JPH04116198A - Diamond eutectic plating film and plating method thereof - Google Patents

Diamond eutectic plating film and plating method thereof

Info

Publication number
JPH04116198A
JPH04116198A JP2232228A JP23222890A JPH04116198A JP H04116198 A JPH04116198 A JP H04116198A JP 2232228 A JP2232228 A JP 2232228A JP 23222890 A JP23222890 A JP 23222890A JP H04116198 A JPH04116198 A JP H04116198A
Authority
JP
Japan
Prior art keywords
plating
diamond
plated
diamond particles
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232228A
Other languages
Japanese (ja)
Inventor
Hideo Yoshizawa
秀夫 吉沢
Hiroshi Eda
弘 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DAIYAMONDO KOGU SEISAKUSHO KK
Original Assignee
TOKYO DAIYAMONDO KOGU SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DAIYAMONDO KOGU SEISAKUSHO KK filed Critical TOKYO DAIYAMONDO KOGU SEISAKUSHO KK
Priority to JP2232228A priority Critical patent/JPH04116198A/en
Publication of JPH04116198A publication Critical patent/JPH04116198A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title film having excellent lubricity and wear resistance without flawing the other side parts by dipping a material to be plated into a plating bath suspending the prescribed particle diameter of polycrystalline diamond particles and generating the eutectoid of the diamond particles in the metal film precipitated on the surface of material to be plated. CONSTITUTION:At first, the polycrystalline diamond particles having 10-100Angstrom average particle diameter is dipped into a pure water and an ultrasonic treatment is executed to mix these in the plating bath and, if necessary, a surface active agent is added in order to keep suspending condition for a long time. The material to be plated is dipped into this plating bath and the prescribed thickness of diamond eutectic plating film, dispersing the diamond particles in the metal film precipitated on the surface of material to be plated, is formed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、微細なダイヤモンド粒子を含むメッキ被膜
およびそのメッキ法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a plating film containing fine diamond particles and a plating method therefor.

(従来の技術) 機械部品の表面にダイヤモンドの微粒子をメッキよって
定着させ、耐摩耗性と潤滑性を改善することはすてに知
られている(例えば、特公昭56−24032号公報、
特開昭48−11239号公報)。
(Prior Art) It is well known to improve wear resistance and lubricity by fixing fine diamond particles on the surface of mechanical parts by plating them (for example, Japanese Patent Publication No. 56-24032,
(Japanese Unexamined Patent Publication No. 48-11239).

従来この種のメッキに用いられるダイヤモンドの粒径は
小さくても数ミクロン(1μ=0.001+nm)であ
り、ダイヤモンド粒子が、接触する相手側部品に微細な
傷を付ける欠点があった。また、従来、単結晶のダイヤ
モンドが使われており、この単結晶ダイヤモンドは12
面体、8面体または6面体の形状をなし、鋭利な角が有
るので、相手方に一層キズをつけやすい。
Conventionally, the particle size of diamond used in this type of plating is at least a few microns (1μ=0.001+nm), and the diamond particles have the disadvantage of causing minute scratches on the mating parts they come into contact with. In addition, conventionally, single-crystal diamond has been used, and this single-crystal diamond has 12
It has the shape of a face, octahedron, or hexahedron, and has sharp corners, making it easier to damage the other party.

さらに、ダイヤモンド粒子が大きいため、メッキ浴中に
分散させても、すくに凝集沈降してしまう。このため、
メッキ液中で下向きになる面は上向きになる面に比べて
、ダイヤモンド粒子の共析量が極端に少ないという問題
がある。そこで、共析処理条件、メッキ槽構造およびメ
ッキ液循環方式等複雑な条件を吟味する必要があった。
Furthermore, since diamond particles are large, they easily coagulate and settle even when dispersed in a plating bath. For this reason,
There is a problem in that the amount of eutectoid diamond particles on the surface facing downward in the plating solution is extremely smaller than on the surface facing upward. Therefore, it was necessary to carefully examine complex conditions such as eutectoid treatment conditions, plating tank structure, and plating solution circulation system.

ダイヤモンド粒径が大きいことによる他の問題は、メッ
キ被膜の表面が粗くなり、メッキ後、表面を平滑にする
ため機械的な二次加工が必要であった。
Another problem caused by the large diamond particle size is that the surface of the plating film becomes rough, requiring mechanical secondary processing to smooth the surface after plating.

(発明が解決しようとする課題) この発明は、相手側部品にキズを付けることがなく、機
械的な二次加工を必要のない、潤滑性の優れたダイヤモ
ンド共析メッキ被膜を得るを目的とする。他の目的は、
被メッキ体全面にわたって均一なダイヤモンドの共析量
が得られ、しかも、特殊な設備を要せず、簡単にてきる
メッキ法を提供することにある。
(Problems to be Solved by the Invention) The purpose of this invention is to obtain a diamond eutectoid plating film with excellent lubricity that does not damage the mating parts and does not require mechanical secondary processing. do. Other purposes are
To provide a plating method which can obtain a uniform eutectoid amount of diamond over the entire surface of an object to be plated, and which can be easily performed without requiring special equipment.

(課題を解決するための手段) この発明では、ダイヤモンド粒子として、平均粒径が1
0〜100人(1人=10 印)のものを用いる。粒径
は小さいほと好ましい。しかも、多結晶のものを用いる
。多結晶ダイヤモンドは、単結晶のものと違って鋭利な
角がなく丸みを帯びている。
(Means for solving the problem) In this invention, diamond particles have an average particle size of 1
0 to 100 people (1 person = 10 marks) will be used. The smaller the particle size, the better. Furthermore, a polycrystalline material is used. Unlike single crystal diamonds, polycrystalline diamonds have no sharp edges and are rounded.

一般に超微粒ダイヤモンドは、不活性ガスで満たした圧
力容器内でTNT火薬を爆発させ、黒鉛に超高圧超高温
を加えることによって製造されるが、この発明で用いら
れるような数十人の多結晶ダイヤモンドは、特に粒子成
長速度を大きな値(例えば約5 wIII/ S )に
制御することによって得られる。粒径の大きさを揃える
ための分級工程も不可欠である。
Generally, ultrafine diamonds are produced by exploding TNT gunpowder in a pressure vessel filled with inert gas and applying ultrahigh pressure and ultrahigh temperature to graphite. Diamonds are obtained in particular by controlling the grain growth rate to large values (e.g. about 5 wIII/S). A classification process is also essential to make the particle size uniform.

メッキ液は、電解でも無電解でもよく、ニッケル、クロ
ム、ニッケル合金、コバルト、ニッケルーコバルト合金
、コバルト合金、ニッケルータングステン合金、銅、等
のメッキ可能な金属を含むものを用いることができる。
The plating solution may be electrolytic or electroless, and may contain a platingable metal such as nickel, chromium, nickel alloy, cobalt, nickel-cobalt alloy, cobalt alloy, nickel-tungsten alloy, copper, or the like.

ダイヤモンド粒子はメッキ液に均一に分散させる。例え
ば、純水中にダイヤモンド粒子を入れ、超音波処理を施
して、メッキ液に混ぜる。懸濁状態を長時間維持するた
めに、必要に応して界面活性剤を添加する。
The diamond particles are uniformly dispersed in the plating solution. For example, diamond particles are placed in pure water, treated with ultrasonic waves, and mixed into the plating solution. In order to maintain a suspended state for a long time, a surfactant is added as necessary.

ダイヤモンドの粒径がたいへん小さいため、メッキ浴中
でのダイヤモンド粒子の沈降速度はたいへん遅く、数時
間にわたって懸濁状態を維持することができる。なお、
金属が析出する際に水素等のガスが発生し、これによっ
てメッキ液が対流を起こすので、メッキ液を撹拌しなく
とも、良好な懸濁状態を維持する。
Due to the very small particle size of diamond, the settling rate of diamond particles in the plating bath is very slow and they can remain in suspension for several hours. In addition,
Gas such as hydrogen is generated when the metal is deposited, and this causes convection in the plating solution, so that a good suspended state is maintained without stirring the plating solution.

このメッキ浴に被メッキ物を漫潰し、所要の厚さのメッ
キ被膜を得る。ピンホールを作らないため、メッキの最
中、被メッキ物に適度の揺動または衝撃を与えるとよい
。メッキ液中にはダイヤモンド粒子が均一に分散してい
るので、上向きの面でも下向きの面にでもダイヤモンド
が均一に共析する。
The object to be plated is crushed in this plating bath to obtain a plated film of the required thickness. To avoid creating pinholes, it is best to apply appropriate shaking or impact to the object to be plated during plating. Since diamond particles are uniformly dispersed in the plating solution, diamonds are eutectoid uniformly on both upward and downward surfaces.

得られたメッキ被膜は、粒径が微細で、しかも多結晶の
丸みを帯びたダイヤモンド粒子を含んでいるので、接触
する相手方にキズをつけることがなく、表面が平滑であ
って、他の部品と摺り合わせたとき、潤滑性がよく、耐
摩耗性に優れる。
The resulting plating film has a fine grain size and contains rounded polycrystalline diamond particles, so it does not scratch the object it comes into contact with, and has a smooth surface that makes it easy to protect other parts. When rubbed together, it has good lubricity and excellent wear resistance.

(実施例) 実施例−1(電解メッキの例) 硫酸ニッケル        150g/z塩化二・ン
ケル        200g/lホウ酸      
      35g/を界面活性剤         
2〜3滴ダイヤモンド粒子(粒径20〜50人)Ig/
を上記の組成のメッキ液を温度60℃、PH1,5に保
ち、被メッキ体を陰極に配置し、電流密度5A/dイで
10分間メッキを行ない、3μmの厚さのメッキ被膜を
得た。
(Example) Example-1 (Example of electrolytic plating) Nickel sulfate 150g/z dichloride 200g/l boric acid
35g/surfactant
2-3 drops diamond particles (particle size 20-50) Ig/
A plating solution having the above composition was maintained at a temperature of 60°C and a pH of 1.5, the object to be plated was placed on the cathode, and plating was performed at a current density of 5 A/d for 10 minutes to obtain a plated film with a thickness of 3 μm. .

実施例−2(無電解メッキの例) 硫酸ニッケル         35y、/lグリシン
           20g/lリンゴ酸塩    
      35g/lDMAB          
   5g/を界面活性剤         2〜3滴
ダイヤモンド粒子(粒径20〜50人)1g/を上記の
組成のメッキ液を温度65℃、PH6,7に保ち、被メ
ッキ体を30分浸漬し、3μmの厚さのメッキ被膜を得
た。
Example-2 (Example of electroless plating) Nickel sulfate 35y,/l glycine 20g/l malate
35g/lDMAB
5g/ of surfactant, 2-3 drops of diamond particles (particle size: 20-50), 1g/of plating solution with the above composition, kept at temperature 65℃ and pH 6,7, immersed the object to be plated for 30 minutes, 3μm A plating film with a thickness of .

実施例−3(無電解メッキの例) 硫酸ニッケル 2’2z/l 乳酸                28 g/乙ジ
プロピオン酸       2.2g/を次亜リン酸ナ
トリュウム    20g/を界面活性剤      
   2〜3滴ダイヤモンド粒子(粒径20〜50人)
Ig/を上記の組成のメッキ液を温度90℃、PH4,
6〜5.5に保ち、被メッキ体を30分浸漬し、6μm
の厚さのメッキ被膜を得た。
Example 3 (Example of electroless plating) Nickel sulfate 2'2z/l Lactic acid 28 g/Dipropionic acid 2.2 g/Sodium hypophosphite 20 g/Surfactant
2-3 drops diamond particles (particle size 20-50)
Ig/plating solution with the above composition was heated at 90°C, pH 4,
6 to 5.5, immerse the object to be plated for 30 minutes, and
A plating film with a thickness of .

実施例−4 マイクロドリル(o、3φ)に無電解メッキ法および電
解メッキ法てダイヤモンド共析メッキ(膜厚3μm)を
施し、自動穴明は機を使って真鍮の穴加工を行なったと
ころ、従来の超硬トリルに比へ約3倍の寿命(実加工個
数6000個)が得られた。
Example 4 A micro drill (o, 3φ) was coated with diamond eutectoid plating (film thickness 3 μm) using electroless plating and electrolytic plating, and an automatic hole drilling machine was used to machine a brass hole. Approximately three times longer life than conventional carbide trills (6,000 pieces actually machined).

実施例−5 半月形ドリル(0,72φ、深さ1.8+w)に無電解
メッキ法および電解メッキ法でダイヤモンド共析メッキ
(膜厚3μm)を施し、自動穴明は機を使って真鍮の穴
加工を行なったところ、従来の超硬トリルに比べ約4.
4倍の寿命(実加工個数200,000ホール)が得ら
れた。加工面粗さおよび光沢については良好な結果が得
られた。
Example-5 Diamond eutectoid plating (film thickness 3 μm) was applied to a half-moon drill (0.72φ, depth 1.8+W) by electroless plating and electrolytic plating, and automatic hole drilling was performed using a brass plate using a machine. When drilling the hole, it was approximately 4.5mm smaller than the conventional carbide drill.
Four times longer life (200,000 holes actually machined) was obtained. Good results were obtained regarding machined surface roughness and gloss.

実施例−6 面取りカッタ(15φ、90”、95°)に無電解メッ
キ法および電解メッキ法でダイヤモンド共析メッキ(膜
厚2μm)を施し、自動面取り機を使ってSS材の面取
り加工を行なったところ、従来のハイス材トリルに比へ
約3倍の寿命(実加工個数9,000個)が得られた。
Example-6 A chamfering cutter (15φ, 90”, 95°) was coated with diamond eutectoid plating (film thickness 2 μm) using electroless plating and electrolytic plating, and an automatic chamfering machine was used to chamfer the SS material. As a result, the lifespan was approximately three times longer than that of conventional high speed steel trills (9,000 pieces actually processed).

実施例−7 エンドミル(3,5φ)に無電解メッキ法および電解メ
ッキ法でダイヤモンド共析メッキ(膜厚4μm)を施し
、自動穴明は機を使ってフェライトコアの穴加工を行な
ったところ、従来の超硬に比べ約1.2倍の寿命(実加
工個数1,200個)が得られた。
Example 7 An end mill (3.5φ) was coated with diamond eutectoid plating (film thickness: 4 μm) using electroless plating and electrolytic plating, and an automatic hole drilling machine was used to drill holes in the ferrite core. Approximately 1.2 times longer life than conventional carbide (1,200 pieces actually machined) was obtained.

実施例−8 レンズ加工用治具に無電解メッキ法および電解メッキ法
でダイヤモンド共析メッキ(膜厚6μm)を施したとこ
ろ、従来の治具に比べ約4倍の寿命(実加工日数2日)
が得られた。
Example 8 When a lens processing jig was coated with diamond eutectoid plating (film thickness: 6 μm) using electroless plating and electrolytic plating, the lifespan was approximately 4 times that of conventional jigs (actual processing time was 2 days). )
was gotten.

実施例−9 フェライト加工用治具に無電解メッキ法および電解メッ
キ法でダイヤモンド共析メッキ(膜厚10μm)を施し
、耐摩擦摺動部品として使用したところ、超硬品と比へ
ほぼ同一の寿命(実加工個数約20万個)が得られた。
Example 9 A ferrite processing jig was coated with diamond eutectoid plating (film thickness 10 μm) using electroless plating and electrolytic plating and used as a friction-resistant sliding component. A long service life (approximately 200,000 pieces actually processed) was achieved.

実施例−1O コレットチャックに無電解メッキ法でダイヤモンド共析
メッキを施し、耐摩擦摺動部品として使用したところ、
従来のイオンブレーティング法およびその他の被膜生成
法では精度不良により使用てきなかったものが、機械的
フレ精度は2μm以下と良好な結果が得られた。
Example-1O A collet chuck was coated with diamond eutectoid plating using an electroless plating method and used as a friction-resistant sliding component.
Conventional ion blating methods and other film forming methods have not been used due to poor accuracy, but good results were obtained with mechanical runout accuracy of 2 μm or less.

実施例−11 マイクロドリル(0,48φ)に無電解メッキ法および
電解メッキ法でダイヤモンド共析メッキ(膜厚4μm)
を施し、自動穴明は機を使ってマセライト(セラミック
)の穴加工を行なったところ、従来の超硬ドリルに比べ
約5倍の寿命(実加工個数500個)が得られた。
Example-11 Diamond eutectoid plating (film thickness 4 μm) using electroless plating method and electrolytic plating method on micro drill (0.48φ)
When we used an automatic drilling machine to drill holes in macerite (ceramic), we were able to obtain a lifespan approximately five times longer than that of conventional carbide drills (500 pieces actually machined).

実施例−12 焼入れ鋼の散髪用ハサミに膜厚3μmのダイヤモンド共
析メッキを施したところ、普通では4〜6週間で再研磨
刃付は加工を行なう必要があるが、14力月間使用でき
た。
Example 12 Hardened steel haircut scissors were coated with diamond eutectoid plating with a thickness of 3 μm, and the scissors could be used for 14 months, whereas normally the blades would need to be re-sharpened in 4 to 6 weeks. .

実施例−13 鋼製の糸供給ガイドは普通、酸化アルミ(Al□03)
を被覆するが、これに代えて膜厚4μmのダイヤモンド
共析メッキを施したところ、0倍以上寿命が延びた。
Example-13 Steel thread supply guide is usually made of aluminum oxide (Al□03)
However, when diamond eutectoid plating with a thickness of 4 μm was applied instead, the life was extended by more than 0 times.

て、長時間にわたって懸濁状態を保持することができ、
したがって、被メッキ部品の表面に均一にダイヤモンド
が共析する効果がある。
can maintain a suspended state for a long time,
Therefore, there is an effect that diamond is eutectoid uniformly on the surface of the part to be plated.

実施例−14 化学工業用ポンプの鋼シールに4μmのダイヤモンド共
析メッキを施したところ、寿命が4000時間から70
00時間に延びた。
Example 14 When the steel seal of a chemical industrial pump was coated with 4 μm diamond eutectoid plating, the life span was changed from 4000 hours to 70 hours.
It was extended to 00 hours.

Claims (2)

【特許請求の範囲】[Claims] 1. ニッケル等の金属マトリックス中に平均粒径が1
0〜100Åの多結晶ダイヤモンド粒子が分散している
ダイヤモンド共析メッキ被膜。
1. The average particle size is 1 in a metal matrix such as nickel.
A diamond eutectoid plating film in which polycrystalline diamond particles of 0 to 100 Å are dispersed.
2. 平均粒径が10〜100Åの多結晶ダイヤモンド
粒子をメッキ浴中に懸濁させ、それに被メッキ物を浸漬
し、被メッキ物の表面に析出する金属被膜内にダイヤモ
ンド粒子を共析させることを特徴とするメッキ法。
2. It is characterized by suspending polycrystalline diamond particles with an average particle size of 10 to 100 Å in a plating bath, immersing the object to be plated in it, and causing the diamond particles to eutectoid in the metal film deposited on the surface of the object to be plated. plating method.
JP2232228A 1990-08-31 1990-08-31 Diamond eutectic plating film and plating method thereof Pending JPH04116198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232228A JPH04116198A (en) 1990-08-31 1990-08-31 Diamond eutectic plating film and plating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232228A JPH04116198A (en) 1990-08-31 1990-08-31 Diamond eutectic plating film and plating method thereof

Publications (1)

Publication Number Publication Date
JPH04116198A true JPH04116198A (en) 1992-04-16

Family

ID=16935986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232228A Pending JPH04116198A (en) 1990-08-31 1990-08-31 Diamond eutectic plating film and plating method thereof

Country Status (1)

Country Link
JP (1) JPH04116198A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089933A1 (en) * 2010-01-22 2011-07-28 アイテック株式会社 Composite plating solution having diamond microparticles dispersed therein, and process for production thereof
JP2012505087A (en) * 2008-10-07 2012-03-01 デートワイラー・スイステック・アーゲー Diamond coated doctor blade
JP2012092416A (en) * 2010-09-30 2012-05-17 Eyetec Co Ltd Method for forming composite plating film
EP2269952A3 (en) * 2001-08-30 2014-04-16 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided particles metallic film containing diamond particles and method of producing the same
JP2017066437A (en) * 2015-09-28 2017-04-06 株式会社ダイセル Nano diamond containing plating film and nano diamond containing plating article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503095Y2 (en) * 1993-07-20 1996-06-26 株式会社イデア Barrier Poll

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503095Y2 (en) * 1993-07-20 1996-06-26 株式会社イデア Barrier Poll

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2269952A3 (en) * 2001-08-30 2014-04-16 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided particles metallic film containing diamond particles and method of producing the same
EP2269953A3 (en) * 2001-08-30 2014-04-16 Tadamasa Fujimura Stable aqueous suspension liquid of finely divided particles metallic film containing diamond particles and method of producing the same
JP2012505087A (en) * 2008-10-07 2012-03-01 デートワイラー・スイステック・アーゲー Diamond coated doctor blade
WO2011089933A1 (en) * 2010-01-22 2011-07-28 アイテック株式会社 Composite plating solution having diamond microparticles dispersed therein, and process for production thereof
JP2011149071A (en) * 2010-01-22 2011-08-04 Eyetec Co Ltd Composite plating solution having diamonds particle dispersed therein, and method for producing the same
CN102753734A (en) * 2010-01-22 2012-10-24 爱德有限公司 Composite plating solution having diamond microparticles dispersed therein, and process for production thereof
CN102753734B (en) * 2010-01-22 2015-02-11 爱德有限公司 Composite plating solution having diamond microparticles dispersed therein, and process for production thereof
JP2012092416A (en) * 2010-09-30 2012-05-17 Eyetec Co Ltd Method for forming composite plating film
JP2017066437A (en) * 2015-09-28 2017-04-06 株式会社ダイセル Nano diamond containing plating film and nano diamond containing plating article

Similar Documents

Publication Publication Date Title
EP0674725B1 (en) Electrodeposition of nickel-tungsten amorphous and microcrystalline coatings
US20040256236A1 (en) Compositions and coatings including quasicrystals
US20090223829A1 (en) Micro-Arc Assisted Electroless Plating Methods
CA1063966A (en) Electroplating method
US4613388A (en) Superplastic alloys formed by electrodeposition
EP0181927B1 (en) Electrodeposition of amorphous alloys
Ebrahimi et al. The effect of substrate on the microstructure and tensile properties of electrodeposited nanocrystalline nickel
KR100338386B1 (en) Wire saw with adhesive diamond electrodeposited on it and its manufacturing method
JPH04116198A (en) Diamond eutectic plating film and plating method thereof
CA2782421A1 (en) Electroless ni-composite plated substrate and method
Rezende et al. A review of corrosion resistance nanocomposite coatings
JP2011084774A (en) Method of manufacturing nickel alloy electroformed blade
Sofer et al. Evaluation and uses of composite Ni-Co matrix coatings with diamonds on steel applied by electrodeposition
US4043878A (en) Electroplating method
Stoychev et al. The influence of pulse frequency on the hardness of bright copper electrodeposits
Kucharska et al. Corrosion resistance of Ni/Al2O3 nanocomposite coatings
Bobanova et al. Properties of CoW alloy coatings electrodeposited from citrate electrolytes containing surface active substances
KR102012726B1 (en) Hexavalent Chrome Plating Solution And Crack Free Pulse-Reverse Electroplating Method Using of The Same
US3168457A (en) Apparatus for producing composite electroplated articles
Chiou et al. A novel method of composite electroplating on lap in lapping process
US2763606A (en) Electrodepositing baths and plating methods
Steer The Influence of Surface Behaviour on the Characteristics of Electrodeposits
Huang et al. Grinding performances of electroplated Ni–B-diamond tools prepared through composite electroplating with intermittent stirring
TW201350594A (en) Metal material
TWI243856B (en) Method for reducing internal stress of electroplated layer made of nickel-based alloy material