JPH04121884A - Magneto-optical recording and reproducing device - Google Patents

Magneto-optical recording and reproducing device

Info

Publication number
JPH04121884A
JPH04121884A JP24211790A JP24211790A JPH04121884A JP H04121884 A JPH04121884 A JP H04121884A JP 24211790 A JP24211790 A JP 24211790A JP 24211790 A JP24211790 A JP 24211790A JP H04121884 A JPH04121884 A JP H04121884A
Authority
JP
Japan
Prior art keywords
magneto
recording medium
optical recording
objective lens
slider
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24211790A
Other languages
Japanese (ja)
Other versions
JP2961848B2 (en
Inventor
Osamu Mizuno
修 水野
Toru Nakamura
徹 中村
Masanari Mouri
政就 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24211790A priority Critical patent/JP2961848B2/en
Publication of JPH04121884A publication Critical patent/JPH04121884A/en
Application granted granted Critical
Publication of JP2961848B2 publication Critical patent/JP2961848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To keep the floating quantity of a slider constant and to stabilize recording characteristic by providing a permanent magnet to which the slider is connected and which applies a magnetic attractive force to a load beam, and attenuating plane wobbling by increasing the distance of the magnetic attractive force. CONSTITUTION:Since an attractive force by the permanent magnet 70 for a magnetic material 31 is changed nonlinearly steeply for the distance, a high power is generated when a magneto-optical disk 1 is moved downward by the plane wobbling, and when it is moved upward, the power is hardly generated, and a gradient is roughly shown as the reversal of the curve of a force FA. The change of a pressing force FB applied actually to the slider 10 by the plane wobbling is shown in Figure (c), which is the sum of the force FA and the force FB. When the disk 1 is changed from a mean value Z0 by (+) u, the pressing force FB applied to the slider 10 is changed from FBL to FBM in figure. The change of the FB is remarkably reduced by the effect of a force FM. Thereby, it is possible to keep the floating quantity of the slider 10 constant even when the remarkably high plane wobbling exists, and to dispense with the position adjustment in the z-axial direction of a fixed part 30b, and to attain the stabilization of the recording characteristic and cost down.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子計算機の外部記憶装置 音楽及び映像信号
 その他情報の記録再生装置等に利用される光磁気ディ
スク装置の1 特に空気流による浮上刃を利用して記録
媒体との相対距離を維持し磁気記録等の記録媒体との相
互作用を行う浮上ヘッドを有する光磁気記録再生装置に
関するものであも 従来の技術 近年電子計算機の発達及び情報の高速大量伝達の手段の
発達と共へ 低価格 高密度かつ大容監高速転送能力の
ある不揮発性記憶装置が要求され多くは固定磁気ディス
ク装置が用いられていもしかし一般に媒体交換できない
ため装置体積当りの記録密度が低く、 1情報単位あた
りの価格が高いという問題がある。媒体の交換が可能な
磁気ディスク装置もある力交 記録密塞 信頼性の点で
課題を残していも 光学記録はそれらの問題点を解決す
る技術として現在脚光を浴びており、特に書き換え可能
な光磁気記録は多くの方面で期待されていも 光磁気記録においては 光変調による記録手法ではオー
バライドが困難なた数 近年は磁界変調によるオーバラ
イド手法が検討されており、従来数多くの報告がなされ
ていも 前記手法は固定磁気ディスクの記録手法に類似
しており、浮上型の磁気ヘッドにより光磁気ディスクに
与える磁界を変調するバ 記録ビットの大きさは収束し
たレーザ光の収束径で制御すa 以下、図面を参照しなか収 従来の光磁気記録再生装置
について説明を行う。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magneto-optical disk device used in an external storage device for a computer, a recording/reproducing device for music, video signals, and other information, etc. In particular, it utilizes a floating blade using an air flow. This technology relates to magneto-optical recording and reproducing devices that have a flying head that maintains a relative distance from the recording medium and interacts with the recording medium such as magnetic recording. With the development of means of transmission, low cost, high-density, large-capacity non-volatile storage devices with high-speed transfer capabilities are required, and fixed magnetic disk devices are often used, but since the medium cannot generally be exchanged, the storage capacity per device volume is low. The problem is that the density is low and the price per unit of information is high. Although some problems remain in terms of reliability, optical recording is currently attracting attention as a technology that can solve these problems, and in particular, rewritable optical Although magnetic recording is promising in many fields, in magneto-optical recording, it is difficult to override using a recording method that uses optical modulation.In recent years, overriding methods that use magnetic field modulation have been studied, and although many reports have been made, The method is similar to the recording method for fixed magnetic disks, in which the magnetic field applied to the magneto-optical disk is modulated by a floating magnetic head.The size of the recording bit is controlled by the convergence diameter of the converged laser beam. A conventional magneto-optical recording and reproducing device will be explained without reference to .

第9図〜第12図は従来の光磁気記録再生装置及び用い
られる浮上ヘッド要部を示すもので、右手直角座標系を
各図のように設定すa 第9図は浮上ヘッドの構造体の
斜視医 第10図(a)は浮上ヘッド構造体の要部をy
軸の正の方向から見た医 第1O図(b)は浮上ヘッド
要部を2軸の負の方向から見た医 第11図は光磁気記
録再生装置の構成医 第12図は浮上状態を示す図であ
ム 第9図でlOは高透磁率材料であるフェライトからなる
スライダであも スライダIOの2軸の負の側の面は表
面粗さは0.05μm以下に十分溝らかに形成されてい
も 30はステンレス板等で形成されたy軸方向を長手
方向とするロードビームで、弾性部30a、固定部30
b1 剛体部30cから成も 剛体部30cは折り曲げ
加工が施されており、十分剛体と考えてよし−弾性部3
0aはX軸方向に十分広く、 Z軸方向の厚さが十分薄
いた八 アスペクト比の効果によりX軸回りのモーメン
トによる変形のみが可能であも 固定部30bは弾性部
30aより厚い材料で構成され ねじ等によって固定す
るための穴が設けられていも便宜上ロードビーム30の
y軸の負の方向の端を先端と呼J%20はスライダ10
とロードビーム30の相互をロードビーム30の先端で
接続するステンレス板等を材料とするジンバルであ4 
第10図(a)、 (b)において、ジンバル20には
スライダlOの重心付近に2軸の正の方向に凸である略
球面の凸面20aが形成されており、ロードビーム30
の先端の底面とジンバル20は凸面20aで接触してい
も ジンバル20はスライダ10のロードビーム30に
対するX軸回り及びy軸回りの相対回転が自在である構
造で、その瞬間回転中心は凸面20aとロードビーム3
0の接触点であム また ジンバル20はロードビーム
30に比べて薄い材料で構成さt′1.、y軸回りのば
ね定数はロードビーム30の弾性部30aの約1/20
の値であム スライダ10.  ジンバル20、ロードビーム30で
浮上ヘッド構造体を構成すム 更&ζ 弾性部30aは
平面ではなく、先端が2軸の負の方向に所定の量だけ変
位した形状になる略円筒曲面に成形されていも 即瓢 
初期たわみが与えられてい便宜上スライダ10のy軸の
負の方向の端を流入lx軸の正の方向の端を流出端と吐
息 スライダ10の流出端にはZ軸方向に長手方向を持
つポール10aと磁気ギャップmを有していム 2はコ
イルで、ポール10aに巻回されていも第11@ 第1
2図において1は可換型の光磁気ディスクで、ポリカー
ボネート等の透明な基板1a、垂直磁化容易膜による記
録層1b、樹脂等による保護層1cで構成され 回転中
心(図示せず)を中心とする多数の同心円状もしくはス
パイラル状の記録トラックが設けられてい、4 60は
光磁気記録再生装置のベースである。62は光磁気ディ
スク1に2軸周りの回転トルクを付与するスピンドルモ
ータで、ベース60に固定されていも 光磁気ディスク
1はスピンドルモータ62に対して基板1aの側でマグ
ネットクランプ等の既知の手段によって固定されていも
 便宜上Z軸の負の方向を下方 正の方向を上方と呼名
も 66はキャリッジで、車輪65によってベース60
またはベース60と連続した構造体をy軸に平行な方向
に移動が自在であも この移動動作をシーク動作と呼本
 キャリッジ66には浮上ヘッド構造体を固定するため
の取り付け部63が設けられており、浮上ヘッド構造体
は固定部30bでねじ64によってキャリッジ66に固
定されていも 取り付け部63名よ スライダlOが保
護層ICの上方に置かれ固定部30bが取り付け部63
に固定された状態では剛体部30cと固定部30bは略
平行状態となる位置に設けられていa 即板 この状態
では初期たわみの弾性復元力による押し付け力が弾性部
30a、剛体部30cを介してスライダlOに与えられ
 スライダ10を保護層1cに押し付けていも またキ
ャリッジ66には対物レンズ4を少なくともZ軸に平行
な方向に移動させる機能を有する対物レンズアクチュエ
ータ3が乗せられていも 対物レンズアクチュエータ3
と浮上ヘッド構造体はキャリッジ66のシーク動作と共
に移動すも 第12図に示すようく 対物レンズ4はポ
ール10aに対して光磁気ディスクlを挟んで下方に配
置されてい4 更にキャリッジ66にはレーザ光5を発
生させ、レーザ光5を対物レンズ4に導く光学系が内蔵
されてい4 対物レンズアクチュエータ3は例えばムー
ビングコイル型の駆動機構(図示せず)に対して駆動電
流を与えることにより対物レンズ4をZ軸に平行な方向
に駆動する構造であム 対物レンズアクチュエータ3は
第12図に示すように記録層1bの2軸に平行な方向の
変化に追従して対物レンズ4を移動させ、 レーザ光5
を記録層1bに収れん光として照射すも この動作をフ
ォーカス動作と吐息以上のように構成された光磁気記録
再生装置について、以下その動作について説明すもまず
、光磁気ディスクlがスピンドルモータ62によって回
転を始めると、スライダ10の下方の光磁気ディスク1
は速度成分としては略X軸方向のみを有すも スライダ
10の光磁気ディスク1の対向面と保護層1cの表面が
十分に平滑であれば 第12図に示すようにスライダ1
0には流体潤滑理論に従って空気膜による揚力FLが発
生しロードビーム30による押し付け方FSと平衡する
距離δで保護層ICから浮上すム 光磁気ディスク用い
るスライダではほこりの影響を避けるた数通常δは数μ
mになるよう初期たわみを設定すも対物レンズアクチュ
エータ3はフォーカス動作を行うことによりレーザ光5
を記録層1bに収れん光として照射すa コイル2に電
流工を流すと高透磁率材料であるフェライトからなるス
ライダ10には磁束φが発生して磁気ギャップmの近傍
では記録に十分な数の磁束φが記録層1bを通過すも 
ボール10a近傍の記録層1bでは収れんしたレーザ光
5の照射により温度が上昇し保磁力が低下しているため
磁化の向きがφの方向になら八 冷却後の磁化保持によ
り記録が完了すも この状態でコイル2の電流を記録す
る情報で変調すると情報パターンが記録層lbに磁化の
向きとして記録されも スライダはジンバル20を介してロードビーム30に接
続しているた6  x、  y軸周りの回動が自在であ
り、光磁気ディスク1にうねり等があってもスライダの
姿勢がうねりに追従すも浮上量δが十分に小さく、安定
していれば記録層1bには安定した強度の磁界が与えら
れ 記録されたデータのは十分な信頼性を有すも記録ト
ラックを変更する場合のシーク動作時にはキャリッジ6
6がy軸に平行な方向にシーク動作を行t\ スライダ
10と対物レンズ4が追従して移動すも 発明が解決しようとする課題 しかしなか板 前記のような構成で(よ 次のような課
題が生じていた 光磁気ディスク1には面振れが存在する力(弾性部30
aが弾性変形してスライダ10が上下動することでスラ
イダ10と円盤状記録媒体1の相対距離δを維持すも 
しかしなが叡 弾性部30aはほぼ線型材料と考えて良
いたべ ディスクの位置2に対する押し付け方F$の値
は第13図に示すように変化すも カは上方を正にとっ
ていムディスクが2−の位置から±U変化した場合、荷
重は先端等価ばね定数を表す勾配に従ってFILから1
”ssまで変化すも このUの値が固定磁気ディスク等
のように微小である場合は問題ない戟 光磁気ディスク
1は基板1aがポリカーボネート等の樹脂で形成されて
いるため面振れが大きく、また光磁気ディスク1は可換
媒体であるためスピンドルモータ62と光磁気ディスク
lの間にほこり等の異物が挟まり光磁気ディスク1の面
振れを増加させる可能性は大きし〜 この面振れは±5
00μmにも達する事があa 即ち光磁気ディスクのよ
うな可換媒体の場合にはFsの変化が非常に太きt〜更
に浮上量δの平均値が数μmと比較的大きいたべ 空気
膜のばね定数が低く、δの値は押し付け方Flにより大
きく変化すも 記録層1bに与えられる磁界の大きさは
浮上量δ対してほぼ逆2乗で減衰するた数 δの変化が
大きい場合には磁界の変化も大きく、記録に必要な磁界
が得られなかったり、過大な磁界が与えられも 即ち従来例の構成では面振れによる押し付け力の変化が
大きいため記録データの信頼性が著しく低下していた 本発明は前記課題に鑑へ 面振れに対する押し付け力の
変化が小さく、信頼性の高いデータ記録の行える光磁気
記録再生装置を提供するものであも 課題を解決するための手段 この目的を達成するために本発明の光磁気記録再生装置
は スライダと、スライダに接続したロードビームと、
スライダに形成された磁気ヘッドと、磁気ヘッドの位置
にレーザ光を照射する光学系と、一端に前記スライダが
接続されたロードビームに対し磁気的吸引力を作用させ
る永久磁石または面振れを検出して面振れ信号を入力と
してロードビームの吸引力を制御する電磁石 または面
振れを検出して面振れ信号を入力としてロードビームの
変位を制御する圧電素子等の電気〜機械変換素子で構成
されていも 作用 この構成によって、面振れが大きくなっても磁気的吸引
力の距離の増大による減衰作風 または圧電素子による
ロードビームの変形によりスライダに与える押し付け力
をほぼ一定に保つことができも 実施例 以下本発明の第1の実施例について、図面を参照しなが
ら説明すも 第1@ 第2図は本発明の第1の実施例における光磁気
記録再生装置を示す図で、右手直角座標系を各図のよう
に設定すも 第1図は光磁気記録再生装置の全体を示す
医 第2図は第1図の光磁気記録再生装置に使用される
浮上ヘッド複合体の斜視図であム 便宜上Z軸の正の方
向を上人 負の方向を下方と呼属 第2図でスライダlO、ジンバル20.  ロードビー
ム30は従来例と同じものであ&、31は磁性ステンレ
ス材等による磁性体て ロードビーム30の剛体部3D
cに固定されていも スライダ10には従来例と同じく
ポール10aにはコイル2が巻回されている(図示せず
)。
Figures 9 to 12 show the main parts of a conventional magneto-optical recording/reproducing device and the flying head used.The right-handed orthogonal coordinate system is set as shown in each figure. Strabismus doctor Figure 10 (a) shows the main part of the floating head structure in y
Figure 10(b) shows the main part of the flying head viewed from the negative direction of the two axes. Figure 11 shows the components of the magneto-optical recording/reproducing device. Figure 12 shows the floating state. In Figure 9, IO is a slider made of ferrite, which is a high magnetic permeability material. 30 is a load beam whose longitudinal direction is in the y-axis direction, which is made of a stainless steel plate or the like, and includes an elastic part 30a and a fixed part 30.
b1 Consisting of rigid body part 30c The rigid body part 30c is bent and can be considered as a sufficiently rigid body - elastic part 3
0a is sufficiently wide in the X-axis direction and sufficiently thin in the Z-axis direction. Even though deformation is only possible due to the moment around the X-axis due to the effect of the aspect ratio, the fixed part 30b is made of a thicker material than the elastic part 30a. For convenience, the end of the load beam 30 in the negative direction of the y-axis is called the tip, even though there is a hole for fixing it with a screw or the like.
A gimbal made of stainless steel plate or the like connects the load beam 30 and the load beam 30 at the tip of the load beam 30.
10(a) and (b), the gimbal 20 is formed with a substantially spherical convex surface 20a that is convex in the positive direction of the two axes near the center of gravity of the slider lO, and a load beam 30 is formed on the gimbal 20.
Even if the bottom surface of the tip of the slider 10 and the gimbal 20 are in contact with the convex surface 20a, the gimbal 20 has a structure that allows the slider 10 to rotate freely relative to the load beam 30 around the X axis and the y axis, and the instantaneous center of rotation is between the convex surface 20a and the gimbal 20. load beam 3
Also, the gimbal 20 is made of a thinner material than the load beam 30. , the spring constant around the y-axis is approximately 1/20 of the elastic part 30a of the load beam 30.
The value of the slider 10. The gimbal 20 and the load beam 30 constitute the floating head structure.The elastic part 30a is not a flat surface, but is formed into a substantially cylindrical curved surface whose tip is displaced by a predetermined amount in the negative direction of the two axes. Also ready to serve
An initial deflection is given.For convenience, the end of the slider 10 in the negative direction of the y-axis is the inflow end, and the end of the positive direction of the lx-axis is the outflow end.The outflow end of the slider 10 has a pole 10a having a longitudinal direction in the Z-axis direction. 2 is a coil, which is wound around the pole 10a and has a magnetic gap m.
In Figure 2, reference numeral 1 denotes a replaceable magneto-optical disk, which is composed of a transparent substrate 1a made of polycarbonate or the like, a recording layer 1b made of a film with easy perpendicular magnetization, and a protective layer 1c made of resin or the like. A large number of concentric or spiral recording tracks are provided, and 460 is the base of the magneto-optical recording/reproducing device. Reference numeral 62 denotes a spindle motor that applies rotational torque around two axes to the magneto-optical disk 1, and even though it is fixed to the base 60, the magneto-optical disk 1 is connected to the spindle motor 62 by known means such as a magnetic clamp on the substrate 1a side. For convenience, the negative direction of the Z-axis is called downward and the positive direction is called upward.
Alternatively, even if the structure continuous with the base 60 can be moved in the direction parallel to the y-axis, this movement operation is called a seek operation.The carriage 66 is provided with an attachment part 63 for fixing the floating head structure. Although the floating head structure is fixed to the carriage 66 by the screw 64 at the fixing part 30b, the slider lO is placed above the protective layer IC and the fixing part 30b is attached to the mounting part 63.
In this state, the rigid body part 30c and the fixed part 30b are provided in a substantially parallel position. Even if the slider 10 is pressed against the protective layer 1c, the objective lens actuator 3 is mounted on the carriage 66 and has the function of moving the objective lens 4 at least in a direction parallel to the Z axis.
As shown in FIG. 12, the objective lens 4 is disposed below the pole 10a with the magneto-optical disk l in between. An optical system that generates light 5 and guides the laser beam 5 to an objective lens 4 is built in. 4 The objective lens actuator 3 applies a driving current to, for example, a moving coil type drive mechanism (not shown) to drive the objective lens. As shown in FIG. 12, the objective lens actuator 3 moves the objective lens 4 following changes in the direction parallel to the two axes of the recording layer 1b. laser beam 5
This operation is called a focus operation.The operation of the magneto-optical recording/reproducing apparatus constructed as described above will be explained below. When the rotation starts, the magneto-optical disk 1 below the slider 10
has a velocity component approximately only in the X-axis direction.If the opposing surface of the magneto-optical disk 1 of the slider 10 and the surface of the protective layer 1c are sufficiently smooth, the slider 1 as shown in FIG.
According to the fluid lubrication theory, a lifting force FL is generated by an air film at 0, and the load beam 30 lifts up from the protective layer IC at a distance δ that is balanced with the pressing force FS.In a slider using a magneto-optical disk, the number δ is usually set to avoid the influence of dust. is a few μ
Although the initial deflection is set so that
When a current is passed through the coil 2, a magnetic flux φ is generated in the slider 10 made of ferrite, which is a high magnetic permeability material, and a sufficient number of beams for recording are generated in the vicinity of the magnetic gap m. Although the magnetic flux φ passes through the recording layer 1b,
In the recording layer 1b near the ball 10a, the temperature rises due to the irradiation with the convergent laser beam 5 and the coercive force decreases. When the current in the coil 2 is modulated with the information to be recorded, the information pattern is recorded as the direction of magnetization in the recording layer lb. Since the slider is connected to the load beam 30 via the gimbal 20, Even if the magneto-optical disk 1 has undulations, the attitude of the slider will follow the undulations, but if the flying height δ is sufficiently small and stable, the recording layer 1b will have a stable strong magnetic field. Given that the recorded data has sufficient reliability, the carriage 6
6 performs a seek operation in a direction parallel to the y-axis.The slider 10 and the objective lens 4 follow and move, but the problem to be solved by the invention is the middle plate. The problem occurred in the magneto-optical disk 1 due to the force (elastic part 30
By elastically deforming a and moving the slider 10 up and down, the relative distance δ between the slider 10 and the disc-shaped recording medium 1 is maintained.
However, the elastic part 30a can be considered to be almost a linear material.The value of the pressing force F$ for the disk position 2 changes as shown in FIG. If the load changes ±U from the position of
If the value of U is small, such as in a fixed magnetic disk, there is no problem.The magneto-optical disk 1 has a large surface runout because the substrate 1a is made of resin such as polycarbonate. Since the magneto-optical disk 1 is a replaceable medium, there is a high possibility that foreign matter such as dust may be caught between the spindle motor 62 and the magneto-optical disk l, increasing the surface runout of the magneto-optical disk 1. This surface runout is ±5.
In other words, in the case of a removable medium such as a magneto-optical disk, the change in Fs is very large.Furthermore, the average value of the flying height δ is relatively large at several μm. Although the spring constant is low and the value of δ changes greatly depending on the pressing method Fl, the magnitude of the magnetic field applied to the recording layer 1b is a number that attenuates approximately at the inverse square of the flying height δ. Changes in the magnetic field are also large, and if the magnetic field necessary for recording cannot be obtained or an excessive magnetic field is applied, the reliability of recorded data is significantly reduced in the conventional configuration due to large changes in the pressing force due to surface runout. In view of the above-mentioned problems, the present invention provides a magneto-optical recording/reproducing device which is capable of recording highly reliable data with a small change in pressing force due to surface runout. In order to do this, the magneto-optical recording and reproducing apparatus of the present invention includes a slider, a load beam connected to the slider,
A magnetic head formed on a slider, an optical system that irradiates a laser beam to the position of the magnetic head, and a permanent magnet that exerts a magnetic attraction force on a load beam to which the slider is connected at one end or detects surface runout. It may consist of an electromagnet that controls the attraction force of the load beam by inputting a surface runout signal, or an electrical-to-mechanical conversion element such as a piezoelectric element that detects surface runout and controls the displacement of the load beam by inputting a surface runout signal. Effect: With this configuration, even if the surface runout increases, the pressing force applied to the slider can be kept almost constant by damping the magnetic attraction force by increasing the distance or deforming the load beam by the piezoelectric element. The first embodiment of the invention will be described with reference to the drawings. Figures 1 and 2 are diagrams showing a magneto-optical recording and reproducing apparatus in the first embodiment of the invention, and each figure shows a right-handed orthogonal coordinate system. Figure 1 shows the entirety of the magneto-optical recording and reproducing apparatus. Figure 2 is a perspective view of the floating head complex used in the magneto-optical recording and reproducing apparatus of Figure 1. For convenience, the Z-axis The positive direction is called the upper direction, and the negative direction is called the lower direction.In Figure 2, slider lO and gimbal 20. The load beam 30 is the same as the conventional example & 31 is a magnetic material made of magnetic stainless steel etc. Rigid body part 3D of the load beam 30
Even if the slider 10 is fixed to the pole 10a, the coil 2 is wound around the pole 10a (not shown) as in the conventional example.

第1図で光磁気ディスクl、対物レンズアクチュエータ
3、対物レンズ4、ベース6o、スピンドルモータ62
、ねじ64、車輪65は従来例と同じものであ&  6
1はキャリッジで、若干の形状が異なる他は従来例のキ
ャリッジ66と同じ機能を果たし 取り付け部63の形
状も同じであも70は永久磁石て 磁性体31の下方に
所定の間隔を蓋いてキャリッジ61に搭載されてい4以
上のように構成された光磁気記録再生装置について、以
下その動作について説明すもスライダ10の浮上状態に
おける記録動作については従来例と同じであるため省略
すも 第3図(a)〜(C)に光磁気ディスクlの面振
れによるスライダ10にかかる押し付け力Faの変動を
示す。z軸の正の方向を力の正の向きにとっていも第3
図(a)はロードビーム3oの弾性部30aの弾性復元
力によりスライダ1oにかかる力F4の面振れによる変
化を示し 従来例とほぼ同じであも 第3図(b)は永
久磁石7oが磁性体31を下方に吸引する力によりスラ
イダ10にかかる力F11の面振れによる変化を示机 
永久磁石7oにょる吸引力は距離に対し非線形に急激に
変化するた数 光磁気ディスク1が面振れにより下方に
移動すると大きな力を発生し 上方に移動するとほとん
ど力が作用しなt〜 おおまかな勾配はFllの曲線の
ほぼ逆であも 第3図(C)は実際にスライダ10に作
用する押し付け力F―の面振れによる変化を示LA F
sとFllの和であム 従来例と同様光磁気ディスク1
が平均値zmから±U変化すると、スライダ10に作用
する押し付け力Flは図示のF・LからF口まで変化す
4  Fllの効果により、従来例のas13図に比較
してFsの変化が大幅に小さくなも 以上のように本実施例によれば ロードビーム30の変
位特性のほぼ逆特性を磁性体31と永久磁石70を用い
て容易に得る事ができ、面振れに対するスライダ10へ
の押し付け力の変化を大幅に圧縮する事ができも 従っ
て、非常に面振れの大きい場合でもスライダ10の浮上
量はほぼ一定に保たれ 安定な記録特性が実現できも 
また同じ理由により光磁気ディスクlと取り付け部83
の2軸方向の相対位置に対する荷重の感度が低くなるた
数 従来スペーサ等で行われていた固定部30bの2軸
方向の位置調整が不必要になり、コストダウンを図るこ
とができも な耘 本実施例では永久磁石7oを別に設けため丈 一
般に対物レンズアクチュエータ3はフォーカス動作用の
磁気回路を有しており、スライダlOはフェライト磁性
体であも 従って対物レンズアクチュエータ3の漏れ磁
束が十分でがっ記録に影響がない範囲であれば対物レン
ズアクチュエータの磁気回路に永久磁石7oへ スライ
ダ10に磁性体31の機能を与えても差し支えなL%以
下、本発明における第2の実施例について、図面を参照
しながら説明すも 第4図は本発明の第2の実施例における光磁気記録再生
装置を示す図であa 浮上ヘッド複合体の構成は第1の
実施例と同様であるため省略すも第1の実施例と同様図
示の様に座標系を設定すa光磁気ディスク1、対物レン
ズアクチュエータ3、対物レンズ4、スピンドルモータ
62、スライダ10、ロードビーム30.  磁性対3
1、ねじ64、車輪65は第1の実施例と同じものであ
ム キャリッジ66は取り付け部63を含めて従来例と
同じものであ&  71は永久磁石であも 永久磁石7
1はy軸に平行な方向に長手方向を有し 長手方向の長
さはほぼ光磁気ディスク1の記録領域の半径方向の長さ
に等しく−永久磁石71は磁性体31の上方に配置され
 キャリッジ66が記録領域の任意の位置にシーク動作
を行っても常に磁性体31に吸引力を与えるように磁性
体31の上方のベース67に固定されていも ベース6
7は永久磁石71の固定部を除いては第1の実施例のベ
ース60と同じものであa 以上のように構成された光磁気記録再生装置について、
以下その動作について説明すもスライダ10の浮上状態
における記録動作については従来例と同じであるため省
略すも 第5図(a)〜(C)に光磁気ディスク1の面
振れによるスライダlOにがかる力F8の変動を示す。
In FIG. 1, a magneto-optical disk l, an objective lens actuator 3, an objective lens 4, a base 6o, and a spindle motor 62 are shown.
, the screw 64 and the wheel 65 are the same as in the conventional example &6
Reference numeral 1 denotes a carriage, which has the same function as the conventional carriage 66 except for a slight difference in shape.The shape of the attachment part 63 is also the same, and 70 is a permanent magnet that is placed below the magnetic body 31 at a predetermined interval. The operation of the magneto-optical recording/reproducing device mounted on the slider 61 and configured as shown in FIG. (a) to (C) show variations in the pressing force Fa applied to the slider 10 due to surface runout of the magneto-optical disk l. The third potato with the positive direction of the z-axis as the positive direction of the force.
Figure (a) shows the change in the force F4 applied to the slider 1o due to the elastic restoring force of the elastic part 30a of the load beam 3o due to surface runout. This graph shows the change in the force F11 applied to the slider 10 due to the force that sucks the body 31 downward due to surface deflection.
The attraction force exerted by the permanent magnet 7o rapidly changes non-linearly with respect to the distance. When the magneto-optical disk 1 moves downward due to surface runout, a large force is generated, and when it moves upward, almost no force is applied. Even though the slope is almost the opposite of the curve of Fl.
The sum of s and Fll is the magneto-optical disk 1 as in the conventional example.
When changes by ±U from the average value zm, the pressing force Fl acting on the slider 10 changes from the F L shown in the figure to the F opening.4 Due to the effect of Fl, the change in Fs is significant compared to the conventional example as13 diagram. As described above, according to this embodiment, it is possible to easily obtain almost the opposite displacement characteristic of the load beam 30 by using the magnetic body 31 and the permanent magnet 70, thereby reducing the pressure on the slider 10 against surface runout. Changes in force can be greatly compressed. Therefore, even when the surface runout is extremely large, the flying height of the slider 10 can be kept almost constant, and stable recording characteristics can be achieved.
Also, for the same reason, the magneto-optical disk l and the mounting part 83
The sensitivity of the load to the relative position of the fixed part 30b in the two axial directions becomes lower. The position adjustment of the fixing part 30b in the two axial directions, which was conventionally performed using a spacer, etc., becomes unnecessary, and costs can be reduced. In this embodiment, since the permanent magnet 7o is provided separately, the objective lens actuator 3 generally has a magnetic circuit for focus operation, and even though the slider IO is made of ferrite magnetic material, the leakage magnetic flux of the objective lens actuator 3 is sufficient. Regarding the second embodiment of the present invention, the permanent magnet 7o may be added to the magnetic circuit of the objective lens actuator as long as it does not affect recording. This will be explained with reference to the drawings, and FIG. 4 is a diagram showing a magneto-optical recording and reproducing apparatus according to a second embodiment of the present invention. As in the first embodiment, the coordinate system is set as shown in the figure.a Magneto-optical disk 1, objective lens actuator 3, objective lens 4, spindle motor 62, slider 10, load beam 30. magnetic pair 3
1. The screw 64 and the wheel 65 are the same as in the first embodiment. The carriage 66 is the same as in the conventional example including the attachment part 63. & 71 is a permanent magnet.
1 has a longitudinal direction in a direction parallel to the y-axis, and the length in the longitudinal direction is approximately equal to the length in the radial direction of the recording area of the magneto-optical disk 1.The permanent magnet 71 is arranged above the magnetic body 31. Even if the base 66 is fixed to the base 67 above the magnetic body 31 so as to always apply an attractive force to the magnetic body 31 even if the base 66 performs a seek operation to any position in the recording area, the base 6
Reference numeral 7 is the same as the base 60 of the first embodiment except for the fixing part of the permanent magnet 71.a Regarding the magneto-optical recording and reproducing apparatus configured as above,
The operation will be explained below, but since the recording operation when the slider 10 is in the floating state is the same as the conventional example, it will be omitted. Figs. The variation of force F8 is shown.

Z軸の正の方向を力の正の向きにとっていも 第3図(
a)はロードビーム30の弾性部30aの弾性復元力に
よりスライダ10にかかる力F角の面振れによる変化を
示し 従来例とほぼ同じであも 第3図(b)は永久磁
石71が磁性体31を上方に吸引する力によりスライダ
10にかかる力FNの面振れによる変化を示す。第1の
実施例と同様 永久磁石71による吸引力は距離に対し
非線形に急激に変化するたべ 光磁気ディスク1が面振
れにより上方に移動して磁性体31が永久磁石71に接
近すると大きな力を発生し 下方に移動して距離が大き
くなるとほとんど力が作用しな(〜 おおまかな勾配は
第1の実施例と同じくF^の曲線のほぼ逆である戟 第
1の実施例の永久磁石70とは永久磁石71の配置が異
なるため2階微分の符号と作用する力FNの符号が異な
a 第3図(c)は実際にスライダ10に作用する押し
付け力Fsの面振れによる変化を示L  F、とFMの
和であも 第1の実施例と同様スライダ10に作用する
押し付け方F―の変化F @t−)’ *+はFMの効
果により従来例の第13図に比較して大幅に小さくなa
本実施例の動作及び効果は第1の実施例とほぼ同様であ
る力丈 第1の実施例に比べ 永久磁石71をキャリッ
ジ61に搭載する必要がなくなるためシーク動作時の質
量の低減が図れ より高速シークに適すも 以下、本発明の第3の実施例について、図面を参照しな
がら説明すも 第6図は本発明の第3の実施例における光磁気記録再生
装置を示す図であも 浮上ヘッド複合体の構成は第1の
実施例と同様であるため省略すも第1の実施例と同様図
示の様に座標系を設定すa光磁気ディスクl、対物レン
ズアクチュエータ3、対物レンズ4、キャリッジ61、
スピンドルモータ62、取り付け部63、スライダ1o
、ロードビーム30、磁性対31、ねじ64、車輪65
は第1の実施例と同じものであも 72は電磁石て磁性
体31の下方に所定の間隔を置いてキャリッジ61に搭
載されていも 80はフォーカス駆動電流検出回路ス 
フォーカス動作を行う対物レンズアクチュエータ3の対
物レンズ4の2軸方向へ駆動するための駆動電流を検出
し 対物レンズ4の移動を検出して光磁気ディスク1の
2軸に平行な方向への変位に相当する電圧に換算し 変
位信号として出力する回路であも 81は制御回路てフ
ォーカス駆動電流検出回路8oからの変位信号を入力と
L 電磁石72の駆動電流に比例した電圧信号である電
磁石駆動信号を出方とすモ82は電磁石駆動回路で、制
御回路81がらの電磁石駆動信号を入力とし 入力に比
例した電磁石駆動電流を電磁石72に与えも 制御回路
81 CL  変位信号と、変位信号に対応してスライ
ダ1oの押し付け力をほぼ一定にする電磁石72の磁性
体31に対する吸引力を与える電磁石駆動電流に該当す
る電磁石駆動信号との補正テーブルを有しており、変位
信号が入力されると補正テーブルから変位信号に該当す
る電磁石駆動信号を線型補間により換算して出力すa 以上のように構成された光磁気記録再生装置について、
以下その動作について説明すも既に光磁気ディスク1は
回転しており、従来例で示した記録動作は実行中である
とすa いま、光磁気ディスク1が面振れにより変位す
ると、対物レンズアクチュエータ3のフォーカス動作に
より対物レンズ4が駆動され フォーカス駆動電流が変
化すも この啄 ロードビーム30の先端が移動するた
め弾性部30aの歪が変化し また磁性体31と電磁石
72の距離も変化するたべ スライダ10の押し付け方
F@が変化すも この時フォーカス駆動電流検出回路8
0はフォーカス駆動電流を光磁気ディスク1の変位に換
算し 変位信号として制御回路81に出力すa 制御回
路81は入力された変位信号の近傍2点の変位信号デー
タと電磁石駆動信号データを内蔵する補正テーブルから
取り出し 線型補間により入力変位信号に該当する電磁
石駆動信号を出力すa 補正テーブルには変位信号と押
し付け力を一定にする電磁石駆動電流に該当する電磁石
駆動電圧のデータが記述されているた八 出力される電
磁石駆動信号は押し付け力を一定にする補正された値で
あも 電磁石駆動回路82は入力された電磁石駆動信号
に該当する電磁石駆動電流を電磁石72に与えて電磁石
72が磁性体31を吸引して補正が完了しスライダ10
の押し付け力は一定となも以上のように本実施例によれ
ばスライダ10の押し付け力は第1、第2の実施例に比
べて非常に精密に一定の値に維持することができ、面振
れに対してスライダ10の浮上量δが極めて優れた安定
性を示す。従って、本実施例はδの値が非常に大きくて
空気膜のばね定数が低く、永久磁石では適切な補正範囲
に入らないような不安定性の大きな系に適していも な耘 第1、第2、第3の実施例ではロードビーム30
に磁性体31を設けた力丈 ロードビーム30が磁性体
で構成されていても差し支えな賎この場合はより軽量化
を図ることができも以下、本発明の第4の実施例につい
て、図面を参照しながら説明すも 第7医 第8図は本発明の第4の実施例における光磁気
記録再生装置を示す図であ4 第1の実施例と同様右手
直角座標系を各図のように定義すも 第8図は光磁気記
録再生装置の全体医 第7図は第8図の光磁気記録再生
装置に使用される浮上ヘッド複合体の斜視図であも 第7図でスライダ10、ジンバル20、ロードビーム3
0は第1の実施例と同じものであも 32は圧電素子で
、固定部30bと剛体部30cの間に設けられていも 
圧電素子32は通常は平板状である力叉 電圧を与える
とX軸方向を中心軸とする円筒殻状に変形し ロードビ
ーム30の先端を略2軸方向に変位させも 第8図で光
磁気ディスク1、対物レンズアクチュエータ3、対物レ
ンズ4、ベース60、スピンドルモータ62、ねじ64
、車輪65は第1の実施例と同じものであもキャリッジ
66は取り付け部63を含めて第2の実施例と同じもの
であも フォーカス駆動電流検出回路80は第3の実施
例と同じものであも 84は制御回路玄 フォーカス駆
動電流検出回路80からの変位信号を入力とし 圧電素
子32の駆動電圧に比例した圧電素子駆動信号を出力と
すも85は圧電素子駆動回路て 制御回路84からの圧
電素子駆動信号を入力とし 入力に比例した圧電素子駆
動電圧を圧電素子32に与え4 制御回路84シよ 変
位信号と、変位信号に対応してスライダ10の押し付け
力をほぼ一定にする圧電素子32の変形に該当する圧電
素子駆動電圧を与える圧電素子駆動信号との補正テーブ
ルを有しており、変位信号が入力されると補正テーブル
から変位信号に該当する圧電素子駆動信号を線型補間に
より換算して出力すも 以上のように構成された光磁気記録再生装置について、
以下その動作について説明すも既に光磁気ディスク1は
回転しており、従来例で示した記録動作は実行中である
とすム いま、光磁気ディスク1が面振れにより変位す
ると、対物レンズアクチュエータ3のフォーカス動作に
より対物レンズ4が駆動され フォーカス駆動電流が変
化すも この隊 光磁気ディスク1の変位によりスライ
ダ10の押し付け力Flが変化すも フォーカス駆動電
流検出回路80はフォーカス駆動電流を光磁気ディスク
lの変位に換算し 変位信号として制御回路84に出力
すム 制御回路84は入力された変位信号の近傍2点の
変位信号データと圧電素子駆動信号データを内蔵する補
正テーブルから取り出し 線型補間により入力変位信号
に該当する圧電素子駆動信号を出力すも 補正テーブル
には変位信号と押し付け力を一定にする圧電素子駆動電
圧に該当する圧電素子駆動信号のデータが記述されてい
るた数 出力される圧電素子駆動信号は押し付け力を一
定にする補正された値であム 圧電素子駆動回路85は
入力された圧電素子駆動信号に該当する圧電素子駆動信
号を圧電素子32に与えて圧電素子を変形させ、ロード
ビーム30の先端を変位させて補正が完了し スライダ
IOの押し付け力は一定となム 本実施例の効果は第3の実施例とほぼ同様である力丈 
磁気的吸引力を使用しない点で、外部磁界が問題となる
ような応用に適当であも な叙 第3、第4の実施例で光磁気ディスクlの変位を
検出する検出器として対物レンズアクチュエータ3を用
いた戟 例えば対物レンズ4の近傍に反射型の光学セン
サを設けてもよl、%  この場合は検出器からの出力
に積分等の操作を加える必要がなくなるたべ 精度の向
上が期待できも発明の効果 本発明&よ スライダと、スライダに接続したロードビ
ームと、スライダに形成された磁気ヘッドと、磁気ヘッ
ドの位置にレーザ光を照射する光学系と、一端に前記ス
ライダが接続されたロードビームに対し磁気的吸引力を
作用させる永久磁器または面振れを検出して面振れ信号
を入力としてロードビームの吸引力を制御する電磁孔 
または面振れを検出して面振れ信号を入力としてロード
ビームの変位を制御する圧電素子等の電気〜機械変換素
子とを備えたことにより、光磁気ディスクの面振れによ
るロードビーム先端の変位に追従して磁気的吸引力 ま
たは圧電素子によるロードビーム荷重の補正が行われる
た八 常にほぼ一定のスライダ押し付け力が得られも 
従ってスライダの浮上量がほぼ一定となって光磁気ディ
スクに与えられる磁界の強さが安定し データの信頼性
が向上すも また 光磁気ディスクとロードビームの取
り付け高さの誤差による押し付け力の変化が無視できる
ようになり、調整行程が書法 コストダウンが図れa 
更圏 スライダの浮上量を比較的大きくしてほこりの影
響を避ける場合にL 空気膜のばね定数が低下していて
もほぼ一定の浮上量を安全に得ることができるという数
々の優れた効果を得ることのできる光磁気記録再生装置
を実現できるものであも
The positive direction of the Z-axis is the positive direction of the force.
a) shows the change in the force F angle applied to the slider 10 due to the elastic restoring force of the elastic part 30a of the load beam 30.Although it is almost the same as the conventional example, FIG. 3(b) shows that the permanent magnet 71 is a magnetic material. 31 shows changes in the force FN applied to the slider 10 due to surface runout due to the force that attracts the slider 31 upward. Similar to the first embodiment, the attractive force by the permanent magnet 71 changes rapidly and non-linearly with respect to the distance. When the magneto-optical disk 1 moves upward due to surface runout and the magnetic body 31 approaches the permanent magnet 71, a large force is generated. When the magnet is generated and moves downward and the distance increases, almost no force acts on it (~ The rough slope is almost the opposite of the curve of F^ as in the first embodiment.) Because the arrangement of the permanent magnets 71 is different, the sign of the second-order differential and the sign of the acting force FN are different.a FIG. , and FM. Similar to the first embodiment, the change in the pressing method F- acting on the slider 10 F@t-)' *+ is significantly greater than that in the conventional example shown in FIG. 13 due to the effect of FM. small a
The operation and effects of this embodiment are almost the same as those of the first embodiment. Compared to the first embodiment, there is no need to mount the permanent magnet 71 on the carriage 61, so the mass during the seek operation can be reduced. The third embodiment of the present invention, which is suitable for high-speed seeking, will be described below with reference to the drawings. Fig. 6 is a diagram showing a magneto-optical recording and reproducing device in the third embodiment of the present invention. The structure of the head complex is the same as that of the first embodiment, so it will be omitted.As in the first embodiment, the coordinate system is set as shown in the figure. carriage 61,
Spindle motor 62, mounting part 63, slider 1o
, load beam 30, magnetic pair 31, screw 64, wheel 65
may be the same as in the first embodiment; 72 may be an electromagnet mounted on the carriage 61 at a predetermined distance below the magnetic body 31; and 80 may be a focus drive current detection circuit.
It detects the driving current for driving the objective lens 4 of the objective lens actuator 3 that performs the focusing operation in the two-axis directions, detects the movement of the objective lens 4, and detects the displacement of the magneto-optical disk 1 in the direction parallel to the two axes. 81 is a control circuit which inputs the displacement signal from the focus drive current detection circuit 8o and outputs an electromagnet drive signal which is a voltage signal proportional to the drive current of the electromagnet 72. The output motor 82 is an electromagnet drive circuit which inputs the electromagnet drive signal from the control circuit 81 and gives an electromagnet drive current proportional to the input to the electromagnet 72. It has a correction table with an electromagnet drive signal corresponding to an electromagnet drive current that gives an attractive force to the magnetic body 31 of the electromagnet 72 that makes the pressing force of the slider 1o almost constant, and when a displacement signal is input, the correction table is The electromagnet drive signal corresponding to the displacement signal is converted by linear interpolation and output.a Regarding the magneto-optical recording and reproducing device configured as above,
The operation will be explained below, but it is assumed that the magneto-optical disk 1 is already rotating and the recording operation shown in the conventional example is being executed. The objective lens 4 is driven by the focus operation of the slider, and the focus drive current changes.As the tip of the load beam 30 moves, the distortion of the elastic part 30a changes, and the distance between the magnetic body 31 and the electromagnet 72 also changes. Although the pressing method F@ of 10 changes, at this time the focus drive current detection circuit 8
0 converts the focus drive current into the displacement of the magneto-optical disk 1 and outputs it as a displacement signal to the control circuit 81. The control circuit 81 contains displacement signal data of two points near the input displacement signal and electromagnet drive signal data. Extract from the correction table and output the electromagnet drive signal corresponding to the input displacement signal by linear interpolation.a The correction table contains the data of the electromagnet drive voltage corresponding to the electromagnet drive current that keeps the displacement signal and pressing force constant. 8. The output electromagnet drive signal may be a corrected value that keeps the pressing force constant. The electromagnet drive circuit 82 applies an electromagnet drive current corresponding to the input electromagnet drive signal to the electromagnet 72, so that the electromagnet 72 moves to the magnetic body 31. The correction is completed by suctioning the slider 10.
The pressing force of the slider 10 is kept constant.As described above, according to this embodiment, the pressing force of the slider 10 can be maintained at a constant value much more precisely than in the first and second embodiments. The flying height δ of the slider 10 exhibits extremely excellent stability against vibration. Therefore, this embodiment is suitable for highly unstable systems where the value of δ is very large, the spring constant of the air film is low, and permanent magnets are not within the appropriate correction range. , in the third embodiment, the load beam 30
In this case, even if the load beam 30 is made of a magnetic material, the weight can be further reduced. 8 is a diagram showing a magneto-optical recording and reproducing apparatus according to a fourth embodiment of the present invention. 4 As in the first embodiment, the right-handed orthogonal coordinate system is expressed as shown in each figure. Definition sumo Fig. 8 is a general doctor for the magneto-optical recording and reproducing device Fig. 7 is a perspective view of the floating head complex used in the magneto-optical recording and reproducing device of Fig. 8. 20, load beam 3
0 may be the same as in the first embodiment; 32 may be a piezoelectric element provided between the fixed part 30b and the rigid body part 30c;
The piezoelectric element 32 normally has a flat plate shape, but when a voltage is applied, it deforms into a cylindrical shell shape with the central axis in the X-axis direction, displacing the tip of the load beam 30 in approximately two axes. Disk 1, objective lens actuator 3, objective lens 4, base 60, spindle motor 62, screw 64
The wheels 65 are the same as in the first embodiment, the carriage 66 is the same as in the second embodiment, including the attachment part 63, and the focus drive current detection circuit 80 is the same as in the third embodiment. 84 is a control circuit which inputs the displacement signal from the focus drive current detection circuit 80 and outputs a piezoelectric element drive signal proportional to the drive voltage of the piezoelectric element 32. Reference numeral 85 is a piezoelectric element drive circuit from the control circuit 84. The control circuit 84 inputs a piezoelectric element drive signal and applies a piezoelectric element drive voltage proportional to the input to the piezoelectric element 32.The control circuit 84 receives a displacement signal and a piezoelectric element that makes the pressing force of the slider 10 almost constant in response to the displacement signal. It has a correction table with the piezoelectric element drive signal that gives the piezoelectric element drive voltage corresponding to the transformation of 32, and when a displacement signal is input, the piezoelectric element drive signal corresponding to the displacement signal is converted from the correction table by linear interpolation. Regarding the magneto-optical recording and reproducing device configured as above,
The operation will be explained below, but it is assumed that the magneto-optical disk 1 is already rotating and the recording operation shown in the conventional example is being executed. The objective lens 4 is driven by the focusing operation, and the focus drive current changes.The focus drive current detection circuit 80 converts the focus drive current into the magneto-optical disk. It is converted into a displacement of l and output as a displacement signal to the control circuit 84.The control circuit 84 extracts displacement signal data of two points near the input displacement signal and piezoelectric element drive signal data from a built-in correction table and inputs it by linear interpolation. Outputs the piezoelectric element drive signal that corresponds to the displacement signal.The correction table contains data for the piezoelectric element drive signal that corresponds to the piezoelectric element drive voltage that keeps the displacement signal and pressing force constant. The element drive signal is a corrected value that keeps the pressing force constant. The piezoelectric element drive circuit 85 applies a piezoelectric element drive signal corresponding to the inputted piezoelectric element drive signal to the piezoelectric element 32 to deform the piezoelectric element, The correction is completed by displacing the tip of the load beam 30, and the pressing force of the slider IO remains constant.The effect of this embodiment is almost the same as that of the third embodiment.
In the third and fourth embodiments, the objective lens actuator is used as a detector for detecting the displacement of the magneto-optical disk l. For example, a reflective optical sensor may be installed near the objective lens 4. In this case, there is no need to perform operations such as integration on the output from the detector, and an improvement in accuracy can be expected. Effects of the Invention The present invention includes a slider, a load beam connected to the slider, a magnetic head formed on the slider, an optical system that irradiates a laser beam to the position of the magnetic head, and one end of which the slider is connected. Permanent porcelain that applies a magnetic attraction force to the load beam, or an electromagnetic hole that detects surface runout and uses the surface runout signal as input to control the attraction force of the load beam.
Alternatively, it is equipped with an electrical-to-mechanical conversion element such as a piezoelectric element that detects surface runout and inputs the surface runout signal to control the displacement of the load beam, thereby tracking the displacement of the load beam tip due to surface runout of the magneto-optical disk. Since the load beam load is corrected by the magnetic attraction force or piezoelectric element, it is possible to always obtain a nearly constant slider pressing force.
Therefore, the flying height of the slider becomes almost constant, the strength of the magnetic field applied to the magneto-optical disk becomes stable, and the reliability of data improves. However, the pressing force changes due to the error in the mounting height of the magneto-optical disk and the load beam. can now be ignored, and the adjustment process can be written in a more cost-effective manner.
Parasphere When the slider's flying height is relatively large to avoid the influence of dust, it has many excellent effects such as being able to safely obtain a nearly constant flying height even if the spring constant of the air film is reduced. It is possible to realize a magneto-optical recording and reproducing device that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における光磁気記録再生
装置の全体重 第2図は本発明の第1の実施例における
光磁気記録再生装置の浮上ヘッド複合体の斜視医 第3
図は本発明の第1の実施例における光磁気記録再生装置
の面振れによる押し付け力変化を示す医 第4図は本発
明の第2の実施例における光磁気記録再生装置の全体@
 第5図は本発明の第2の実施例における光磁気記録再
生装置の面振れによる押し付け力変化を示す阻第6図は
本発明の第3の実施例における光磁気記録再生装置の全
体重 第7図は本発明の第4の実施例における光磁気記
録再生装置の浮上ヘッド複合体の斜視医 第8図は本発
明の第4の実施例における光磁気記録再生装置の全体重
 第9図は従来例における光磁気記録再生装置の浮上ヘ
ッド複合体の斜視医 第10図は従来例における光磁気
記録再生装置の浮上ヘッド複合体の要部を示す医第11
図は従来例における光磁気記録再生装置の全体重 第1
2図は従来例における光磁気記録再生装置の記録動作を
示す医 第13図は従来例における光磁気記録再生装置
の面振れによる押し付け力変化を示す図であa 1・・・円盤状記録媒恢 1b・・・記録凰 2・・・
コイ/k 3・・・対物レンズアクチュエー久 4・・
・対物レンX5・・・ハブ、 10・・・スライダ、 
20・・・ジンバ&30・・・ロードビーム 31・・
・磁性恢 32・・・圧電素子、60、67・・・ベー
、L  61.66・・・キャリッジ、70、71・・
・永久磁′EK 72・・・電磁孔80・・−フォーカ
ス駆動電流積出回181、84・・・制御回182、8
5・・・電磁石駆動回臨代理人の氏名 弁理士 小鍜治
 明 スライダ” ジンバル ob 耳条 図 第 図 第 図 3z−弓E電茶了 第 スライダ ジンハJし ob / 第1CD z0ユ 2− コイル 1O0L−”ホール 乙0a−−− 凸 1凸 χ 第13− ト
FIG. 1 shows the overall weight of the magneto-optical recording and reproducing apparatus according to the first embodiment of the present invention. FIG.
The figure shows changes in pressing force due to surface runout of the magneto-optical recording and reproducing apparatus in the first embodiment of the present invention. Figure 4 shows the entire magneto-optical recording and reproducing apparatus in the second embodiment of the present invention @
FIG. 5 shows the change in pressing force due to surface runout of the magneto-optical recording and reproducing apparatus according to the second embodiment of the present invention. Figure 7 is a perspective view of the floating head complex of the magneto-optical recording and reproducing apparatus in the fourth embodiment of the present invention. Figure 8 is the overall weight of the magneto-optical recording and reproducing apparatus in the fourth embodiment of the present invention. Fig. 10 shows a perspective view of a floating head complex of a magneto-optical recording and reproducing apparatus in a conventional example.
The figure shows the overall weight of a conventional magneto-optical recording/reproducing device.
Fig. 2 is a diagram showing the recording operation of a magneto-optical recording/reproducing device in a conventional example. Fig. 13 is a diagram showing changes in pressing force due to surface runout of a magneto-optical recording/reproducing device in a conventional example.恢 1b...Record 凰 2...
Carp/k 3...Objective lens actuator 4...
・Objective lens X5...hub, 10...slider,
20... Jimba & 30... Road beam 31...
・Magnetic type 32...Piezoelectric element, 60, 67...B, L 61.66...Carriage, 70, 71...
・Permanent magnet'EK 72...Electromagnetic hole 80...-Focus drive current output circuit 181, 84...Control circuit 182, 8
5... Name of the electromagnet drive agent Patent attorney Akira Okaji Slider gimbal ob ear strip diagram diagram diagram diagram 3z-bow E electric cable digit slider jinha Jshiob / 1st CD z0yu2- coil 1O0L- "Hole Otsu 0a --- Convex 1 convex χ 13th-

Claims (16)

【特許請求の範囲】[Claims] (1)レーザによる収れん光を光磁気記録媒体に照射す
る機能を少なくとも有する光学系と、前記光磁気記録媒
体を挟んで前記収れん光と対向する位置に配置され前記
光磁気記録媒体の相対移動によって生じる空気流を取り
入れて前記光磁気記録媒体と対向する対向面に圧力を発
生させることで前記円盤状記録媒体から離れる方向の浮
上刃を得るスライダと前記スライダの一部に構成され前
記光磁気記録媒体の記録面の前記収れん光の照射される
位置に磁界を付与する磁気ヘッドと、一端に前記スライ
ダが接続され弾性変形可能な弾性部を少なくとも有し弾
性復元力によって前記光磁気記録媒体に接近させる方向
の押し付け力を前記スライダに付与するロードビームと
、前記ロードビームの前記弾性部を除く前記スライダに
近い側に設けられた磁性体で構成された磁気吸引部と、
前記ロードビームを除く部分に設けられ前記磁気吸引部
を吸引する磁石を設けたことを特徴とする光磁気記録再
生装置。
(1) An optical system having at least a function of irradiating a magneto-optical recording medium with convergent light from a laser, and an optical system that is arranged at a position facing the convergent light with the magneto-optical recording medium in between, and which is arranged to face the convergent light with the magneto-optical recording medium in between, A slider that obtains a floating blade in a direction away from the disk-shaped recording medium by taking in a generated air flow and generating pressure on an opposing surface facing the magneto-optical recording medium; a magnetic head that applies a magnetic field to a position on the recording surface of the medium that is irradiated with the convergent light, and at least an elastic section that is connected to the slider at one end and can be elastically deformed, and approaches the magneto-optical recording medium using an elastic restoring force. a load beam that applies a pressing force to the slider in a direction to cause the slider to move, and a magnetic attraction section that is made of a magnetic material and is provided on a side of the load beam that is close to the slider, excluding the elastic section;
A magneto-optical recording and reproducing apparatus, characterized in that a magnet is provided in a portion other than the load beam and attracts the magnetic attraction section.
(2)ロードビームが磁性体で構成されていることを特
徴とする請求項1記載の光磁気記録再生装置。
(2) The magneto-optical recording and reproducing apparatus according to claim 1, wherein the load beam is made of a magnetic material.
(3)光磁気記録媒体が円盤状記録媒体であって、レー
ザ光を前記円盤状記録媒体に収れんさせるための対物レ
ンズ及び前記対物レンズを前記円盤状記録媒体の少なく
とも法線方向に移動自在に支持する対物レンズアクチュ
エータを少なくとも有する光学系と、前記円盤状記録媒
体の略半径方向に移動自在に構成されたキャリッジと、
ベースと、前記ベースに固定され前記円盤状記録媒体の
法線方向に平行な方向の中心軸周りの回転トルクを与え
るスピンドルモータと、前記円盤状記録媒体の略半径方
向に長手方向を持ちスライダから遠い端部の弾性部を除
く端部を固定部としたロードビームとを有し、前記キャ
リッジには前記光学系と、ロードビームの固定部とを固
定したことを特徴とする請求項1または2記載の光磁気
記録再生装置。
(3) The magneto-optical recording medium is a disc-shaped recording medium, and an objective lens for converging a laser beam on the disc-shaped recording medium and the objective lens are movable at least in the normal direction of the disc-shaped recording medium. an optical system having at least a supporting objective lens actuator; a carriage configured to be movable in a substantially radial direction of the disc-shaped recording medium;
a base; a spindle motor that is fixed to the base and provides rotational torque about a central axis in a direction parallel to the normal direction of the disk-shaped recording medium; 3. A load beam comprising a fixed part at an end other than an elastic part at a far end, and the optical system and the fixed part of the load beam are fixed to the carriage. The magneto-optical recording and reproducing device described above.
(4)磁石が永久磁石で、キャリッジに搭載されている
ことを特徴とする請求項3記載の光磁気記録再生装置。
(4) The magneto-optical recording and reproducing apparatus according to claim 3, wherein the magnet is a permanent magnet and is mounted on the carriage.
(5)磁石が永久磁石で、ベースに固定され円盤状記録
媒体の半径方向の記録領域と略等しい長手方向の長さを
有し、前記長手方向がキャリッジの移動方向と略平行に
配置されたことを特徴とする請求項3記載の光磁気記録
再生装置。
(5) The magnet is a permanent magnet, is fixed to the base, and has a length in the longitudinal direction that is approximately equal to the recording area in the radial direction of the disk-shaped recording medium, and the longitudinal direction is arranged approximately parallel to the moving direction of the carriage. 4. The magneto-optical recording and reproducing apparatus according to claim 3, characterized in that:
(6)磁石が電磁石であって、収れん光入射方向に略平
行な方向への光磁気記録媒体の変位を検出して変位信号
を出力する変位検出手段と、前記変位信号を入力とし前
記変位に対する押し付け力の変化を補正する補正テーブ
ルを有して電磁石駆動信号を出力する制御部と、前記電
磁石駆動信号を入力とし電磁石に駆動電流を供給する電
磁石駆動部を有することを特徴とする請求項1または2
記載の光磁気記録再生装置。
(6) a displacement detection means in which the magnet is an electromagnet, detects the displacement of the magneto-optical recording medium in a direction substantially parallel to the direction of incidence of the convergent light and outputs a displacement signal; Claim 1 characterized by comprising: a control section that has a correction table for correcting changes in pressing force and outputs an electromagnet drive signal; and an electromagnet drive section that receives the electromagnet drive signal as input and supplies a drive current to the electromagnet. or 2
The magneto-optical recording and reproducing device described above.
(7)光磁気記録媒体へレーザを収れんさせて収れん光
とするための対物レンズ及び前記対物レンズを前記収れ
ん光の入射方向に少なくとも略平行に移動自在に支持し
前記対物レンズを駆動電流により駆動する対物レンズア
クチュエータを少なくとも光学系に有し、変位検出手段
が前記対物レンズアクチュエータの前記駆動電流の検出
手段であることを特徴とする請求項6記載の光磁気記録
再生装置。
(7) An objective lens for converging a laser beam onto a magneto-optical recording medium to produce convergent light; and supporting the objective lens so as to be movable at least substantially parallel to the incident direction of the convergent light, and driving the objective lens with a drive current. 7. The magneto-optical recording and reproducing apparatus according to claim 6, wherein at least the optical system includes an objective lens actuator, and the displacement detecting means is a means for detecting the drive current of the objective lens actuator.
(8)補正テーブルは変位信号の定数倍と電磁石駆動電
流の定数倍からなることを特徴とする請求項6記載の光
磁気記録再生装置。
(8) The magneto-optical recording and reproducing apparatus according to claim 6, wherein the correction table is made up of a constant times the displacement signal and a constant times the electromagnet drive current.
(9)光磁気記録媒体が円盤状記録媒体であって、レー
ザ光を前記円盤状記録媒体に収れんさせるための対物レ
ンズ及び前記対物レンズを前記円盤状記録媒体の少なく
とも法線方向に移動自在に支持する対物レンズアクチュ
エータを少なくとも有する光学系と、前記円盤状記録媒
体の略半径方向に移動自在に構成されたキャリッジと、
ベースと、前記ベースに固定され前記円盤状記録媒体の
法線方向に平行な方向の中心軸周りの回転トルクを与え
るスピンドルモータと、前記円盤状記録媒体の略半径方
向に長手方向を持ちスライダから遠い端部の弾性部を除
く端部を固定部としたロードビームとを有し、前記キャ
リッジには前記光学系と、ロードビームの固定部とを固
定したことを特徴とする請求項6記載の光磁気記録再生
装置。
(9) The magneto-optical recording medium is a disc-shaped recording medium, and an objective lens for converging laser light on the disc-shaped recording medium, and the objective lens are movable at least in the normal direction of the disc-shaped recording medium. an optical system having at least a supporting objective lens actuator; a carriage configured to be movable in a substantially radial direction of the disc-shaped recording medium;
a base; a spindle motor that is fixed to the base and provides rotational torque about a central axis in a direction parallel to the normal direction of the disk-shaped recording medium; 7. The load beam according to claim 6, further comprising a load beam whose end portion excluding the elastic portion at the far end is a fixed portion, and the optical system and the fixed portion of the load beam are fixed to the carriage. Magneto-optical recording and reproducing device.
(10)電磁石がキャリッジに搭載されていることを特
徴とする請求項9記載の光磁気記録再生装置。
(10) The magneto-optical recording and reproducing apparatus according to claim 9, wherein the electromagnet is mounted on the carriage.
(11)少なくともレーザによる収れん光を光磁気記録
媒体に照射する光学系と、前記光磁気記録媒体を挟んで
前記収れん光と対向する位置に配置され前記光磁気記録
媒体の相対移動によって生じる空気流を取り入れて前記
光磁気記録媒体と対向する対向面に圧力を発生させるこ
とで前記円盤状記録媒体から離れる方向の浮上刃を得る
スライダと、前記スライダの一部に構成され前記光磁気
記録媒体の記録面の前記収れん光の照射される位置に磁
界を付与する磁気ヘッドと、一端に前記スライダが接続
され電気系機械系変換手段による変位素子を少なくとも
有し前記変位素子の変位によって前記光磁気記録媒体に
接近させる方向の押し付け力を前記スライダに付与する
ロードビームと、前記収れん光入射方向に略平行な方向
への光磁気記録媒体の変位を検出して変位信号を出力す
る変位検出手段と、前記変位信号を入力とし前記変位に
対する押し付け力の変化を補正する補正テーブルを有し
て前記変位素子駆動信号を出力する制御部と、前記変位
素子駆動信号を入力とし前記変位素子に駆動電力を供給
する変位素子駆動部とを有することを特徴とする光磁気
記録再生装置。
(11) An optical system that irradiates a magneto-optical recording medium with at least convergent light from a laser, and an air flow that is generated by relative movement of the magneto-optical recording medium, which is disposed at a position facing the convergent light with the magneto-optical recording medium in between. a slider that generates pressure on an opposing surface facing the magneto-optical recording medium to obtain a floating blade in the direction away from the disc-shaped recording medium; a magnetic head that applies a magnetic field to a position on a recording surface that is irradiated with the convergent light, and at least a displacement element connected to the slider at one end and using an electrical/mechanical conversion means, and the magneto-optical recording is performed by displacement of the displacement element. a load beam that applies a pressing force to the slider in a direction to approach the medium; a displacement detection means that detects displacement of the magneto-optical recording medium in a direction substantially parallel to the direction of incidence of the convergent light and outputs a displacement signal; a control unit that receives the displacement signal as input, has a correction table that corrects a change in pressing force with respect to the displacement, and outputs the displacement element drive signal; and a control unit that receives the displacement element drive signal as input and supplies driving power to the displacement element. 1. A magneto-optical recording and reproducing device comprising: a displacement element driving section.
(12)変位素子は圧電素子であることを特徴とする請
求項11記載の光磁気記録再生装置。
(12) The magneto-optical recording and reproducing apparatus according to claim 11, wherein the displacement element is a piezoelectric element.
(13)光磁気記録媒体へレーザを収れんさせて収れん
光とするための対物レンズ及び前記対物レンズを前記収
れん光の入射方向に少なくとも略平行に移動自在に支持
し前記対物レンズを駆動電流により駆動する対物レンズ
アクチュエータを少なくとも光学系に有し、変位検出手
段が前記対物レンズアクチュエータの前記駆動電流の検
出手段であることを特徴とする請求項11または12記
載の光磁気記録再生装置。
(13) An objective lens for converging a laser onto a magneto-optical recording medium to produce convergent light; and supporting the objective lens so as to be movable at least substantially parallel to the incident direction of the convergent light, and driving the objective lens with a drive current. 13. The magneto-optical recording and reproducing apparatus according to claim 11 or 12, wherein at least the optical system includes an objective lens actuator for detecting the drive current of the objective lens actuator.
(14)補正テーブルは変位信号の定数倍と変位素子の
駆動電力の定数倍からなることを特徴とする請求項11
記載の光磁気記録再生装置。
(14) Claim 11 characterized in that the correction table consists of a constant times the displacement signal and a constant times the drive power of the displacement element.
The magneto-optical recording and reproducing device described above.
(15)光磁気記録媒体が円盤状記録媒体であって、レ
ーザ光を前記円盤状記録媒体に収れんさせるための対物
レンズ及び前記対物レンズを前記円盤状記録媒体の少な
くとも法線方向に移動自在に支持する対物レンズアクチ
ュエータを少なくとも有する光学系と、前記円盤状記録
媒体の略半径方向に移動自在に構成されたキャリッジと
、ベースと、前記ベースに固定され前記円盤状記録媒体
の法線方向に平行な方向の中心軸周りの回転トルクを与
えるスピンドルモータと、前記円盤状記録媒体の略半径
方向に長手方向を持ちスライダから遠い端部の変位素子
を除く端部を固定部としたロードビームとを有し、前記
キャリッジには前記光学系と、ロードビームの固定部と
を固定したことを特徴とする請求項11記載の光磁気記
録再生装置。
(15) The magneto-optical recording medium is a disc-shaped recording medium, and an objective lens for converging laser light on the disc-shaped recording medium, and the objective lens are movable at least in the normal direction of the disc-shaped recording medium. an optical system having at least a supporting objective lens actuator; a carriage configured to be movable in a substantially radial direction of the disk-shaped recording medium; a base; and an optical system fixed to the base and parallel to the normal direction of the disk-shaped recording medium. a spindle motor that provides a rotational torque around a central axis in a direction; and a load beam having a longitudinal direction substantially in the radial direction of the disc-shaped recording medium and having an end thereof as a fixed part except for a displacement element at an end far from the slider. 12. The magneto-optical recording and reproducing apparatus according to claim 11, wherein the optical system and a fixed portion of a load beam are fixed to the carriage.
(16)磁性体で構成された磁気吸引部がスライダで、
磁石が対物レンズアクチュエータを構成する磁気回路で
あることを特徴とする請求項3記載の光磁気記録再生装
置。
(16) The magnetic attraction part made of magnetic material is a slider,
4. The magneto-optical recording and reproducing apparatus according to claim 3, wherein the magnet is a magnetic circuit constituting an objective lens actuator.
JP24211790A 1990-09-11 1990-09-11 Magneto-optical recording / reproducing device Expired - Fee Related JP2961848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24211790A JP2961848B2 (en) 1990-09-11 1990-09-11 Magneto-optical recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24211790A JP2961848B2 (en) 1990-09-11 1990-09-11 Magneto-optical recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH04121884A true JPH04121884A (en) 1992-04-22
JP2961848B2 JP2961848B2 (en) 1999-10-12

Family

ID=17084554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24211790A Expired - Fee Related JP2961848B2 (en) 1990-09-11 1990-09-11 Magneto-optical recording / reproducing device

Country Status (1)

Country Link
JP (1) JP2961848B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333355A (en) * 1993-05-21 1994-12-02 Nippon Chemicon Corp Supporting mechanism of magnetic field head
WO1997039441A1 (en) * 1996-04-15 1997-10-23 Digital Papyrus Technologies Flying head with adjustable actuator load

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333355A (en) * 1993-05-21 1994-12-02 Nippon Chemicon Corp Supporting mechanism of magnetic field head
WO1997039441A1 (en) * 1996-04-15 1997-10-23 Digital Papyrus Technologies Flying head with adjustable actuator load
US6178157B1 (en) 1996-04-15 2001-01-23 Digital Papyrus Corporation Flying head with adjustable actuator load

Also Published As

Publication number Publication date
JP2961848B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP2614389B2 (en) Optical storage device and optical head device
JP5246688B2 (en) Information recording / reproducing device
EP0549236A2 (en) Optical disk storage system and head apparatus therefor
EP1970903A1 (en) Head using near-field light and information recorder
JPH04121884A (en) Magneto-optical recording and reproducing device
JPS6032143A (en) Attitude controller
EP1929472B1 (en) Actuator for an optical scanning device
JP3389723B2 (en) Support structure
Kim et al. PCMCIA like ultra small form factor optical drive
JPS60138743A (en) Objective lens driver
KR100324268B1 (en) Reproductive Apparatus OF High Density Recording Medium
WO2009154043A1 (en) Head gimbal assembly with optical guide structure, and information recording/reproducing device
JP3088437B2 (en) Magneto-optical disk drive
JP2000048382A (en) Recording medium recording and reproducing device, and optical pickup
JPH05120756A (en) Magnetic head for magnetic-optical recording and reproducing device and method for adjusting it
JP2793059B2 (en) Floating magnetic head for magneto-optical recording / reproducing device
JP2550809Y2 (en) Optical recording device
JPS609939Y2 (en) optical information reproducing device
WO2008062677A1 (en) Recording head and information recording/reproducing device
JPH0676396A (en) Magnet0-optical recording/reproducing device
JPH04186503A (en) Optical magnetic recording reproducer
JP2002208151A (en) Optical head device and optical recording/reproducing device
WO2009154104A1 (en) Head gimbal assembly and information recording/reproducing device having same
JPS6145428A (en) Driving device of objective lens
JPS61134937A (en) Optical head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees