JPH0412274A - Indirect solid phase antibody method - Google Patents

Indirect solid phase antibody method

Info

Publication number
JPH0412274A
JPH0412274A JP11599190A JP11599190A JPH0412274A JP H0412274 A JPH0412274 A JP H0412274A JP 11599190 A JP11599190 A JP 11599190A JP 11599190 A JP11599190 A JP 11599190A JP H0412274 A JPH0412274 A JP H0412274A
Authority
JP
Japan
Prior art keywords
antibody
antigen
reaction
antibodies
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11599190A
Other languages
Japanese (ja)
Other versions
JP2915486B2 (en
Inventor
Masayuki Ikeda
正幸 池田
Takehiko Shibata
武彦 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP11599190A priority Critical patent/JP2915486B2/en
Publication of JPH0412274A publication Critical patent/JPH0412274A/en
Application granted granted Critical
Publication of JP2915486B2 publication Critical patent/JP2915486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To easily and exactly determine the antigen-antibody reaction in a soln. state by bringing a known quantity of antibodies and antigens into reaction in a soln., then diluting the soln. and determining the antibodies which doe not react with the antigens by the solid phase antibody method. CONSTITUTION:The ratio of the antibody quantity and the antigen quantity is set equal to or large than antibody valence. The antigens and the antibodies are brought into reaction in the soln.lcontg. ATP and DNA in the case of use of a soln. in which the factors to change antigenicity exist, for example, recA protein antigens. The reaction liquid is then diluted by a diluent, such as PBS, which does not dissociate the antigen-antibody conjugation to stop the antigen-antiboby reaction and to decrease the materials exclusive of the antibodies to the detection threshold of the solid phase antibody method or below. The antibody quantity in the diluted reaction liquid is measured by the various solid phase antibody methods, among which the enzyme antibody method is more preferable. The antibodies which do not react with the antigens are determined by this solid phase antibody method and, therefore, the antigen- antibody reaction is determined by subtracting this value from the antibody quantity before the antigen-antibody reaction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、間接固相抗体法に関する。さらに詳細には、
本発明は、溶液中の抗原・抗体反応の定量方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an indirect solid-phase antibody method. In more detail,
The present invention relates to a method for quantifying an antigen-antibody reaction in a solution.

〔従来の技術〕[Conventional technology]

従来、抗原・抗体反応の定量としては、固相酵素抗体法
、免疫沈降法、競合免疫法、及び阻害試験法等が知られ
ている。
Conventionally, solid-phase enzyme antibody methods, immunoprecipitation methods, competitive immunoassays, inhibition test methods, and the like are known for quantifying antigen-antibody reactions.

しかるに固相抗体法では、抗原を反応容器の内側に固定
する際に抗原の抗原性が変化してしまうことが少なくな
く、更には抗原が全く変性してしまうこともあり、溶液
条件下における抗原抗体反応を正確に測定することは不
可能であった。
However, in the solid-phase antibody method, the antigenicity of the antigen often changes when the antigen is immobilized inside the reaction container, and even the antigen may be completely denatured, so that It was not possible to accurately measure antibody responses.

また、免疫沈降法では、反応系に添加される二次抗体や
沈澱剤、それらに含まれる不純物が抗原の反応性や抗原
性に影響を与える可能性が大きく、溶液条件下での抗原
抗体反応を正確に測定することはできなかった。また、
高感度で沈澱中の抗原や抗体の量を測定することは容易
でないという間題もあった。
In addition, in the immunoprecipitation method, there is a large possibility that the secondary antibodies and precipitants added to the reaction system, and the impurities contained in them, will affect the reactivity and antigenicity of the antigen, and the antigen-antibody reaction under solution conditions. could not be measured accurately. Also,
There was also the problem that it was not easy to measure the amount of antigen or antibody in the precipitate with high sensitivity.

競合免疫法においても同様に、反応液中の因子が測定系
の抗原抗体反応に影響を与えるので、溶液条件下での抗
原抗体反応の測定は不可能であり、さらに阻害試験法に
おいては、反応系、測定系の相互間の影響を除外できず
、正確な抗原抗体反応の定量ばできなかった。
Similarly, in the competitive immunization method, factors in the reaction solution affect the antigen-antibody reaction in the measurement system, so it is impossible to measure the antigen-antibody reaction under solution conditions.Furthermore, in the inhibition test method, the reaction It was not possible to exclude the mutual influence of the system and measurement system, and it was not possible to accurately quantify the antigen-antibody reaction.

従って、上記方法を用いても溶液条件下での抗原抗体反
応を正確に定量することば不可能であった。特に反応溶
液中に種々の因子を含む反応溶液条件下では、これらの
因子の影響を考慮しなりればならず、抗体量の測定が一
層困難であった。例えば同相酵素抗体法(ELISA)
では、抗原抗体反応に影響を与える因子と酵素による発
色反応に影響を与える因子のいずれによってもシグナル
強度が変化するので、反応系の因子の影響を受は易く正
確な測定が不可能になる場合があった。
Therefore, even using the above method, it has been impossible to accurately quantify antigen-antibody reactions under solution conditions. Particularly under reaction solution conditions in which the reaction solution contains various factors, the influence of these factors must be taken into account, making it even more difficult to measure the amount of antibody. For example, homologous enzyme immunoassay (ELISA)
In this case, signal intensity changes depending on factors that affect the antigen-antibody reaction and factors that affect the coloring reaction by the enzyme, so it is easily affected by factors in the reaction system, making accurate measurement impossible. was there.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って本発明は、溶液状態における抗原抗体反応を正確
に定量する方法を提供することを目的とし、特には種々
の因子を含む溶液中でも正確に抗原抗体反応を定量する
ことを可能にする方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a method for accurately quantifying antigen-antibody reactions in a solution state, and in particular, to provide a method that allows accurately quantifying antigen-antibody reactions even in solutions containing various factors. The purpose is to

〔課題を解決するだめの手段〕[Failure to solve the problem]

そこで、本発明者は鋭意研究した結果、抗原抗体反応の
反応溶液を希釈することによって抗原抗体反応を停止さ
せるとともに、反応系の因子が測定に与える影響を最小
限に抑えると抗原抗体反応を正確に定量できることを見
出し本発明を完成するに至った。本発明の方法によれば
、希釈の後、未反応の抗体量を測定することで、反応系
に含まれる因子が測定の際に与える影響を完全に除去す
ることができ、さらに、例えば同相酵素抗体法において
抗体量とシグナル強度が比例する条件を用いることによ
り、未反応の抗体の量を正確に定量することができる。
Therefore, as a result of intensive research, the present inventor found that it is possible to stop the antigen-antibody reaction by diluting the reaction solution for the antigen-antibody reaction, and to minimize the influence of factors in the reaction system on the measurement to accurately measure the antigen-antibody reaction. The present invention was completed based on the discovery that it can be quantified. According to the method of the present invention, by measuring the amount of unreacted antibody after dilution, it is possible to completely eliminate the influence of factors contained in the reaction system on the measurement, and furthermore, for example, by measuring the amount of unreacted antibody. By using conditions in which the antibody amount and signal intensity are proportional to each other in the antibody method, the amount of unreacted antibody can be accurately quantified.

すなわち、本発明は、 抗原抗体反応を定量する方法において、■既知量の抗体
と抗原とを溶液中で反応させる工程、 ■」−記溶液を希釈する工程、及び ■抗原と未反応の抗体を面相抗体法で定量する工程を含
む定量方法を提供するものである。
That is, the present invention provides a method for quantifying an antigen-antibody reaction, which includes: (1) reacting a known amount of antibody with the antigen in a solution, (2) diluting the solution, and (2) reacting the unreacted antibody with the antigen. The present invention provides a quantitative method including a step of quantifying using a face-phase antibody method.

本発明の方法において使用される抗原と抗体の組合せの
例としては、rec Aタンパク抗原と、ARM321
抗体、ARM414抗体、ARM191抗体、A11M
193抗体からなる群より選ばれる抗体、rec Aタ
ンパクの変異タンパクであるrecA430抗原と、A
RM321抗体、ARM414抗体、ARM191抗体
、ARM193抗体からなる群より選ばれる抗体等が挙
げられる。
Examples of antigen and antibody combinations used in the methods of the invention include rec A protein antigen and ARM321
Antibody, ARM414 antibody, ARM191 antibody, A11M
An antibody selected from the group consisting of 193 antibodies, recA430 antigen, which is a mutant protein of rec A protein, and A
Examples include antibodies selected from the group consisting of RM321 antibody, ARM414 antibody, ARM191 antibody, and ARM193 antibody.

rec Aタンパク、ARM321抗体、ARM414
抗体、ARM191抗体、及びARM 193抗体は、
The Journal ofBiological 
Chemistry、 1985. 260. pp1
5402−15405に、rec A 430は、Th
e J。
rec A protein, ARM321 antibody, ARM414
The antibody, ARM191 antibody, and ARM193 antibody are
The Journal of Biological
Chemistry, 1985. 260. pp1
5402-15405, rec A 430 Th
eJ.

urnal  of  Biological  Ch
emistry、  1 9 8 9.  2 6 4
゜pp21167−21176に記載されている。
Urnal of Biological Ch.
emistry, 1 9 8 9. 2 6 4
゜pp21167-21176.

このうち、rec Aタンパク抗原と、ARM321抗
体、ARM414抗体、及びAR,M191抗体からな
る群より選ばれる抗体を使用することが好ましい。
Among these, it is preferable to use rec A protein antigen and an antibody selected from the group consisting of ARM321 antibody, ARM414 antibody, and AR, M191 antibody.

既知量の抗体量と抗原量は、抗原と抗体の組合せにより
異なるか、抗体量に対する抗原量の比率は抗体結合価と
等しいかそれより大きいことか望ましい。ここで抗体結
合価とは、1分子の抗体と結合しうる抗原の最大分子数
をいい、抗体に対して抗原が大過剰に存在する条件下で
の抗原・抗体複合体中の抗原モル数を抗体モル数で割っ
た値で示される。例えば、ARM321抗体、ARM4
14抗体、及びARM191抗体は、IgGに属し抗体
結合価は2である。そこでこれらの抗体に対するrac
 Aタンパクの量は、2.5〜5が好ましい。
It is desirable that the known amounts of antibody and antigen differ depending on the combination of antigen and antibody, or that the ratio of the amount of antigen to the amount of antibody is equal to or greater than the antibody binding value. Here, antibody binding value refers to the maximum number of molecules of antigen that can bind to one molecule of antibody, and refers to the number of moles of antigen in the antigen-antibody complex under conditions where the antigen is present in large excess relative to the antibody. It is expressed as the value divided by the number of moles of antibody. For example, ARM321 antibody, ARM4
14 antibody and ARM191 antibody belong to IgG and have an antibody binding value of 2. Therefore, rac against these antibodies
The amount of A protein is preferably 2.5 to 5.

抗原と抗体を反応させる溶液は、いかなるものも可能で
あり、抗原性を変える因子の存在する任意の溶液を選ぶ
ことができる。例えば、rec Aタンパクを抗原とし
て用いる場合は、rec Aタンパクの抗原性に影響を
与える可能性のあるATPやDNAを含む溶液中で抗原
抗体反応を定量することができる。その他、Ill、イ
オン強度などを変化させる因子を含有する任意の溶液を
選ぶことができる。
Any solution can be used to react the antigen and antibody, and any solution containing a factor that changes antigenicity can be selected. For example, when rec A protein is used as an antigen, the antigen-antibody reaction can be quantified in a solution containing ATP and DNA that may affect the antigenicity of rec A protein. In addition, any solution containing factors that change Ill, ionic strength, etc. can be selected.

反応の条件としては、反応温度は任意に選ぶことかでき
、反応時間は抗原と抗体の反応が飽和に達するまでの任
意の時間を選ぶことができる。
Regarding the reaction conditions, the reaction temperature can be arbitrarily selected, and the reaction time can be arbitrarily selected until the reaction between the antigen and the antibody reaches saturation.

抗原・抗体反応後、抗原・抗体の結合を解離させない希
釈剤を用いて反応溶液の希釈を行うことか好ましい。こ
の様な希釈剤としてはPBSを挙げることかできる。P
BSとは、リン酸緩衝液を含有する生理食塩水である。
After the antigen-antibody reaction, it is preferable to dilute the reaction solution using a diluent that does not dissociate the antigen-antibody bond. PBS may be mentioned as such a diluent. P
BS is physiological saline containing phosphate buffer.

該希釈工程は抗原・抗体反応を効果的に停止させ、かつ
抗体以外の物質が後の固相抗体法の検出限界以下になる
様に行う。例えば、rec AタンパクとARM321
抗体、ARM414抗体、及びARM19L抗体からな
る群より選ばれる抗体を用いる場合には、PBS−ツイ
ーンで約1、500倍に希釈することが好ましい。ここ
でPBSツイーンとは、0.05%ツイーンをPBSに
溶かした溶液をいう。さらに、該希釈工程は室温(約2
5℃)で、5分以内に行うことが好ましい。
The dilution step is carried out so that the antigen-antibody reaction is effectively stopped and substances other than the antibody are below the detection limit of the subsequent solid-phase antibody method. For example, rec A protein and ARM321
When using an antibody selected from the group consisting of antibodies, ARM414 antibodies, and ARM19L antibodies, it is preferably diluted approximately 1,500 times with PBS-Tween. Here, PBS Tween refers to a solution in which 0.05% Tween is dissolved in PBS. Furthermore, the dilution step is carried out at room temperature (approximately 2
5°C) within 5 minutes.

上記の様に希釈した反応液中の抗体量を測定するための
固相抗体法としては、酵素抗体法、蛍光抗体法、ラジオ
イムノアッセイ等が挙げられる。
Solid-phase antibody methods for measuring the amount of antibodies in the reaction solution diluted as described above include enzyme antibody methods, fluorescent antibody methods, radioimmunoassays, and the like.

このうち、酵素抗体法か好ましい。具体的には、マイク
ロタイタープレートのウェルに抗原を固定し、このウェ
ルに抗原抗体反応を行った反応液を希釈した液を加え未
反応の抗体とウェルに固定した抗原を反応させ、その後
上記希釈した反応液を洗い流し、さらにこのウェルに酵
素で標識した二次抗体を加えウェルに固定した抗原と反
応した抗体と反応させ、次いてこのウェルに上記酵素の
基質となる物質を加え、酵素反応によって生成した物質
の比色により抗原抗体複合体を定量することができる。
Among these, enzyme antibody method is preferred. Specifically, an antigen is immobilized in a well of a microtiter plate, a diluted solution of the reaction solution used for antigen-antibody reaction is added to the well, and the unreacted antibody is allowed to react with the antigen immobilized in the well. The reaction solution was washed away, and a secondary antibody labeled with an enzyme was added to this well to react with the antibody that had reacted with the antigen immobilized on the well. Next, a substance that would serve as a substrate for the enzyme was added to this well, and the enzyme reaction was performed. The antigen-antibody complex can be quantified by colorimetry of the produced substance.

上記固相抗体法では、抗原と未反応の抗体か定量される
ので、この値を抗原抗体反応前の抗体量から差し引くこ
とにより、抗原抗体反応を定量することができる。
In the solid-phase antibody method described above, the amount of antibody that has not reacted with the antigen is quantified, so the antigen-antibody reaction can be quantified by subtracting this value from the amount of antibody before the antigen-antibody reaction.

〔発明の効果〕〔Effect of the invention〕

本発明の方法により、溶液状態下での抗原抗体反応を、
極めて容易にかつ正確に定量することが可能になった。
By the method of the present invention, antigen-antibody reactions in a solution state can be
It has become possible to quantify extremely easily and accurately.

さらに、抗原を含むタンパク質内のアミノ酸変異や化学
修飾による抗原抗体反応の変化を知ることが可能になっ
た。尚、このアミノ酸変異や化学修飾により抗原性が変
化しても、本発明の定量は可能である。
Furthermore, it has become possible to learn about changes in antigen-antibody reactions due to amino acid mutations and chemical modifications in proteins containing antigens. Note that even if antigenicity changes due to amino acid mutations or chemical modifications, quantification according to the present invention is possible.

以下に本発明の実施態様として実施例をあげるか、これ
は本発明の説明のためのものであって、本発明の範囲に
制限するものではない。
Examples will be given below as embodiments of the present invention, but these are for illustrating the present invention and are not intended to limit the scope of the present invention.

〔実施例〕〔Example〕

以下の実施例は、特に断らない限り室温(25°C)下
で行った。
The following examples were conducted at room temperature (25°C) unless otherwise specified.

また、本実施例で用いたrec Aタンパク及びDNA
φ×174は、J、Biol、Chem、 1981 
、 256pp7557−7564に、ARM321抗
体、ARM 414抗体、ARM191抗体、及びAR
M193抗体は、J、 Biol、 Cham1985
,260、pp15402−15404に、recA4
30は、J、Biol、Chem、 1989264、
pp21167−21176に記載の方法によって得た
In addition, the rec A protein and DNA used in this example
φ×174 is J. Biol. Chem. 1981
, 256pp7557-7564, ARM321 antibody, ARM414 antibody, ARM191 antibody, and AR
M193 antibody was prepared by J. Biol, Cham1985.
, 260, pp 15402-15404, recA4
30 J, Biol, Chem, 1989264,
Obtained by the method described in pp. 21167-21176.

〔参考例 1〕 固定相の作製 マイクロタイタープレート(96穴)のウェルに50μ
lのrec Aタンパク(2μg/−)溶液を加えて4
°Cで15時間放置して、更に200μlのPBS(5
0mMリン酸緩衝液、pH7,2,150mM NaC
1)で3回洗い、ウェルの壁をrec Aタンパクで覆
い固定した。更にブロッキングの為に、100μlの小
牛血清アルブミン溶液(1%)をウェルに入れ、6時間
はと放置してから130μmのPBSでウェルを洗った
[Reference Example 1] Preparation of stationary phase 50μ in the wells of a microtiter plate (96 wells)
Add 1 of rec A protein (2 μg/-) solution and
Leave at °C for 15 hours and add 200 μl of PBS (5
0mM phosphate buffer, pH 7,2, 150mM NaC
After washing three times with 1), the walls of the wells were covered with rec A protein and fixed. Furthermore, for blocking, 100 μl of calf serum albumin solution (1%) was added to the wells, left for 6 hours, and then the wells were washed with 130 μm PBS.

〔参考例 2〕 検量線の作製 参考例1で作製した固定相のウェル中に、PBS−ツイ
ーン20 (0,05%ツイーン20(バイオラッド社
製)をPBSに溶かした溶液)に溶かした濃度0.02
5nMの抗rec Aタンパク抗体であるARM321
抗体を50μl加え1時間放置した。そのウェルを13
0μlのPBS−ツイーンで3回洗った。次に、そのウ
ェルに50μlのペルオキシダーゼで標識した500希
釈ヤギに由来する抗マウス[gG抗体(KPL社製)を
加え1時間放置した後、130μlのPBS−ツイーン
で3回、次いで200μmのPBSで洗った。そこへ、
100μlの0−フェニレンジアミン(1mg/ml)
 、0.05Mクエン酸、0.05Mクエン酸ナトリウ
ム、0.015%過酸化水素溶液を加え30分放置し、
呈色反応を行った。32μmの4.5M硫酸を加えその
反応を停めた。呈色反応は、490nmの吸光度を測る
ことによって測定した。以上の操作を、ARM321抗
体の濃度を0.038nM 、 0.05nM、 0.
063nM、 0.094nM 。
[Reference Example 2] Preparation of a calibration curve In the stationary phase well prepared in Reference Example 1, the concentration of PBS-Tween 20 (a solution of 0.05% Tween 20 (manufactured by Bio-Rad) dissolved in PBS) was determined. 0.02
ARM321, an anti-rec A protein antibody at 5 nM
50 μl of antibody was added and left for 1 hour. 13 that well
Washed 3 times with 0 μl of PBS-Tween. Next, 50 μl of peroxidase-labeled 500-diluted goat-derived anti-mouse [gG antibody (manufactured by KPL) was added to the well and left for 1 hour. washed. There,
100μl 0-phenylenediamine (1mg/ml)
, 0.05M citric acid, 0.05M sodium citrate, and 0.015% hydrogen peroxide solution were added and left for 30 minutes.
A color reaction was performed. The reaction was stopped by adding 32 μm of 4.5M sulfuric acid. The color reaction was measured by measuring absorbance at 490 nm. The above operation was performed with the concentration of ARM321 antibody being 0.038 nM, 0.05 nM, and 0.05 nM.
063 nM, 0.094 nM.

0.125nM 、 0.156nM 、 0.188
nMS0.219nM 、 0.250nM、 0.2
81nM 、 0.313nMに変えて繰り返すことに
より、検量線を作製した。
0.125nM, 0.156nM, 0.188
nMS 0.219nM, 0.250nM, 0.2
A calibration curve was prepared by changing the concentration to 81 nM and 0.313 nM and repeating the experiment.

以上の操作を、ARM414抗体、ARM191抗体、
ARMI93抗体を用いて繰り返した。
The above operations were performed for ARM414 antibody, ARM191 antibody,
Repeated with ARMI93 antibody.

結果を第1図に示した。この結果より、酵素抗体法のシ
グナル(490nmでの吸光度)の強さが抗rec A
タンパク抗体の量に比例しており、未反応の抗rec 
Aタンパク抗体を0.2μMまでなら酵素抗体法によっ
て正確に定量できることがわかる。そこで、本実施例で
は、希釈操作の後、未反応の抗体濃度が0.13nMに
なるようにした。
The results are shown in Figure 1. From this result, the strength of the signal (absorbance at 490 nm) of the enzyme antibody method was determined by the anti-rec A
It is proportional to the amount of protein antibody, and unreacted anti-rec
It can be seen that A protein antibodies up to 0.2 μM can be accurately quantified by the enzyme antibody method. Therefore, in this example, after the dilution operation, the unreacted antibody concentration was set to 0.13 nM.

〔参考例 3〕 抗recタンパク抗体(IgG)の濃度と酵素抗体21
μ+の反応液A (31mM)リス緩衝液、pH75,
13mM塩化マグネシウム、2.8 mMジチオスレイ
トール、88μg/mn小牛血清アルブミン、2%グリ
セリン)の中で、0.2μMの抗rec Aタンパク単
りローンIgGのひとつであるARM321抗体と濃度
0.2μM So、 5μM、lμM、2μMの抗原で
あるrec Aタンパクとを37°Cで10分反応させ
た。該反応液から4μIを取り出し1.500倍容C6
−)のPBS−ツイーンを加えて抗原抗体反応を停止し
てから、室温中で希釈後5分以内に50μlの希釈溶液
をすてにrecタンパクをウェルの壁に固定しである参
考例1のマイクロタイタープレートのウェルに入れ、1
時間放置した。そのウェルを130μlのPBS−ツイ
ーンで3回洗った。次に、50μmのペルオキシダーゼ
で標識した11500希釈ヤギに由来する抗マウスIg
G抗体(KPL社製)を加え1時間放置した後、130
μmのPBS−ツイーンで3回、次いで200μmのP
BSで洗った。そこへ、100μmの0フエニレンジア
ミン(1mg/ mll ) 、0.05 Mクエン酸
、0.05Mクエン酸ナトリウム、0.015%過酸化
水素溶液を加え30分放置して発色させた後、32μm
の4.5M硫酸を加えその反応を停めた。
[Reference Example 3] Concentration of anti-rec protein antibody (IgG) and enzyme antibody 21
μ+ reaction solution A (31mM) Liss buffer, pH 75,
13 mM magnesium chloride, 2.8 mM dithiothreitol, 88 μg/mn calf serum albumin, 2% glycerin) with 0.2 μM of anti-rec A protein ARM321 antibody, which is one of the clone IgGs, and a concentration of 0. 2 μM So, 5 μM, 1 μM, and 2 μM of the antigen rec A protein were reacted at 37° C. for 10 minutes. Take out 4μI from the reaction solution and 1.500 times volume of C6
-) PBS-Tween was added to stop the antigen-antibody reaction, and within 5 minutes after dilution at room temperature, the rec protein was immobilized on the wall of the well by discarding 50 μl of the diluted solution. Place into the wells of a microtiter plate and add 1
I left it for a while. The wells were washed three times with 130 μl of PBS-Tween. Next, 11,500 diluted goat-derived anti-mouse Ig labeled with peroxidase of 50 μM
After adding G antibody (manufactured by KPL) and leaving it for 1 hour,
3 times with µm PBS-Tween, then 200 µm PBS-Tween
I washed it with BS. To this, 100 μm 0-phenylenediamine (1 mg/ml), 0.05 M citric acid, 0.05 M sodium citrate, and 0.015% hydrogen peroxide solution were added and left to stand for 30 minutes to develop color.
The reaction was stopped by adding 4.5M sulfuric acid.

490nmの吸光度を測定し、吸光度から参考例2の検
量線を用いて未反応の抗体量を求めた。
The absorbance at 490 nm was measured, and the amount of unreacted antibody was determined from the absorbance using the calibration curve of Reference Example 2.

以上の操作をARM414抗体、ARM191抗体につ
いて繰り返した。
The above operations were repeated for the ARM414 antibody and the ARM191 antibody.

結果を第2図に示した。上記抗体については、rec 
Aタンパクの濃度が高くなるにつれて未反応の抗体の量
が少なくなることを示している。大体0.5μM前後の
rec Aタンパクで未反応の抗体がなくなった。
The results are shown in Figure 2. For the above antibodies, rec
It is shown that as the concentration of A protein increases, the amount of unreacted antibody decreases. Unreacted antibodies disappeared with approximately 0.5 μM of rec A protein.

〔参考例 4〕 抗原抗体複合体の1.500倍希釈に対する安定性0.
2μMの抗体(ARM414抗体、ARM321抗体、
ARM191抗体、ARM193抗体)と1μMのre
c Aタンパクとを参考例3と同じ条件で反応させてか
ら、1500倍容の倍容S−ツイーンで希釈し、室温で
放置する時間を変えて、酵素抗体法で抗原と結合してい
ない抗体の量を定量した。
[Reference Example 4] Stability of antigen-antibody complex against 1.500-fold dilution: 0.
2 μM of antibodies (ARM414 antibody, ARM321 antibody,
ARM191 antibody, ARM193 antibody) and 1 μM re
c After reacting with A protein under the same conditions as in Reference Example 3, diluted with 1500 times the volume of S-Tween and left at room temperature for different times, the enzyme antibody method was used to determine the antibody that did not bind to the antigen. The amount of was quantified.

結果を第3図に示す。第3図中、・は抗原、抗体の入っ
た完全系を示し:△は抗体を除いたコントロールを示し
;○は抗原(recA“タンパク)を除いたコントロー
ルを示す。この結果から、ARM414抗体、ARM3
21抗体、ARM191抗体については、希釈後60分
にわたって複合体は安定に存在していたが、ARMI9
3抗体は希釈直後でも全てシグナルを与えることがわか
る。この事は、ARM193抗体とrecAタンパクと
の結合はこの希釈に耐えず、この抗体については本発明
の方法は使用できないことを示している。
The results are shown in Figure 3. In Figure 3, . indicates a complete system containing antigen and antibody; △ indicates a control without the antibody; ○ indicates a control without the antigen (recA "protein). From this result, ARM414 antibody, ARM3
For ARM191 antibody and ARM191 antibody, the complex existed stably for 60 minutes after dilution, but for ARMI9 antibody, the complex existed stably for 60 minutes after dilution.
It can be seen that all three antibodies give signals even immediately after dilution. This indicates that the binding between the ARM193 antibody and the recA protein does not survive this dilution, and the method of the present invention cannot be used with this antibody.

〔参考例 5〕 抗原抗体反応の1.500倍希釈による停止処置の効果 6−のPBS−ツイーンに1μMのrec Aタンパク
を4μm加え、直後に0.2μMの抗体(ARM414
抗体、ARM321抗体、ARM191抗体)溶液を4
μm加え室温で放置する時間を変えて、酵素抗体法によ
り抗原と結合してしない抗体の量を定量した。
[Reference Example 5] Effect of stopping treatment by 1.500-fold dilution of antigen-antibody reaction
antibody, ARM321 antibody, ARM191 antibody) solution
The amount of antibody that did not bind to the antigen was quantified by enzyme-linked antibody method by varying the time of adding μm and leaving it at room temperature.

結果を第4図に示す。第4図中、・は抗原、抗体の入っ
た完全系を示し;△は抗体を除いたコントロールを示し
;Oは抗原(rec Aタンパク)を除いたコントロー
ルを示す。この結果は、適度の希釈の後では、抗原と抗
体はたとえ共存してもその抗原抗体反応はおこらないか
または極めてゆっくりとしか起こらないことを示してい
る。よって、この希釈によって抗原抗体反応が効果的に
停止できることがわかる。
The results are shown in Figure 4. In FIG. 4, . indicates a complete system containing antigen and antibody; Δ indicates a control without antibody; O indicates a control without antigen (rec A protein). This result shows that after moderate dilution, even if antigen and antibody coexist, the antigen-antibody reaction does not occur or occurs only very slowly. Therefore, it can be seen that the antigen-antibody reaction can be effectively stopped by this dilution.

〔実施例 1〕 参考例3の反応液A中で1μMのrec へタンパクと
0.2μMのARM321抗体とを、ATP (ヤマザ
醤油(株)製)a度0.0.1.0.3.1,3.2.
6mMの存在下で37℃で反応時間を変えて反応させた
後、酵素抗体法で未反応の抗体量を測定した。
[Example 1] In reaction solution A of Reference Example 3, 1 μM rec protein and 0.2 μM ARM321 antibody were mixed with ATP (manufactured by Yamaza Soy Sauce Co., Ltd.) at 0.0.1.0.3. 1,3.2.
After reacting in the presence of 6mM at 37°C for different reaction times, the amount of unreacted antibody was measured by enzyme antibody method.

結果を第5図に示す。ATP8度は、・OmM。The results are shown in Figure 5. ATP 8 degrees is ・OmM.

10.1mM、◆0.3mM、ムL3mM、マ2.6m
Mである。
10.1mM, ◆0.3mM, M L3mM, M2.6m
It is M.

○はrec Aタンパクを除いたコントロール(ATP
非存在下)を示し、はrec へタンパクを除いたコン
トロール(ATP2.6mM存在)を示す。この結果か
ら、ATPの存在によってrec へタンパクがΔRM
321抗体に対する抗原性を失うことがわかる。
○ indicates control excluding rec A protein (ATP
(in the absence of ATP), and indicates a control in which the protein was removed from rec (in the presence of 2.6 mM ATP). From this result, the presence of ATP causes the protein to rec to ΔRM.
It can be seen that the antigenicity against the 321 antibody is lost.

〔実施例2〕 参考例3の反応液A中で1μMのrecΔタンパクと0
.2μMのARM414抗体を、八TPrS  (ベー
リンガーマンハイム社製)  (1,,3mM)及び単
鎖DNAφx 1.74(50μM)の存在下、八TP
rS  (1,3mM)の存在下、単鎖DNΔφX17
4 (150μM)の存在下、37℃で反応時間を変え
て反応゛させた後、酵素抗体法で未反応の抗体量を測定
した。
[Example 2] In reaction solution A of Reference Example 3, 1 μM recΔ protein and 0
.. 2 μM of ARM414 antibody was injected into 8TP in the presence of 8TPrS (Boehringer Mannheim) (1,3mM) and single-stranded DNAφx 1.74 (50μM).
Single-stranded DNAΔφX17 in the presence of rS (1,3mM)
4 (150 μM) at 37° C. for different reaction times, and then the amount of unreacted antibody was measured by enzyme antibody method.

結果を第6図に示す。ムは八TPrS及び単鎖DNAφ
×174の存在下、は^TPrSの存在下、・は単鎖D
NAφX174の存在下を示す。○はreCAタンパク
のみのコントロール(ATP 及ヒDNA 非存在下)
、☆はrec Aタンパクを除いた抗体のみのコントロ
ール(ATP及び(lNA非存在下)を示す。
The results are shown in Figure 6. The system consists of eight TPrS and single-stranded DNAφ
In the presence of ×174, is in the presence of ^TPrS, ・ is single-chain D
The presence of NAφX174 is shown. ○ is a control with only reCA protein (in the absence of ATP and human DNA)
, ☆ indicates an antibody-only control (in the absence of ATP and (lNA)) excluding the rec A protein.

この結果から、八TPrS及び単鎖DN八φ×174の
存在によってrec AタンパクがARM414抗体に
対する抗原性を失うことがわかる。
This result shows that the rec A protein loses its antigenicity to the ARM414 antibody due to the presence of 8TPrS and single-chain DN 8φ×174.

〔実施例3〕 抗原にrec A 430を、抗体にARM414を用
いて実施例2の方法を繰り返した。
[Example 3] The method of Example 2 was repeated using rec A 430 as the antigen and ARM414 as the antibody.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、rec Aタンパク抗原に対する抗体の検量
線である。第1図Aは、ARM321の検量線であり、
第1図Bは、ARM414の検量線であり、第1図Cは
、ARM191の検量線であり、第1図りは、ARMI
93の検量線である。 第2図は、一定量の抗体に対しrec Aタンパク抗原
の量を変化させたときの490nmの吸光度である。第
2図Aは、抗体にARM321を、第2図Bは、抗体に
ARM414を、第2図Cは、抗体にARM191を用
いたものである。 第3図は、rec Aタンパク抗原・抗体複合体の1、
500倍希釈に対する安定性を示すものである。 第3図Aは、抗体にARM321を、第3図Bは、抗体
にARM414を、第3図Cは、抗体にARM191を
、第3図りは、抗体にARM193を用いたものである
。 第4図は、rec Aタンパク抗原・抗体反応の150
0倍希釈による停止処置の効果を示すものである。第4
図Aは、抗体にARM321を、第4図Bは、抗体にA
RM414を、第4図Cは、抗体にARM191を用い
たものである。 第5図は、ATPによるrec Aタンパクの抗原性の
変化を定量したものである。 第6図はATP7S、単鎖DNAφ×174によるre
cAタンパクの抗原性の変化を定量したものである。 図面の浄書(内容に変更なし) 第1図 12274、(6) 第3図 第4図 手 続 補 正 書 (方式) 1、事件の表示 平成2年特許願第1 15991号 2、発明の名称 間接固相抗体法 3、補正をする者 事件との関係 出 願人 名 称 理 化 学 研 究 所 4、代 理 人 5、補正命令の日付 平成2年7月31日
FIG. 1 is a standard curve of antibodies against the rec A protein antigen. FIG. 1A is the calibration curve of ARM321,
Figure 1B is the calibration curve of ARM414, Figure 1C is the calibration curve of ARM191, and the first diagram is the calibration curve of ARM414.
93 calibration curve. FIG. 2 shows the absorbance at 490 nm when the amount of rec A protein antigen was varied with respect to a fixed amount of antibody. FIG. 2A uses ARM321 as the antibody, FIG. 2B uses ARM414 as the antibody, and FIG. 2C uses ARM191 as the antibody. Figure 3 shows rec A protein antigen/antibody complex 1,
This shows stability against 500-fold dilution. Figure 3A uses ARM321 as the antibody, Figure 3B uses ARM414 as the antibody, Figure 3C uses ARM191 as the antibody, and Figure 3 uses ARM193 as the antibody. Figure 4 shows the 150 rec A protein antigen/antibody reaction.
This shows the effect of stopping treatment by 0-fold dilution. Fourth
Figure A shows ARM321 as an antibody, and Figure 4B shows A as an antibody.
RM414 was used as the antibody, and ARM191 was used as the antibody in FIG. 4C. FIG. 5 shows quantification of changes in antigenicity of rec A protein due to ATP. Figure 6 shows re using ATP7S and single-stranded DNAφ×174.
This is a quantification of changes in antigenicity of cA protein. Engraving of the drawings (no change in content) Figure 1 12274, (6) Figure 3 Figure 4 Procedural amendment (formality) 1. Indication of the case 1990 Patent Application No. 1 15991 2. Indirect confirmation of the title of the invention Composite antibody method 3, Person making the amendment Name of applicant related to the case: RIKEN 4, Agent 5, Date of amendment order: July 31, 1990

Claims (6)

【特許請求の範囲】[Claims] (1)抗原・抗体反応を定量する方法において、[1]
既知量の抗体と抗原とを溶液中で反応させる工程、 [2]上記溶液を希釈する工程、及び [3]抗原と未反応の抗体を固相抗体法で定量する工程
を含む定量方法。
(1) In a method for quantifying an antigen-antibody reaction, [1]
A quantitative method comprising: reacting a known amount of antibody and antigen in a solution; [2] diluting the solution; and [3] quantifying unreacted antibody with the antigen using a solid-phase antibody method.
(2)抗原性を変える因子が存在する溶液中の抗原・抗
体反応を定量する請求項[1]記載の方法。
(2) The method according to claim [1], wherein the antigen-antibody reaction is quantified in a solution containing a factor that changes antigenicity.
(3)抗体が単クローン抗体である請求項[1]記載の
方法。
(3) The method according to claim [1], wherein the antibody is a monoclonal antibody.
(4)抗体がIgGである請求項(2)記載の方法。(4) The method according to claim (2), wherein the antibody is IgG. (5)抗原が高分子である請求項(1)記載の方法。(5) The method according to claim (1), wherein the antigen is a polymer. (6)抗原がrecAタンパク若しくは変異タンパクで
、抗体がARM321抗体、ARM414抗体、及びA
RM191抗体からなる群より選ばれ、希釈剤がPBS
−ツイーンである請求項(1)記載の方法。
(6) The antigen is recA protein or mutant protein, and the antibodies are ARM321 antibody, ARM414 antibody, and A
selected from the group consisting of RM191 antibodies, and the diluent was PBS.
- The method according to claim 1, wherein the method is a tween.
JP11599190A 1990-05-02 1990-05-02 Indirect solid-phase antibody method Expired - Fee Related JP2915486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11599190A JP2915486B2 (en) 1990-05-02 1990-05-02 Indirect solid-phase antibody method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11599190A JP2915486B2 (en) 1990-05-02 1990-05-02 Indirect solid-phase antibody method

Publications (2)

Publication Number Publication Date
JPH0412274A true JPH0412274A (en) 1992-01-16
JP2915486B2 JP2915486B2 (en) 1999-07-05

Family

ID=14676157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11599190A Expired - Fee Related JP2915486B2 (en) 1990-05-02 1990-05-02 Indirect solid-phase antibody method

Country Status (1)

Country Link
JP (1) JP2915486B2 (en)

Also Published As

Publication number Publication date
JP2915486B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JPH03128460A (en) Quantitative determination of antigen and solid phase used therein
JP3646097B2 (en) Reagents and solid phase components of specific binding assays that do not contain an advanced glycosylation end product
CN109239368A (en) Measure the method and kit of progesterone
Lanzillo et al. Development of competitive enzyme immunoassays for human serum angiotensin-1-converting enzyme: a comparison of four assay configurations
JPH0412274A (en) Indirect solid phase antibody method
JP3142786B2 (en) Kit for measuring arteriosclerosis and antibody used therefor
JPS58149700A (en) Composite containing peroxidase, its preparation and reagent
EP1596198B1 (en) METHOD OF MEASURING OXIDIZED LDL-beta2-GPI-CRP COMPLEX
JPH08313530A (en) Method for measuring total hemoglobin and measuring kit
JPS61228353A (en) Immunological concentration determination method of amine, monochronal antibody and reagent set for executing said method
JPH0763758A (en) Immunological measuring method
JPH05232109A (en) Method for measuring human osteocalcine pro-proten
JPS61243363A (en) Highly sensitive assay of crp
JPH0466871A (en) High sensitive immunoassay
JPS63145960A (en) Non-singular adsorption inhibitor for labeled antibody
JP2507317B2 (en) Method for measuring plasmin-α2 plasmin inhibitor complex
JPH07103978A (en) Measurement of free hemoglobin
JP2523171B2 (en) Immunoassay method and reagent kit used therefor
JPH08220098A (en) Enzyme immunity measuring method and enzyme immunity measuring reagent kit
JPS6082966A (en) Assay of antigen
JP2521074B2 (en) How to regulate the immune response
JPH0236353A (en) Immunoassay
JPH04194753A (en) Antigen for measuring anti-ssa/ro or ssb/la antibody, manufacture thereof and measuring method for anti-ssa/ ro or ssb/la antibody
JP3257568B2 (en) Antibodies that bind to human NOS and immunoassays for human NOS
JPS62192662A (en) High sensitivity quantitative determination of crp

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees