JPH04117458A - Resin composition for semiconductor sealing - Google Patents

Resin composition for semiconductor sealing

Info

Publication number
JPH04117458A
JPH04117458A JP23578290A JP23578290A JPH04117458A JP H04117458 A JPH04117458 A JP H04117458A JP 23578290 A JP23578290 A JP 23578290A JP 23578290 A JP23578290 A JP 23578290A JP H04117458 A JPH04117458 A JP H04117458A
Authority
JP
Japan
Prior art keywords
allyl
tables
group
formulas
polysiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23578290A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
憲一 鈴木
Hisafumi Enoki
尚史 榎
Hikari Okubo
光 大久保
Keiichiro Ishii
石井 敬一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP23578290A priority Critical patent/JPH04117458A/en
Publication of JPH04117458A publication Critical patent/JPH04117458A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare the title compsn. excellent in compatibility, moisture resistance, low-stress properties, heat resistance, and reliability after being dipped in solder by compounding a specific allyl-modified polysiloxane and a maleimide compd. CONSTITUTION:An allyl-modified polysiloxane obtd. by reacting a reaction product of a polyphenol of formula I (wherein R1 is H, CH3, CF3, phenyl, or a group of formula II; R2 is H, CH3, or CF3; and 0<=n<30) with allyl chloride or bromide with a polysiloxane of formula III (wherein X is H or a group of formula IV; R3 is CH3, CF3, phenyl, or a group selected from groups of X; and (J) is 1-100) and a maleimide compd. are compounded to give the title compsn. which has a high Tg and is excellent in moisture resistance, compatibility, and low-stress properties.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はガラス転移点(以下Tgという)が高く、耐湿
性、相溶性に優れ、かつ低応力特性に優れた半導体封止
用樹脂組成物に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention provides a resin composition for semiconductor encapsulation that has a high glass transition point (hereinafter referred to as Tg), excellent moisture resistance, compatibility, and low stress properties. It is related to.

(従来技術) 近年IC,LSI、トランジスター、ダイオードなどの
半導体素子や電子回路等の封止には特性、コスト等の点
からエポキシ樹脂組成物が一般的に用いられている。し
かし、電子部品の量産性指向、高集積化や表面実装化の
方向に進んで来ておりこれに伴い封止樹脂に対する要求
は厳しくなってきている。特に高集積化に伴うチップの
大型化、パッケージの薄肉化や表面実装時における半田
浸漬(200〜300°C)によって装置にクラックが
発生し易くなっており、信頼性向上のために半導体封止
用樹脂としては低応力特性と耐熱性が強く望まれている
(Prior Art) In recent years, epoxy resin compositions have been commonly used for sealing semiconductor elements such as ICs, LSIs, transistors, diodes, and electronic circuits from the viewpoint of characteristics, cost, and the like. However, as electronic components are becoming more mass-producible, more highly integrated, and more surface-mounted, demands on sealing resins are becoming more severe. In particular, devices are more likely to crack due to larger chips due to higher integration, thinner packages, and solder immersion (200 to 300°C) during surface mounting, so semiconductor encapsulation is required to improve reliability. Low stress properties and heat resistance are strongly desired for resins used in this application.

半導体封止用樹脂としては現在エポキシ樹脂が主流であ
るが、耐熱性という点ではエポキシ樹脂を用いている限
り改良に限界があり、表面実装時の半田浸漬後の信頼性
の高いものが得られていない。これらの半田耐熱性に対
処するには樹脂特性として低応力であり、かつTgが高
く半田浴温度以上であることが望まれている。
Epoxy resin is currently the mainstream resin for semiconductor encapsulation, but there are limits to its improvement in terms of heat resistance as long as epoxy resin is used, and it is difficult to obtain a highly reliable product after solder immersion during surface mounting. Not yet. In order to cope with these solder heat resistance, it is desired that the resin properties be low stress and high Tg that is higher than the solder bath temperature.

エポキシ樹脂に代わる高耐熱性を有する樹脂としてはマ
レイミド樹脂が注目されてきているが、ビスマレイミド
と芳香族ジアミンとの反応によって得られるアミン変性
マレイミド樹脂は、乾燥時の耐熱性には優れているが、
吸水率が大きく、吸湿時の半田浸漬でクラックを発生し
、信頼性に乏しい欠点がある。
Maleimide resins are attracting attention as a resin with high heat resistance to replace epoxy resins, but amine-modified maleimide resins obtained by the reaction of bismaleimide and aromatic diamines have excellent heat resistance during drying. but,
It has a high water absorption rate, and cracks occur when immersed in solder when moisture is absorbed, resulting in poor reliability.

マレイミド樹脂としては、この他に、ポリマレイミドと
アルケニルフェノール類またはアルケニルフェニルエー
テル類などを重合触媒存在下で反応させる例(特開昭5
2−994.58−117219.61−95012.
62−11716.63−230728号公報)もある
が、アミン変性マレイミド樹脂と同様に硬化物は堅いた
め、低応力特性に劣る欠点がある。低応力特性の改善策
として各種シリコーン化合物の添加が試みられているが
、相溶性が著しく劣り、強度が低下し、吸水率が大きく
て、耐湿性、信頼性に欠け、実用上問題点が多く残る。
Other maleimide resins include examples in which polymaleimide and alkenyl phenols or alkenyl phenyl ethers are reacted in the presence of a polymerization catalyst (Japanese Patent Application Laid-Open No.
2-994.58-117219.61-95012.
62-11716.63-230728), but like the amine-modified maleimide resin, the cured product is hard, so it has the disadvantage of poor low stress properties. Attempts have been made to add various silicone compounds as a measure to improve low-stress properties, but they have significantly poor compatibility, reduced strength, high water absorption, lack moisture resistance and reliability, and have many practical problems. remain.

(発明が解決しようとする課題) 本発明の目的とするところは相溶性が良く、−般の特性
を低下させることなく、耐湿性、低応力特性に優れ、か
つ高耐熱性を有し、半田浸漬後の信頼性に非常に優れた
半導体封止用樹脂組成物を提供することにある。
(Problems to be Solved by the Invention) The object of the present invention is to have good compatibility, excellent moisture resistance and low stress characteristics, and high heat resistance without deteriorating general characteristics, and to have solderability. An object of the present invention is to provide a resin composition for semiconductor encapsulation that has excellent reliability after immersion.

(課題を解決するための手段) 本発明は、 (1)(A)下記式(I)で示されるポリフェノール類
と塩化アリル又は臭化アリルとの反応物と、(R1: 
−H,−CH3、−CF3、−()、又は−(D←叶の
中からそれぞれ独立に選択された基 R2: −H,−CH3、又は−CF3立に選択された
基 O≦n<30) (B)下記式(II ) で示されるボ「ノシロキサンと、 の中からそれぞれ独 (XニーH又は(−CH=丹−(1−CH・−興♂H・
、ぞれ独立に選択された基 j:1〜100) を反応させて得られるアリル変性ポリシロキサン(AB
)と (C)マレイミド化合物とを含有することを特徴とする
半導体封止用樹脂組成物である。
(Means for Solving the Problems) The present invention provides: (1) (A) a reaction product of polyphenols represented by the following formula (I) and allyl chloride or allyl bromide, and (R1:
-H, -CH3, -CF3, -( ), or -(D 30) (B) Bo'nosiloxane represented by the following formula (II),
, each independently selected group j: 1 to 100). Allyl-modified polysiloxane (AB
) and (C) a maleimide compound.

(作用) 本発明において用いられるポリフェノール類は、式〔I
〕で示されるものである。
(Function) The polyphenols used in the present invention have the formula [I
].

の中からそれぞれ独立に選択された基 R2: −H,−CH3、又は−CF3の中からそれぞ
れ独立に選択された基) nは、ポリフェノール類が単一化合物の場合には、0内
に示された構造単位の繰港し数を示し、又分子量の異な
る2種以上の化合物から構成される場合には、平均繰返
し数を示し、0≦n<30である。好ましくは、0≦n
≦10が良い。分子量が大き過ぎると、融点及び溶融粘
度が高くなって作業が困難になる。
Groups each independently selected from among R2: Groups each independently selected from -H, -CH3, or -CF3) When the polyphenol is a single compound, n is indicated within 0. It shows the number of repeats of the structural unit, and when it is composed of two or more types of compounds with different molecular weights, it shows the average number of repeats, and 0≦n<30. Preferably, 0≦n
≦10 is good. If the molecular weight is too large, the melting point and melt viscosity will increase, making work difficult.

また、〔I〕式ノR1=−CF3、R2= −CF3 
又ハのポリフェノール類は、耐半田クラック性と耐湿性
、低吸水性の両立に好ましく、特に R工=÷OH,R2=−H のポリフェノール類は、耐熱性が抜群に優れ、最適であ
る。
Also, [I] formula R1=-CF3, R2=-CF3
The polyphenols (C) are preferable for achieving both solder crack resistance, moisture resistance, and low water absorption. In particular, the polyphenols of R=÷OH, R2=-H have excellent heat resistance and are optimal.

ポリフェノール類は、塩化アリル又は臭化アワルと反応
させ、アリル化合物として用いられる。
Polyphenols are reacted with allyl chloride or awal bromide and used as allyl compounds.

このアリル化合物は、まず、ポリフェノール類をアリル
エーテル化するが、熱処理によってその一部又は全部を
クライゼン転位させることができる。
In this allyl compound, polyphenols are first converted into allyl ethers, but some or all of them can be subjected to Claisen rearrangement by heat treatment.

アリル化率は、フェノール性OH基に対し、30%以上
150%以下、更に好ましくは50%−以上150%以
下が好ましい。30%未満或いは150%より多いと、
硬化の性状、均質性などの点から使用レベルによっては
特性が充分でない場合もある。このアリル化率には、ア
リルエーテル型とクライゼン転位型とが含まれる。アリ
ルエーテル型のアリル基は、硬化過程において熱又はラ
ジカル重合開始剤によってマレイミド基と共重合し、耐
熱性、耐湿性、吸水特性の向上に著しい効果がある。し
かし、プレポリマー化の過程では、反応に関与しないた
め、多すぎると作業性の良好な適度な融点、適度な溶融
粘度の樹脂をつくることが困難になる。
The allylation rate is preferably 30% to 150%, more preferably 50% to 150%, based on the phenolic OH group. If it is less than 30% or more than 150%,
Depending on the usage level, the properties may not be sufficient in terms of curing properties, homogeneity, etc. This allylation rate includes allyl ether type and Claisen rearrangement type. The allyl ether type allyl group is copolymerized with the maleimide group by heat or a radical polymerization initiator during the curing process, and has a remarkable effect on improving heat resistance, moisture resistance, and water absorption properties. However, since it does not participate in the reaction during the prepolymerization process, if it is present in too much, it becomes difficult to produce a resin with good workability, a suitable melting point, and a suitable melt viscosity.

一方、クライゼン転位型のアリル基は、マレイミド基と
エン反応及び/又はディールス・アルダ−反応によって
付加体を作り、プレポリマー化及び硬化反応に重要な役
割を果す。しかし、多すぎると、遊離のフェノール性O
H基も多くなるので、耐熱性、耐湿性、吸水特性の向上
効果がアリルエーテル型より弱まる。クライゼン転位型
のアリルは、フェノール性OH基に対し、20%以上7
0%以下がより好ましい。
On the other hand, the Claisen rearranged allyl group forms an adduct with a maleimide group through ene reaction and/or Diels-Alder reaction, and plays an important role in prepolymerization and curing reactions. However, if too much, free phenolic O
Since the number of H groups increases, the effect of improving heat resistance, moisture resistance, and water absorption properties is weaker than that of the allyl ether type. Claisen rearranged allyl has 20% or more of phenolic OH group7
More preferably 0% or less.

本発明において用いられるポリシロキサンは、分子内に
2個以上の反応性の基を有するもので、式(II )で
示され、その重合度jは1〜100の範囲のものである
。重合度が1[)0より大きい場合、相溶性が低下して
しまう。特にX=−Hのポリシロキサンが耐湿性の点で
優れている。ポリシロキサンの量は、アリル化合物10
0重量部に対し、20〜200重量部が良い。少な過ぎ
ると、低応力特性が得られない。多過ぎると、機械強度
、Tgが下がり、半田浸漬時にクラックを発生する。
The polysiloxane used in the present invention has two or more reactive groups in its molecule and is represented by the formula (II), with a degree of polymerization j ranging from 1 to 100. If the degree of polymerization is greater than 1[)0, the compatibility will decrease. In particular, polysiloxanes where X=-H are excellent in terms of moisture resistance. The amount of polysiloxane is 10
It is preferably 20 to 200 parts by weight compared to 0 parts by weight. If it is too small, low stress properties cannot be obtained. If it is too large, the mechanical strength and Tg will decrease and cracks will occur during solder immersion.

アリル化合物とポリシロキサンは予め必要に応じて触媒
を用い反応させてアリル変性ポリシロキサン(AB)に
しておくことが必須である。ポリシロキサンとマレイミ
ド化合物とは相溶性が悪0為、予め反応させておかない
とシリコーンが分離して成形品の外観が不良になったり
、強度が著しく低下したりする。
It is essential that the allyl compound and the polysiloxane are reacted in advance using a catalyst if necessary to form an allyl-modified polysiloxane (AB). Since polysiloxane and maleimide compounds have poor compatibility, if they are not reacted in advance, the silicone will separate, resulting in poor appearance of the molded product and a significant decrease in strength.

上記反応の触媒は特に限定されるものではないが、−例
を示すと、(II )式におけるXが−Hの場合は、ヒ
ドロシリル基とオレフィンとの反応に使用される触媒で
ある塩化白金酸などを用いるこ媒である3級アミン類、
イミダゾール類、ホスフィン類などを用いることができ
る・ 本発明において用いられるマレイミド化合物は、分子内
に少なくとも2個以上のマレイミド基を有する化合物、
例えば、N、N’−m−フェニレンビスマレイミド、N
、N’−p−フェニレンビスマレイミドvNIN’−m
−)ルイレンビスマレイミド、N、N’−4,4’−ビ
フェニレンビスマレイミド、N、N’−4,4’−(3
,3’−ジメチル−ビフェニレンビスマレイミド、N、
N’−4,4′−ジフェニルメタンビスマレイミド、N
、N’−4゜4′−ジフェニルプロパンビスマレイミド
、N、N’−4゜4′−ジフェニルエーテルビスマレイ
ミド、N、N’−3゜3′−ジフェニルスルホンビスマ
レイミド、N、N’−4゜4′−ジフェニルスルホンビ
スマレイミドなどのほかに、式(III)で示されるビ
スマレイミド、式(IV)又は(V)で示されるポリマ
レイミドなど(Re : −H。
The catalyst for the above reaction is not particularly limited, but for example, when X in formula (II) is -H, chloroplatinic acid, which is a catalyst used for the reaction between a hydrosilyl group and an olefin, is used. Tertiary amines, which are co-mediates such as
Imidazoles, phosphines, etc. can be used. The maleimide compound used in the present invention is a compound having at least two or more maleimide groups in the molecule,
For example, N, N'-m-phenylene bismaleimide, N
, N'-p-phenylene bismaleimide vNIN'-m
-) lylene bismaleimide, N,N'-4,4'-biphenylene bismaleimide, N,N'-4,4'-(3
, 3'-dimethyl-biphenylene bismaleimide, N,
N'-4,4'-diphenylmethane bismaleimide, N
, N'-4゜4'-diphenylpropane bismaleimide, N, N'-4゜4'-diphenyl ether bismaleimide, N, N'-3゜3'-diphenylsulfone bismaleimide, N, N'-4゜In addition to 4'-diphenylsulfone bismaleimide, bismaleimide represented by formula (III), polymaleimide represented by formula (IV) or (V), etc. (Re: -H).

アルキル基、 フェニル基又はヒドロキ 猛J 口 ■=す (0<h<10) または、これらの化合物と芳香族アミン類、芳香族シア
ネート類、あるいはアリルエーテル化フェノール類とを
反応させて得られる変性マレイミド樹脂などを挙げるこ
とができる。これらは2種以上台まれていても何ら差し
支えない。
Alkyl group, phenyl group, or hydroxyl group (0<h<10) or modified product obtained by reacting these compounds with aromatic amines, aromatic cyanates, or allyl etherified phenols. Examples include maleimide resin. There is no problem even if two or more types of these are installed.

マレイミド化合物を配合することによって、好ましくは
予めマレイミド化合物と反応させることによって、硬化
性、耐熱性がより向上する。特にアリル変性ポリシロキ
サン(AB)に式〔m〕で示されるビスマレイミドを付
加させたマレイミド変性ポリシロキサン(ABC’)は
、マレイミド化合物との相溶性が良く、靭性、低応力特
性に優れ、耐半田クラック性、耐湿性、信頼性が良好で
ある。しかし、マレイミド化合物が多過ぎると曲げ弾性
率と吸水率が大きくなる。好ましくは、アリル変性ポリ
シロキサン100重量部に対し、マレイミド化合物は2
〜500重量部、更1こ好ましくは加〜300重量部が
良い。
By blending a maleimide compound, preferably by reacting with the maleimide compound in advance, the curability and heat resistance are further improved. In particular, maleimide-modified polysiloxane (ABC'), which is obtained by adding bismaleimide represented by the formula [m] to allyl-modified polysiloxane (AB), has good compatibility with maleimide compounds, excellent toughness and low stress properties, and Good solder crack resistance, moisture resistance, and reliability. However, if there is too much maleimide compound, the flexural modulus and water absorption will increase. Preferably, the maleimide compound is used in an amount of 2 parts by weight per 100 parts by weight of allyl-modified polysiloxane.
500 parts by weight, preferably 1 to 300 parts by weight.

本発明の半導体封止用樹脂組成物を用いて成形材料化す
るには硬化促進剤、無機充填材、滑剤、難燃剤、離型剤
、シランカップリング剤等を必要に応じて適宜配合添加
し、加熱混練することによって材料化できる。
In order to make a molding material using the resin composition for semiconductor encapsulation of the present invention, a curing accelerator, an inorganic filler, a lubricant, a flame retardant, a mold release agent, a silane coupling agent, etc. are appropriately mixed and added as necessary. It can be made into a material by heating and kneading.

(実施例) [アリル化合物の合成] 合成例1〜5 撹拌装置、還流冷却器、温度計及び滴下ロートを付けた
反応容器に、第1表の処方に従って、水酸化カリウムと
、水/アセトン(1/1)の混合溶媒を入れて溶解させ
、これにポリフェノール類を添加し、溶解させた。この
溶液を加熱し、臭化アリルを添加して、還流下3時間反
応させた。その後、アセトンと未反応の臭化アリルを留
去し、トルエン1¥′Lを添加した。分液ロートに移し
、水洗を3回行い、エバポレーターで溶媒を除去した。
(Example) [Synthesis of allyl compound] Synthesis Examples 1 to 5 Potassium hydroxide, water/acetone ( A mixed solvent of 1/1) was added and dissolved, and polyphenols were added and dissolved therein. The solution was heated, allyl bromide was added, and the mixture was allowed to react under reflux for 3 hours. Thereafter, acetone and unreacted allyl bromide were distilled off, and 1\'L of toluene was added. The mixture was transferred to a separating funnel, washed with water three times, and the solvent was removed using an evaporator.

合成例2.4.5は、更に175°Cで加熱処理した。Synthesis Example 2.4.5 was further heat-treated at 175°C.

得られたアリル化合物の組成を第1表に示した。The composition of the obtained allyl compound is shown in Table 1.

実施例1〜4 撹拌装置、還流冷却器及び温度計を付けた反応容器に、
第2表の処方に従って、アリル化合物とトルエンを入れ
、均一に溶解してから、塩化白金酸イソプロパツール溶
液を添加した。これにジヒドロポリシロキサンを加え、
90’Cで2時間反応させた。反応後、分液ロートに移
し、水洗を3回行い、エバポレーターで溶媒を除去して
、アリル変性ポリシロキサンを得た。ヒドロシリル基の
反応率は第2表に示した。
Examples 1 to 4 A reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer was
According to the recipe in Table 2, the allyl compound and toluene were added, uniformly dissolved, and then the isopropanol chloroplatinate solution was added. Add dihydropolysiloxane to this,
The reaction was carried out at 90'C for 2 hours. After the reaction, the mixture was transferred to a separatory funnel, washed with water three times, and the solvent was removed using an evaporator to obtain allyl-modified polysiloxane. The reaction rates of hydrosilyl groups are shown in Table 2.

実施例5〜8 撹拌装置、減圧蒸留装置及び温度計を付けた反応容器に
、アリル変性ポリシロキサンを第3表の処方に従って入
れ、150°Cに加熱してから、マレイミド化合物を加
え、減圧下(約20mmHg )で反応させた。得られ
たシリコーン変性マレイミド樹脂は、均質で、融点を第
3表に示した。
Examples 5 to 8 Allyl-modified polysiloxane was placed in a reaction vessel equipped with a stirring device, a vacuum distillation device, and a thermometer according to the recipe in Table 3, heated to 150°C, and then a maleimide compound was added, and the mixture was heated under reduced pressure. (approximately 20 mmHg). The obtained silicone-modified maleimide resin was homogeneous and the melting point is shown in Table 3.

実施例9〜10 撹拌装置、減圧蒸留装置及び温度計を付けた反応容器に
、アリル変性ポリシロキサンと置換ビスマレイミドとを
第3表の処方に従って入れ、減圧下(約20mmHg)
 180℃で2時間反応させた。その後温度を150°
Cに下げ、マレイミド化合物を加え、減圧下(約20a
+mHg )で反応させた。得られたシリコーン変性マ
レイミド樹脂は、実施例5〜8より相溶性が良い。融点
を第3表に示した。
Examples 9 to 10 Allyl-modified polysiloxane and substituted bismaleimide were placed in a reaction vessel equipped with a stirring device, a vacuum distillation device, and a thermometer according to the recipe in Table 3, and the mixture was heated under reduced pressure (approximately 20 mmHg).
The reaction was carried out at 180°C for 2 hours. Then increase the temperature to 150°
C, add the maleimide compound, and heat under reduced pressure (approximately 20 μm).
+mHg). The obtained silicone-modified maleimide resin has better compatibility than Examples 5-8. The melting points are shown in Table 3.

比較例1 実施例5のアリル変性ポリシロキサンを、クライゼン転
位型のアリル化合物(BPA−CA)に置き換えて、実
施例5と同様に反応させ、アリル変性マレイミド樹脂を
得た。融点を第4表に示した。
Comparative Example 1 The allyl-modified polysiloxane of Example 5 was replaced with a Claisen rearrangement type allyl compound (BPA-CA), and the reaction was carried out in the same manner as in Example 5 to obtain an allyl-modified maleimide resin. The melting points are shown in Table 4.

比較例2 実施例5のアリル変性ポリシロキサンを、アリルエーテ
ル型のアリル化合物(BPA−AE)に置き換えて、実
施例5と同様に反応させたが、BPA−AEは殆ど反応
していなかった。反応系は温度が常温まで下がっても液
状であった。反応温度を180 ’Cに上げて反応させ
ると、約1時間で急激な反応が起こってゲル化した。し
かしゲル化前の樹脂は液状で、適度な融点の固形樹脂は
得られなかった。
Comparative Example 2 The allyl-modified polysiloxane of Example 5 was replaced with an allyl ether type allyl compound (BPA-AE), and a reaction was carried out in the same manner as in Example 5, but BPA-AE hardly reacted. The reaction system remained liquid even when the temperature dropped to room temperature. When the reaction temperature was raised to 180'C, a rapid reaction occurred and gelation occurred in about 1 hour. However, the resin before gelation was liquid, and a solid resin with an appropriate melting point could not be obtained.

比較例3 実施例6のアリル変性ポリシロキサンを、合成例1のア
リル化合!I!I(アリルエーテル型)に置き換えて、
実施例6と同様に反応させた。得られた樹脂は高粘度で
、非常に取扱い難いものであった。
Comparative Example 3 The allyl-modified polysiloxane of Example 6 was combined with the allyl compound of Synthesis Example 1! I! Replaced with I (allyl ether type),
The reaction was carried out in the same manner as in Example 6. The resulting resin had a high viscosity and was very difficult to handle.

比較例4 実施例5のアリル変性ポリシロキサンを、ジヒドロポリ
シロキサン(j=10)に置き換えて、実施例5と同様
に反応させた。相溶性が非常に悪く、ポリシロキサンが
液状のまま分離した。
Comparative Example 4 The reaction was carried out in the same manner as in Example 5, except that the allyl-modified polysiloxane in Example 5 was replaced with dihydropolysiloxane (j=10). The compatibility was very poor and the polysiloxane was separated in a liquid state.

実施例11〜16 第5表に示す配合に従って、実施例5〜lOで得たシリ
コーン変性マレイミド樹脂に、シリカ粉末、硬化促進剤
、アミノシラン、着色剤及び離型剤を加え、熱ロールで
混練して成形材料を得た。得られた成形材料をトランス
ファー成形により180°C93分で成形しフクレの無
い光沢の有る成形品が得られた。この成形品をさらに2
00°C18時間後硬化を行い特性を評価した。結果を
第5表に示す。
Examples 11-16 According to the formulation shown in Table 5, silica powder, curing accelerator, aminosilane, coloring agent, and mold release agent were added to the silicone-modified maleimide resin obtained in Examples 5-1O, and the mixture was kneaded with a hot roll. A molding material was obtained. The obtained molding material was molded by transfer molding at 180° C. for 93 minutes to obtain a glossy molded product without blisters. Add this molded product to 2 more
After curing at 00°C for 18 hours, the properties were evaluated. The results are shown in Table 5.

実施例11〜16の成形材料は、熱時曲げ強度、ガラス
転移温度などの耐熱特性に優れ、65°C195%RH
172時間の吸湿処理での耐半田クラック性は良好であ
った。クライゼン転位型の実施例11,14.15に比
べ、アリルエーテル/クライゼン転位併用型の実施例1
2 、13 、16は吸水率が小さく、特にトリ(ヒド
ロキシフェニル)メタンのアリル化合物を用いた実施例
13 、16は更に厳しい吸湿処理での耐半田クラック
性も優れている。
The molding materials of Examples 11 to 16 have excellent heat resistance properties such as bending strength under heat and glass transition temperature, and have a temperature of 65°C and 195% RH.
The solder crack resistance after 172 hours of moisture absorption treatment was good. Compared to Claisen rearrangement type Examples 11, 14.15, allyl ether/Claisen rearrangement combination type Example 1
Samples Nos. 2, 13, and 16 have low water absorption, and in particular, Examples 13 and 16, which use an allyl compound of tri(hydroxyphenyl)methane, have excellent solder crack resistance even under severe moisture absorption treatment.

比較例5 N、N’−4,4’−ジフェニルメタンビスマレイミド
とBPA−CAとを前以て反応させずに、第6表の配合
に従って実施例11と同様に熱ロールで混練した。得ら
れた成形材料は、湿り気があり、成形品の表面にも湿り
気が残り、フクレを発生した。
Comparative Example 5 N,N'-4,4'-diphenylmethane bismaleimide and BPA-CA were kneaded with hot rolls in the same manner as in Example 11 according to the formulations in Table 6 without reacting them in advance. The obtained molding material was moist, and moisture remained on the surface of the molded product, causing blisters.

比較例6 ポリシロキサンを含まない比較例1のアリル変性マレイ
ミド樹脂を用いて実施例11と同様に行った。熱時曲げ
強度、ガラス転移温度などの耐熱性は実施例11と同様
に良好であった。しかし常温及び260℃での曲げ弾性
率が大きく、65°C195%RH172時間の吸湿処
理での耐半田クラック性が非常に劣っている。
Comparative Example 6 The same procedure as in Example 11 was carried out using the allyl-modified maleimide resin of Comparative Example 1 which did not contain polysiloxane. The heat resistance, such as the bending strength under heat and the glass transition temperature, was as good as in Example 11. However, the bending elastic modulus is large at room temperature and 260° C., and the solder crack resistance after moisture absorption treatment at 65° C., 195% RH, 172 hours is very poor.

比較例7 比較例1のアリル変性マレイミド樹脂にジヒドロポリシ
ロキサンを添加して、実施例11と同様に行った。マレ
イミド樹脂とポリシロキサンとの相溶性が悪く、成形品
の表面に液状のポリシロキサンが分離していた。曲げ弾
性率は小さくなっているが、曲げ強度も低く、吸水率が
大きく、65°C195%RH172時間の吸湿処理で
の耐半田クラック性が非常に劣っている。
Comparative Example 7 The same procedure as in Example 11 was carried out except that dihydropolysiloxane was added to the allyl-modified maleimide resin of Comparative Example 1. The compatibility between maleimide resin and polysiloxane was poor, and liquid polysiloxane was separated on the surface of the molded product. Although the bending elastic modulus is small, the bending strength is also low, the water absorption rate is large, and the solder crack resistance after moisture absorption treatment at 65°C, 195% RH, 172 hours is very poor.

比較例8 比較例3の樹脂を用いて実施例12と同様に行った。得
られた成形材料は湿り気があり、成形品の表面にも湿り
気が残り、フクレを発生した。
Comparative Example 8 The same procedure as in Example 12 was carried out using the resin of Comparative Example 3. The molding material obtained was moist, and moisture remained on the surface of the molded product, causing blisters.

(発明の効果) 本発明による半導体封圧用樹脂を用いた組成物の硬化物
は高Tgであり、耐湿性及び熱時の強度に優れているた
め封止体の耐半田クラック性が良く、かつ低応力であり
耐ヒートサイクル性にも優れており、半導体封止用樹脂
組成物として非常に信頼性の高い優れたものである。
(Effects of the Invention) The cured product of the composition using the resin for semiconductor sealing according to the present invention has a high Tg and is excellent in moisture resistance and strength under heat, so that the sealing body has good solder crack resistance and It has low stress and excellent heat cycle resistance, making it an excellent and highly reliable resin composition for semiconductor encapsulation.

第 表 (注)*1;往友デュレズ嬬製 PR−51470*2
:三菱油化■製   YL−6065第2表 *3:1%イソプロパツール溶液
Table (note) *1; Manufactured by Otomo Durez Tsumugi PR-51470 *2
: Manufactured by Mitsubishi Yuka ■ YL-6065 Table 2 *3: 1% isopropanol solution

Claims (6)

【特許請求の範囲】[Claims] (1)(A)下記式〔 I 〕で示されるポリフェノール
類と塩化アリル又は臭化アリルとの反応物と、▲数式、
化学式、表等があります▼・・・〔 I 〕 (R_1:−H、−CH_3、−CF_3、▲数式、化
学式、表等があります▼、又は▲数式、化学式、表等が
あります▼の中からそれぞれ独立に選択された基 R_2:−H、−CH_3、又は−CF_3の中からそ
れぞれ独立に選択された基 0≦n<30) (B)下記式〔II〕で示されるポリシロキサンと、▲数
式、化学式、表等があります▼・・・・・・〔II〕 (X:−H又は▲数式、化学式、表等があります▼、 R_3:−CH_3、−CF_3、▲数式、化学式、表
等があります▼、又はXの中からそれぞれ独立に選択さ
れた基 j:1〜100) を反応させて得られるアリル変性ポリシロキサン(AB
)と (C)マレイミド化合物とを含有することを特徴とする
半導体封止用樹脂組成物。
(1) (A) A reaction product of polyphenols represented by the following formula [I] and allyl chloride or allyl bromide, and ▲ mathematical formula,
There are chemical formulas, tables, etc. ▼...[I] (R_1: -H, -CH_3, -CF_3, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Each independently selected group R_2: a group each independently selected from -H, -CH_3, or -CF_3 0≦n<30) (B) a polysiloxane represented by the following formula [II], and ▲ There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・[II] Allyl-modified polysiloxane (AB
) and (C) a maleimide compound.
(2)ポリフェノール類と塩化アリル又は臭化アリルと
の反応物のアリル化率がフェノール性OH基に対して5
0%以上、150%以下である特許請求の範囲第1項記
載の半導体封止用樹脂組成物。
(2) The allylation rate of the reaction product between polyphenols and allyl chloride or allyl bromide is 5 with respect to the phenolic OH group.
The resin composition for semiconductor encapsulation according to claim 1, which has a content of 0% or more and 150% or less.
(3)ポリフェノール類と塩化アリル又は臭化アリルと
の反応物のアリル化率がフェノール性OH基に対して5
0%以上、150%以下で、かつ、クライゼン転位した
アリル基がフェノール性OH基に対して20%以上、7
0%以下である特許請求の範囲第1項記載の半導体封止
用樹脂組成物。
(3) The allylation rate of the reaction product between polyphenols and allyl chloride or allyl bromide is 5% relative to the phenolic OH group.
0% or more and 150% or less, and the Claisen rearranged allyl group is 20% or more with respect to the phenolic OH group, 7
The resin composition for semiconductor encapsulation according to claim 1, which has a content of 0% or less.
(4)ポリフェノール類が ▲数式、化学式、表等があります▼ である特許請求の範囲第1項、第2項及び第3項記載の
半導体封止用樹脂組成物。
(4) The resin composition for semiconductor encapsulation according to claims 1, 2, and 3, wherein the polyphenols are represented by the following formulas, chemical formulas, tables, etc.
(5)ポリシロキサンが ▲数式、化学式、表等があります▼ である特許請求の範囲第1項、第2項、第3項及び第4
項記載の半導体封止用樹脂組成物。
(5) Claims 1, 2, 3, and 4 in which the polysiloxane is ▲There are mathematical formulas, chemical formulas, tables, etc.▼
The resin composition for semiconductor encapsulation as described in 1.
(6)(A)下記式〔 I 〕で示されるポリフェノール
類と塩化アリル又は臭化アリルとの反応物と、▲数式、
化学式、表等があります▼・・・〔 I 〕 (R_1:−H、−CH_3、−CF_3、▲数式、化
学式、表等があります▼、又は▲数式、化学式、表等が
あります▼の中からそれぞれ独立に選択された基 R_2:−H、−CH_3、又は−CF_3の中からそ
れぞれ独立に選択された基 0≦n<30) (B)下記式〔II〕で示されるポリシロキサンと、▲数
式、化学式、表等があります▼・・・・・・〔II〕 (X:−H又は▲数式、化学式、表等があります▼、 R_3:−CH_3、−CF_3、▲数式、化学式、表
等があります▼、又はXの中からそれぞれ独立に選択さ
れた基 j:1〜100) を反応させて得られるアリル変性ポリシロキサン(AB
)に (C′)下記式〔III〕で示される置換ビスマレイミド
を ▲数式、化学式、表等があります▼ (R_4:−CH_3又は−C_2H_5、R_5:−
CH_3又は−C_2H_5)付加させたマレイミド変
性ポリシロキサン(ABC′)と(C)マレイミド化合
物とを含有することを特徴とする半導体封止用樹脂組成
物。
(6) (A) A reaction product of polyphenols represented by the following formula [I] and allyl chloride or allyl bromide, and ▲ mathematical formula,
There are chemical formulas, tables, etc. ▼...[I] (R_1: -H, -CH_3, -CF_3, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼, or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Each independently selected group R_2: a group each independently selected from -H, -CH_3, or -CF_3 0≦n<30) (B) a polysiloxane represented by the following formula [II], and ▲ There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・[II] Allyl-modified polysiloxane (AB
) is the substituted bismaleimide represented by the following formula [III] in (C') ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R_4: -CH_3 or -C_2H_5, R_5: -
A resin composition for semiconductor encapsulation, characterized in that it contains CH_3 or -C_2H_5) added maleimide-modified polysiloxane (ABC') and (C) a maleimide compound.
JP23578290A 1990-09-07 1990-09-07 Resin composition for semiconductor sealing Pending JPH04117458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23578290A JPH04117458A (en) 1990-09-07 1990-09-07 Resin composition for semiconductor sealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23578290A JPH04117458A (en) 1990-09-07 1990-09-07 Resin composition for semiconductor sealing

Publications (1)

Publication Number Publication Date
JPH04117458A true JPH04117458A (en) 1992-04-17

Family

ID=16991166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23578290A Pending JPH04117458A (en) 1990-09-07 1990-09-07 Resin composition for semiconductor sealing

Country Status (1)

Country Link
JP (1) JPH04117458A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735864B2 (en) 2000-01-26 2004-05-18 Matsushita Electric Industrial Co., Ltd. Heatsink method of manufacturing the same and cooling apparatus using the same
US7040388B1 (en) 2000-01-14 2006-05-09 Matsushita Electric Industrial Co., Ltd. Heat sink, method of manufacturing the same and cooling apparatus using the same
JP2008511728A (en) * 2004-08-27 2008-04-17 ゼネラル・エレクトリック・カンパニイ Crosslinkable and cross-linked polymers
WO2021201227A1 (en) * 2020-04-01 2021-10-07 出光興産株式会社 Resin, resin precursor composition, coating composition, electrophotographic photoreceptor, electrophotographic photoreceptor production method, molded article, and electronic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040388B1 (en) 2000-01-14 2006-05-09 Matsushita Electric Industrial Co., Ltd. Heat sink, method of manufacturing the same and cooling apparatus using the same
US6735864B2 (en) 2000-01-26 2004-05-18 Matsushita Electric Industrial Co., Ltd. Heatsink method of manufacturing the same and cooling apparatus using the same
JP2008511728A (en) * 2004-08-27 2008-04-17 ゼネラル・エレクトリック・カンパニイ Crosslinkable and cross-linked polymers
WO2021201227A1 (en) * 2020-04-01 2021-10-07 出光興産株式会社 Resin, resin precursor composition, coating composition, electrophotographic photoreceptor, electrophotographic photoreceptor production method, molded article, and electronic device

Similar Documents

Publication Publication Date Title
JPS6043872B2 (en) Thermosetting organopolysiloxane composition
EP0428871B1 (en) Epoxy resin composition for semiconductor sealing
JPH04117458A (en) Resin composition for semiconductor sealing
JPH044213A (en) Production of resin for sealing semiconductor
JP2837503B2 (en) Resin composition for semiconductor encapsulation
JP3201485B2 (en) Resin composition for semiconductor encapsulation
JP2823653B2 (en) Resin composition for semiconductor encapsulation
JP2857217B2 (en) Method for producing resin for semiconductor encapsulation
JP3201484B2 (en) Resin composition for semiconductor encapsulation
JP2872701B2 (en) Method for producing resin for semiconductor encapsulation
JP2857216B2 (en) Method for producing resin for semiconductor encapsulation
JPH0493345A (en) Resin composition for sealing semiconductor
JP2823652B2 (en) Resin composition for semiconductor encapsulation
JP2823654B2 (en) Resin composition for semiconductor encapsulation
JPH0493313A (en) Resin composition for semiconductor sealing
JPH0493312A (en) Resin composition for semiconductor sealing
JPH0413755A (en) Resin composition for sealing semiconductor
JPH02302426A (en) Epoxy resin composition
JPH0413754A (en) Resin composition for sealing semiconductor
JPH044214A (en) Production of resin for sealing semiconductor
JPH04185643A (en) Resin composition for semiconductor sealing
JPH04145129A (en) Silicone-modified propargyl resin composition and resin composition containing the same for sealing semiconductor
JPH04145128A (en) Silicon-modified propargyl resin composition and resin composition containing the same for sealing semiconductor
JP2703045B2 (en) Epoxy resin composition
JPH0267312A (en) Epoxy resin composition