JPH04116104A - Production of molded body for sintering and sintered parts - Google Patents

Production of molded body for sintering and sintered parts

Info

Publication number
JPH04116104A
JPH04116104A JP23753690A JP23753690A JPH04116104A JP H04116104 A JPH04116104 A JP H04116104A JP 23753690 A JP23753690 A JP 23753690A JP 23753690 A JP23753690 A JP 23753690A JP H04116104 A JPH04116104 A JP H04116104A
Authority
JP
Japan
Prior art keywords
molded body
sublimable substance
binder
sintering
degreasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23753690A
Other languages
Japanese (ja)
Inventor
Shigeru Igarashi
茂 五十嵐
Takayuki Tsukahara
塚原 隆行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Precision Ltd
Original Assignee
Hitachi Metals Precision Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Precision Ltd filed Critical Hitachi Metals Precision Ltd
Priority to JP23753690A priority Critical patent/JPH04116104A/en
Publication of JPH04116104A publication Critical patent/JPH04116104A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To shorten the time required to dewax a molded body consisting of metal powder, a binder and a sublimable substance without damaging the molded body by removing the sublimable substance by sublimation before dewaxing. CONSTITUTION:A molded body is formed with metal powder, a binder and 3-15wt.% sublimable substance which is solid at ordinary temp. This molded body is vacuum-treated under <=50 Torr pressure to sublime the sublimable substance and the resulting porous molded body is dewaxed and sintered. Even when the molded body is rapidly heated, the binder can flow out through the pores and the molded body is not damaged by cracking or swelling. Camphor, naphthalene or dichloro-benzene may be used as the sublimable substance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属粉末を射出成形法、押し出し成形法等に
より成形し、得られた焼結用成形体を加熱焼結して焼結
物品を得る粉末冶金技術に関し、特に形成される成形体
および焼結物品の製造方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to molding metal powder by an injection molding method, an extrusion molding method, etc., and heating and sintering the obtained molded body for sintering to produce a sintered article. The present invention relates to powder metallurgy techniques for obtaining powder metallurgy, and in particular to methods for producing formed bodies and sintered articles.

〔従来の技術〕[Conventional technology]

従来、粉末を焼結し、様々な形状を得る方法では、プレ
ス成形、押し出し成形法や射出成形法が知られている。
Conventionally, press molding, extrusion molding, and injection molding are known as methods for sintering powder to obtain various shapes.

このなかでも射出成形法は3次元的複雑形状が容易に成
形可能で、従来、精密鋳造法や機械加工法で生産されて
きた小重量の製品は、低コストで大量生産が可能なため
、近年金属粉末、セラミックス粉末を問わず発展してき
ている。このような状況下で、バインダを除去する工程
いわゆる脱脂工程が必要な成形法では、脱脂工程でバイ
ンダの膨張による成形体の破損の防止、あるいは焼結温
度まで成形体の形状保持を可能とするなどの目的で、多
種多様なバインダを組み合わせて使用している。
Among these methods, injection molding can easily mold three-dimensional complex shapes, and in recent years, small-weight products that were traditionally produced by precision casting or machining can be mass-produced at low cost. Both metal powder and ceramic powder are being developed. Under these circumstances, in molding methods that require a process to remove the binder, a so-called debinding process, the debinding process can prevent breakage of the molded body due to expansion of the binder or maintain the shape of the molded body up to the sintering temperature. A wide variety of binders are used in combination for various purposes.

この目的に適するバインダとしては、加熱減量の順に、
200°Cまでに90%以上減量してしまうジエチルツ
クレート(以下DEPと称する)、ジブチルフタレート
、250°Cまでに90%以上減量してしまうパラフィ
ンワックス(以下PWと称する)、ステアリン酸、30
0°Cまでに90%以上減量してしまうポリブチルメタ
アクリレート、ポリスチレン(以下PSと称する)、3
50°Cまでに90%以上減量してしまうエチレン−酢
酸ビニル共重合体(以下EVAと称する)、ポリエチレ
ンなどが知られている。
Binders suitable for this purpose are:
Diethyl tucrate (hereinafter referred to as DEP), which loses weight by 90% or more by 200°C, dibutyl phthalate, paraffin wax (hereinafter referred to as PW), which loses weight by 90% or more by 250°C, stearic acid, 30
Polybutyl methacrylate, polystyrene (hereinafter referred to as PS), which loses weight by 90% or more by 0°C, 3
Ethylene-vinyl acetate copolymer (hereinafter referred to as EVA), polyethylene, etc., which lose weight by 90% or more by 50°C, are known.

〔発明が解決しようとする課B] 脱脂工程においては、上述したようにバインダの膨張に
よる成形体の破損の防止、あるいは焼結温度まで成形体
の形状保持を可能とする必要がある。このため、バイン
ダの急激な膨張、蒸発、分解による成形体の破損を避け
るために通常50℃/Hr以下、好ましくは10℃/H
r以下の極めて緩やかな昇温速度で加熱している。
[Problem B to be Solved by the Invention] In the degreasing step, as described above, it is necessary to prevent damage to the molded body due to expansion of the binder or to maintain the shape of the molded body up to the sintering temperature. Therefore, in order to avoid damage to the molded body due to rapid expansion, evaporation, and decomposition of the binder, it is usually 50°C/Hr or less, preferably 10°C/Hr.
Heating is carried out at an extremely slow temperature increase rate of r or less.

例えば10°(:/llr昇温速度の場合、脱脂温度が
500°Cだと脱脂温度に到達するのに50時間を要し
ていて、生産性が著しく低いという問題点があった。
For example, in the case of a temperature increase rate of 10° (:/llr), if the degreasing temperature is 500°C, it takes 50 hours to reach the degreasing temperature, which poses a problem of extremely low productivity.

また、ショウノウ等の昇華性物質を混合して脱脂を促進
することが特開平2−438443号等に開示されてい
るが、この場合脱脂は早く完了するが、バインダの膨張
による成形体の破損は避けられず、昇温速度を上げるこ
とはできない。
In addition, Japanese Patent Application Laid-Open No. 2-438443 discloses mixing a sublimable substance such as camphor to promote degreasing, but in this case, degreasing is completed quickly, but the molded body is not damaged due to expansion of the binder. This is unavoidable and the rate of heating cannot be increased.

本発明の目的は、脱脂速度を上げても成形体の破損等が
発生せず脱脂時間を短縮できる焼結用成形体および焼結
物品の製造方法を提供することである。
An object of the present invention is to provide a molded body for sintering and a method for producing a sintered article that can shorten the degreasing time without causing damage to the molded body even if the degreasing speed is increased.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、金属粉末とバインダと3−15重量%の常温
で固体の昇華性物質を含有してなる焼結用成形体である
The present invention is a molded body for sintering that contains metal powder, a binder, and 3-15% by weight of a sublimable substance that is solid at room temperature.

3−15重量%昇華性物質を含有することにより、脱脂
処理の前にこの昇華性物質を除去することによって、成
形体を、昇華性物質の体積分、多孔質体とすることがで
きる。このような多孔質体を形成するように昇華性物質
の範囲を特定したのが本発明の最大の特徴である。
By containing 3 to 15% by weight of the sublimable substance, the molded article can be made porous by the volume of the sublimable substance by removing the sublimable substance before degreasing. The greatest feature of the present invention is that the range of the sublimable substance is specified so as to form such a porous body.

この空孔のおかげで、急加熱しても、バインダが流れ出
る体積が確保できているので成形体に割れ膨れ等の異常
は認められない。この昇華性物質が、3重量%未満であ
ると、常温で真空処理を施しても、その体積が小さすぎ
るために実質的な効果は得られず、15重量%を越える
と空孔の体積が大きすぎ、焼結晶の寸法精度が著しく低
下するため、この範囲に限定した。
Thanks to these pores, even when heated rapidly, there is enough volume for the binder to flow out, so no abnormalities such as cracking or blistering are observed in the molded product. If the content of this sublimable substance is less than 3% by weight, even if vacuum treatment is performed at room temperature, the volume will be too small and no substantial effect will be obtained; if it exceeds 15% by weight, the volume of the pores will decrease. If it is too large, the dimensional accuracy of the fired crystal will drop significantly, so it was limited to this range.

昇華性物質としては、ショウノウ、ナフタリン、ジクロ
ルベンゼン、アダマンタン、トリメチレンノルボルナン
等昇華性の高いものなら何でも良い。
As the sublimable substance, any substance with high sublimability such as camphor, naphthalene, dichlorobenzene, adamantane, trimethylenenorbornane, etc. may be used.

また、本発明は金属粉末に成形用バインダに加え、昇華
性物質を3−15重量%含有させた成形体を、50 t
orrより低い圧力で真空処理を施すことにより、前記
昇華性物質を昇華させてから、脱脂処理を行い、その後
焼結を行うことを特徴とする焼結部品の製造方法である
In addition, the present invention produces a molded product containing 3 to 15% by weight of a sublimable substance in addition to a molding binder in metal powder, in a 50 t
This method of manufacturing a sintered part is characterized in that the sublimable substance is sublimated by vacuum treatment at a pressure lower than orr, followed by degreasing treatment, and then sintering.

昇華性物質は成形体を多孔質にするためのものであり、
バインダの膨張を起こさせないためには、脱脂のために
加熱する前に昇華させてしまう必要がある。このために
は5 Q torrに以下の圧力に減圧する真空処理が
利用できる。
The sublimable substance is used to make the molded body porous.
In order to prevent the binder from expanding, it is necessary to sublimate it before heating it for degreasing. For this purpose, vacuum treatment can be used to reduce the pressure to 5 Q torr or less.

これにより、70°(:/Hr以上の昇温速度でも成形
体を破損することなく、脱脂処理が可能となる。
This makes it possible to perform degreasing without damaging the molded product even at a temperature increase rate of 70° (:/Hr or more).

また、真空処理の後、メチレンクロライド、アセトン等
の有機溶剤に浸漬すると、成形体は昇華性物質が昇華し
、多孔質になっているため、有機溶剤は成形体内部まで
良く浸透し、バインダの一部を短時間で溶出させ、多孔
質化が促進されるので更に昇温速度を早くすることがで
きる。
In addition, when the molded body is immersed in an organic solvent such as methylene chloride or acetone after vacuum treatment, sublimable substances sublimate and the molded body becomes porous, so the organic solvent penetrates into the inside of the molded body and removes the binder. A portion of it is eluted in a short period of time, and porosity is promoted, so the temperature increase rate can be further increased.

〔実施例〕 本発明の実施例について説明する。なお、本発明は、以
下の実施例によって限定されるものではない。
[Example] An example of the present invention will be described. Note that the present invention is not limited to the following examples.

(実施例1) 平均粒径7.4μmの5US304L水アトマイズ粉を
原料粉末とし、バインダは、アククティックポリプロピ
レン2.3重量部(以下特に断らない限り重量部とする
)、EVAl、5部、P S O,7部、P W 1.
2部、D E P 1.0部、昇華性物質はジクロルベ
ンゼンを10.0部、加圧型ニーダを使用して混練しコ
ンパウンドとした。このコンパウンドを25°Cに保持
した金型内にシリンダ温度95°C1射出圧力9. I
 G P aで肉厚5[[1IIl、長さ20In[[
l、幅6mmの形状に射出成形した。この射出成形体を
、3 Q torrの真空炉中で1時間保持する真空処
理を行い、昇華性物質のジクロルベンゼンが減量したの
を確認した。減量が確認された成形体を、水素雰囲気中
で、平均10℃/Hrの昇温速度で600°Cの脱脂を
行った。その後、1250°C11O−4torrの真
空炉中で焼結を行い、目的の焼結体を得た。得られた焼
結体の相対密度は97%で、割れ膨れ等の欠陥はなく良
好であった。
(Example 1) The raw material powder was 5US304L water atomized powder with an average particle size of 7.4 μm, and the binders were 2.3 parts by weight of actic polypropylene (hereinafter referred to as parts by weight unless otherwise specified), 5 parts of EVAl, P SO, 7 parts, P W 1.
2 parts, 1.0 part of DEP, and 10.0 parts of dichlorobenzene as a sublimable substance were kneaded using a pressure kneader to form a compound. This compound was placed in a mold kept at 25°C, cylinder temperature: 95°C, injection pressure: 9. I
G P a, wall thickness 5[[1IIl, length 20In[[
It was injection molded into a shape with a width of 6 mm. This injection molded product was subjected to vacuum treatment in which it was held in a vacuum furnace at 3 Q torr for 1 hour, and it was confirmed that the amount of dichlorobenzene, which is a sublimable substance, was reduced. The molded body whose weight loss was confirmed was degreased at 600°C in a hydrogen atmosphere at an average heating rate of 10°C/Hr. Thereafter, sintering was performed in a vacuum furnace at 1250°C and 11O-4 torr to obtain the desired sintered body. The obtained sintered body had a relative density of 97%, and was in good condition with no defects such as cracks and blisters.

(実施例2) 実施例1と同様に作成した成形体を昇温速度を平均70
℃/Hrに変え実施例1と同様の600°Cの脱脂を行
った。その後、1250 ’C110−′torrの真
空炉中で焼結を行い、目的の焼結体を得た。得られた焼
結体の相対密度は97%で、割れ膨れ等の欠陥はなく良
好であった。
(Example 2) A molded body prepared in the same manner as in Example 1 was heated at an average heating rate of 70%.
Degreasing was performed at 600°C in the same manner as in Example 1, except that the temperature was changed to 600°C/Hr. Thereafter, sintering was performed in a vacuum furnace at 1250'C110-'torr to obtain the desired sintered body. The obtained sintered body had a relative density of 97%, and was in good condition with no defects such as cracks and blisters.

(実施例3) 実施例1と同様に作成した成形体を、実施例1と同様の
真空処理を行った。得られた成形体を、メチレンクロラ
イド中で出力45KHzの超音波洗浄を10分間行い、
使用したバインダの15%の減量が確認された。減量が
確認された成形体を、水素雰囲気中で、平均10°C/
Ilrの昇温速度で600°Cの脱脂を行った。その後
、1250 ”C110−’torrの真空炉中で焼結
を行い、目的の焼結体を得た。得られた焼結体の相対密
度は97%で、割れ膨れ等の欠陥はなく良好であった。
(Example 3) A molded article prepared in the same manner as in Example 1 was subjected to the same vacuum treatment as in Example 1. The obtained molded body was subjected to ultrasonic cleaning with an output of 45 KHz in methylene chloride for 10 minutes,
A 15% reduction in the amount of binder used was confirmed. The molded product whose weight loss was confirmed was heated to an average of 10°C/10°C in a hydrogen atmosphere.
Degreasing was carried out at 600°C at a heating rate of Ilr. Thereafter, sintering was performed in a vacuum furnace at 1250"C110-'torr to obtain the desired sintered body. The relative density of the obtained sintered body was 97%, and it was in good condition with no defects such as cracks and blisters. there were.

(実施例4) 実施例3と同様に得られた成形体を昇温速度を平均20
0℃/Hrに変え実施例3と同様の600°Cの脱脂を
行った。その後、1250°C110torrの真空炉
中で焼結を行い、目的の焼結体を得た。得られた焼結体
の相対密度は97%で、割れ膨れ等の欠陥はなく良好で
あった。
(Example 4) A molded body obtained in the same manner as in Example 3 was heated at an average heating rate of 20
Degreasing was carried out at 600°C in the same manner as in Example 3, except that the temperature was changed to 0°C/Hr. Thereafter, sintering was performed in a vacuum furnace at 1250°C and 110 torr to obtain the desired sintered body. The obtained sintered body had a relative density of 97%, and was in good condition with no defects such as cracks and blisters.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、焼結体を得る際に必要である脱脂工程
の昇温速度を上げても、成形体に破損等が起こらないた
め、脱脂工程に要する時間が著しく短縮でき、生産性が
向上できる。
According to the present invention, even if the temperature increase rate in the degreasing process necessary to obtain a sintered body is increased, no damage will occur to the molded body, so the time required for the degreasing process can be significantly shortened, and productivity can be increased. You can improve.

Claims (4)

【特許請求の範囲】[Claims] (1)金属粉末とバインダと3−15重量%の常温で固
体の昇華性物質を含有してなる焼結用成形体。
(1) A molded body for sintering containing metal powder, a binder, and 3-15% by weight of a sublimable substance that is solid at room temperature.
(2)金属粉末に成形用バインダに加え、昇華性物質を
3−15重量%含有させた成形体を、50torrより
低い圧力で真空処理を施すことにより、前記昇華性物質
を昇華させてから、脱脂処理を行い、その後焼結を行う
ことを特徴とする焼結部品の製造方法。
(2) A molded article containing 3-15% by weight of a sublimable substance in addition to a molding binder in metal powder is subjected to vacuum treatment at a pressure lower than 50 torr to sublimate the sublimable substance, and then A method for manufacturing sintered parts, characterized by performing degreasing treatment and then sintering.
(3)前記昇華性物質を昇華させた後、有機溶剤に浸漬
し、バインダの一部を溶融させてから、脱脂処理を行う
ことを特徴とする請求項2に記載の焼結部品の製造方法
(3) The method for producing a sintered part according to claim 2, characterized in that after sublimating the sublimable substance, immersing in an organic solvent and melting a part of the binder is followed by degreasing. .
(4)脱脂処理は平均70℃/Hr以上の昇温速度で加
熱する工程を含むことを特徴とする請求項2ないし3に
記載の焼結物品の製造方法。
(4) The method for manufacturing a sintered article according to any one of claims 2 to 3, wherein the degreasing treatment includes a step of heating at an average temperature increase rate of 70° C./Hr or more.
JP23753690A 1990-09-07 1990-09-07 Production of molded body for sintering and sintered parts Pending JPH04116104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23753690A JPH04116104A (en) 1990-09-07 1990-09-07 Production of molded body for sintering and sintered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23753690A JPH04116104A (en) 1990-09-07 1990-09-07 Production of molded body for sintering and sintered parts

Publications (1)

Publication Number Publication Date
JPH04116104A true JPH04116104A (en) 1992-04-16

Family

ID=17016794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23753690A Pending JPH04116104A (en) 1990-09-07 1990-09-07 Production of molded body for sintering and sintered parts

Country Status (1)

Country Link
JP (1) JPH04116104A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062011A (en) * 1992-06-24 1994-01-11 Agency Of Ind Science & Technol Production of powder compact
WO2006035846A1 (en) * 2004-09-30 2006-04-06 Dainippon Ink And Chemicals, Inc. Process for producing porous sintered metal
US7585348B2 (en) 2004-03-08 2009-09-08 Battelle Memorial Institute Feedstock composition for powder metallurgy forming of reactive metals
US7883662B2 (en) 2007-11-15 2011-02-08 Viper Technologies Metal injection molding methods and feedstocks
US8124187B2 (en) 2009-09-08 2012-02-28 Viper Technologies Methods of forming porous coatings on substrates
JP2014221945A (en) * 2006-02-17 2014-11-27 バイオメト マニファクチャリング エルエルシーBiomet Manufacturing LLC Method of forming porous metal implant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062011A (en) * 1992-06-24 1994-01-11 Agency Of Ind Science & Technol Production of powder compact
US7585348B2 (en) 2004-03-08 2009-09-08 Battelle Memorial Institute Feedstock composition for powder metallurgy forming of reactive metals
US7585458B2 (en) 2004-03-08 2009-09-08 Battelle Memorial Institute Method of using a feedstock composition for powder metallurgy forming of reactive metals
US7691174B2 (en) * 2004-03-08 2010-04-06 Battelle Memorial Institute Feedstock composition and method of using same for powder metallurgy forming a reactive metals
WO2006035846A1 (en) * 2004-09-30 2006-04-06 Dainippon Ink And Chemicals, Inc. Process for producing porous sintered metal
GB2435006A (en) * 2004-09-30 2007-08-15 Dainippon Ink & Chemicals Process for producing porous sintered metal
JP2014221945A (en) * 2006-02-17 2014-11-27 バイオメト マニファクチャリング エルエルシーBiomet Manufacturing LLC Method of forming porous metal implant
US7883662B2 (en) 2007-11-15 2011-02-08 Viper Technologies Metal injection molding methods and feedstocks
US8124187B2 (en) 2009-09-08 2012-02-28 Viper Technologies Methods of forming porous coatings on substrates

Similar Documents

Publication Publication Date Title
EP0311407B1 (en) Process for fabricating parts for particulate material
AU2003271541B2 (en) Method for the production of near net-shaped metallic and/or ceramic parts
CN110405214B (en) Preparation method of stainless steel material
JP2000202573A (en) Core composition excellent in characteristic used for casting in application to gas turbine and article
JP2002523630A (en) Powder metal injection molding method for manufacturing products from nickel-based superalloy &#34;Hastelloy X&#34;
DE112018000221B4 (en) Process for the manufacture of high-temperature resistant products with improved thermomechanical properties and high-temperature resistant product
JPH04116104A (en) Production of molded body for sintering and sintered parts
US3686006A (en) Refractory cores and methods of making the same
US4139393A (en) Ceramic core for use in making molds and dies
RU2592652C2 (en) Method of producing ceramic gradient material
JPH04329801A (en) Production of sintered parts
DE102020108196A1 (en) Process for the production of a ceramic, silicate-free investment casting mold for the production of investment casting parts from higher melting metals and a ceramic, silicate-free investment casting mold for the production of investment casting parts from higher melting metals
JPH02137779A (en) Manufacture of porous molded article
JP2004525264A (en) Manufacture of structural members by metal injection molding
DE10324828B4 (en) Process for the production of ceramic or powder-metallurgical shaped bodies
EP1029895B1 (en) Composition containing a binder for a PIM-Process
CA3014459C (en) Carbon fibers in ceramic cores for investment casting
JPH072567A (en) Composition for obtaining product consisting mainly of pure lime, use of said composition and method of obtaining the same
WO1994020242A1 (en) Process for manufacturing powder injection molded parts
EP0365460B1 (en) Method to obtain coatings on mechanical parts by P/M techniques
JPS61205103A (en) Manufacture of ceramic hollow shape body
RU2686410C1 (en) Method of making ceramic mold
JP3788929B2 (en) Method for sintering metal powder compact
CN115650762A (en) Ceramic slurry and preparation method of porous ceramic atomizing core
GB2320506A (en) Producing shaped ceramic or metallic parts.