickel-based metal material. It goes without saying that the present invention is comprised of a removal device that targets radioactive corrosion products mainly composed of manganese, and that the same effects as those of a device that has a structure similar to the present invention and that removes radioactive corrosion products alone can be obtained.

なお、本発明は原子カプラントを対象に説明を加えたが
、化学プラント等で異なる除去対象不純物を一つの装置
で除去する場合に本発明の構造。
Although the present invention has been described with reference to an atomic couplant, the structure of the present invention can be applied to a chemical plant or the like in which different impurities to be removed are removed using one device.

方法等が応用できる。Methods etc. can be applied.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、セシウムトラップの内部にコールドト
ラップを組込み、コールドトラップを上下に動かすこと
で冷却材の流れを制御でき、これにより必要に応じて流
れを切換えてコールドトラップをセシウムトラップとし
て使うことができるので、従来のように、両方のトラッ
プを並列、あるいは、直列に設置する必要がなくなり、
プラント設備を大幅に軽量小型化することができ、コス
トダウンが大きく図れる。また、本発明の原理。
According to the present invention, a cold trap is incorporated inside the cesium trap, and the flow of coolant can be controlled by moving the cold trap up and down, thereby allowing the cold trap to be used as a cesium trap by switching the flow as necessary. This eliminates the need to install both traps in parallel or in series, as was the case in the past.
Plant equipment can be significantly reduced in weight and size, leading to significant cost reductions. Also, the principle of the present invention.

構造9両トラップに使う部材等は従来技術の応用であり
、コールドトラップ内へのセシウムトラップの組込み、
また、逆の場合も構造として従来技術を大幅に変化させ
ることなく大きな効果が得られる。
Structure 9 The parts used for the trap are applications of conventional technology, including the incorporation of the cesium trap into the cold trap,
Further, even in the opposite case, great effects can be obtained without significantly changing the structure of the conventional technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の不純物除去装置をコールドトラップ
として使用する場合の一実施例の断面図、第2図は本発
明の不純物除去装置をセシウムトラップとしと使用する
場合の一実施例の断面図、第3図はコールドトラップと
して使用する不純物除去装置の従来例を示す断面図であ
る。 5・・・不純物除去材、8・・・セシウムトラップ筒、
9・・コールドトラップ筒、10・・・放射性不純物除
去材、11・・・上部冷却材流出孔、12・・・盲栓、
13・・・コールドトラップ筒上部冷却材流出孔、14
・・下部冷却材流入孔、17・・・下部ストッパ、18
・・上部ストッパ。 乙1図 !−13 図 第 図
FIG. 1 is a sectional view of an embodiment in which the impurity removal device of the present invention is used as a cold trap, and FIG. 2 is a sectional view of an embodiment in which the impurity removal device of the present invention is used as a cesium trap. 3 are sectional views showing a conventional example of an impurity removal device used as a cold trap. 5... Impurity removal material, 8... Cesium trap tube,
9...Cold trap tube, 10...Radioactive impurity removal material, 11...Upper coolant outflow hole, 12...Blind plug,
13...Cold trap cylinder upper coolant outflow hole, 14
...Lower coolant inflow hole, 17...Lower stopper, 18
...Top stopper. Figure 1! -13 Figure Figure

Claims (1)

【特許請求の範囲】 1、冷却材中に存在する酸素等不純物を除去する除去材
を内蔵する内容器の外側に前記冷却材中に存在するセシ
ウム等放射性物質を除去する除去材を内蔵する外容器を
具備することを特徴とする不純物除去装置。 2、請求項1において、酸素等不純物を除去する除去材
を内蔵する前記内容量は前記セシウム等放射性物質を除
去する除去材を内蔵する前記外容器の内側の壁にそつて
前記外容器内を上下に動くことができる不純物除去装置
。 3、請求項2において、前記酸素等不純物を除去する前
記除去材を内蔵する前記内容器の上部外側の壁には、前
記セシウム等放射性物質を除去する前記除去材を内蔵す
る前記外容器の上部に設けられた冷却材上部流出孔に相
対する位置に冷却材流出孔盲栓が設けられており、前記
内容器の上下動により冷却材流出孔盲栓が上下して冷却
材流出孔を塞いだり、開放したりする不純物除去装置。 4、請求項2において、前記酸素等不純物を除去する前
記除去材を内蔵する前記内容器の上部には前記内容器の
冷却材上部流出孔を、前記セシウム等放射性物質を除去
する前記除去材を内蔵する前記外容器の下部には前記外
容器の冷却材下部流入孔をそれぞれ設け、前記内容器の
上昇時には前記内容器の冷却材上部流出孔が前記外容器
の壁面により閉塞され、前記内容器の下降時には前記外
容器の冷却材下部流入孔が閉塞される不純物除去装置。
[Scope of Claims] 1. An outer container having a built-in removal material for removing radioactive substances such as cesium present in the coolant on the outside of an inner container having a built-in removal material for removing impurities such as oxygen present in the coolant. An impurity removal device comprising a container. 2. In claim 1, the inner volume containing the removal material for removing impurities such as oxygen is arranged along the inner wall of the outer container containing the removal material for removing radioactive substances such as cesium. Impurity removal device that can move up and down. 3. In claim 2, an upper outer wall of the inner container containing the removal material for removing impurities such as oxygen is provided with an upper part of the outer container containing the removal material for removing radioactive substances such as cesium. A coolant outflow hole blind plug is provided at a position opposite to the coolant upper outflow hole provided in the inner container, and as the inner container moves up and down, the coolant outflow hole blind plug moves up and down to block the coolant outflow hole. , open or impurity removal equipment. 4. In claim 2, an upper part of the inner container containing the removal material for removing impurities such as oxygen is provided with an upper coolant outflow hole of the inner container, and the removal material for removing radioactive substances such as cesium is provided in the upper part of the inner container. A lower coolant inflow hole of the outer container is provided at the lower part of the outer container, and when the inner container is raised, the upper coolant outflow hole of the inner container is closed by the wall surface of the outer container, and the inner container is closed. An impurity removal device in which a lower coolant inflow hole of the outer container is closed when the outer container is lowered.
JP2242385A 1990-09-14 1990-09-14 Impurities remover Pending JPH04122897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2242385A JPH04122897A (en) 1990-09-14 1990-09-14 Impurities remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2242385A JPH04122897A (en) 1990-09-14 1990-09-14 Impurities remover

Publications (1)

Publication Number Publication Date
JPH04122897A true JPH04122897A (en) 1992-04-23

Family

ID=17088377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2242385A Pending JPH04122897A (en) 1990-09-14 1990-09-14 Impurities remover

Country Status (1)

Country Link
JP (1) JPH04122897A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525979A (en) * 2008-06-25 2011-09-29 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Method for treating a structure containing sodium and radioactive material
WO2018044370A3 (en) * 2016-05-20 2018-04-05 Terrapower, Llc Sodium-cesium vapor trap system and method
US11152127B2 (en) 2017-03-29 2021-10-19 Terrapower Llc Method of replacing cesium trap and cesium trap assembly thereof
US11501883B2 (en) 2016-03-08 2022-11-15 Terrapower, Llc Fission product getter
US11626213B2 (en) 2019-08-23 2023-04-11 Terrapower, Llc Sodium vaporizer and methods

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525979A (en) * 2008-06-25 2011-09-29 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Method for treating a structure containing sodium and radioactive material
US11501883B2 (en) 2016-03-08 2022-11-15 Terrapower, Llc Fission product getter
US11776701B2 (en) 2016-03-08 2023-10-03 Terrapower, Llc Fission product getter formed by additive manufacturing
WO2018044370A3 (en) * 2016-05-20 2018-04-05 Terrapower, Llc Sodium-cesium vapor trap system and method
US10636532B2 (en) 2016-05-20 2020-04-28 Terrapower, Llc Sodium cesium vapor trap system and method
US11257600B2 (en) 2016-05-20 2022-02-22 Terrapower, Llc Sodium-cesium vapor trap system and method
US11152127B2 (en) 2017-03-29 2021-10-19 Terrapower Llc Method of replacing cesium trap and cesium trap assembly thereof
US11842819B2 (en) 2017-03-29 2023-12-12 Terrapower, Llc Method for replacing a cesium trap and cesium trap assembly thereof
US11626213B2 (en) 2019-08-23 2023-04-11 Terrapower, Llc Sodium vaporizer and methods

Similar Documents

Publication Publication Date Title
JP2818237B2 (en) Nuclear power plant with containment and pressure release method for containment
EP0307581B1 (en) Adsorption installation for gas separation
US3693959A (en) Cold traps for liquid metal
JPH04122897A (en) Impurities remover
US3483980A (en) Cold trap filter
DE2826115A1 (en) DEVICE FOR CLEANING LIQUID METAL USED AS THE COOLANT OF THE CORE OF A FAST NEUTRON REACTOR
EP0539834A1 (en) Process and apparatus for conducting the flow in radial flow reactors
US4075060A (en) Method for removing fission products from a nuclear reactor coolant
JPS6333679B2 (en)
JPH04286996A (en) Device for removing impurity
JPH03106405A (en) Impurities removal device
JPS6226000B2 (en)
US5143697A (en) Device for extracting particulate materials of a fluidized bed from the fluidization enclosure
US3940121A (en) Metal vapor-trapping system
GB2042686A (en) Self-actuating and locking flow cut off valve
US2969970A (en) Liquid metal purifier
JPH02243998A (en) Hydrogen storage alloy molding, tritium removing and recovering device and device for refining liquid metal cooling material provided with the moldings, and reactor equipment equipped with the devices
JPH0633966B2 (en) Flow control mechanism of heat exchanger
JPS5831560B2 (en) Method and device for collecting radioactive impurities in liquid metal
JPH01258703A (en) Cold trap
JPH03191898A (en) Device for radioactive substances removal
JPS62167202A (en) Device for recovering, storing, and supplying hydrogen isotope
JPS6257604A (en) Vapor trap device
EP0070483A1 (en) Device for the separation of gases in water-carrying systems
JP2019090093A (en) Liquid metal purification apparatus