JPH04112797A - Production of isomaltooligosaccharide - Google Patents

Production of isomaltooligosaccharide

Info

Publication number
JPH04112797A
JPH04112797A JP23188790A JP23188790A JPH04112797A JP H04112797 A JPH04112797 A JP H04112797A JP 23188790 A JP23188790 A JP 23188790A JP 23188790 A JP23188790 A JP 23188790A JP H04112797 A JPH04112797 A JP H04112797A
Authority
JP
Japan
Prior art keywords
reaction
organic solvent
maltose
water
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23188790A
Other languages
Japanese (ja)
Inventor
Kanchin Hayashi
林 漢珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUOOKU UEIZU JAPAN KK
Original Assignee
FUOOKU UEIZU JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUOOKU UEIZU JAPAN KK filed Critical FUOOKU UEIZU JAPAN KK
Priority to JP23188790A priority Critical patent/JPH04112797A/en
Publication of JPH04112797A publication Critical patent/JPH04112797A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain an isomaltooligosaccharide in high yield from an inexpensive raw material of glucose or maltose by subjecting the aforementioned raw mate rial to enzymic transfer reaction with a hydrolase in a two-phase stirred disper sion system of water and a hydrophobic organic solvent. CONSTITUTION:Glucose or maltose is subjected to enzymic transfer reaction with a hydrolase such as cellulase in a system of water dispersed in a hydrophobic organic solvent (e.g. dodecane) and converted into an isomaltooligosaccharide. Furthermore, the above-mentioned reaction is preferably carried out at pH3.5-7.0.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はイソマルトオリゴ糖の製造方法に関するもので
、さらに詳しくは甘味を有する食品や保湿性、老化防止
、制菌性などを有する健康食品に使用されるイソマルト
オリゴ糖の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing isomalto-oligosaccharide, and more specifically to a method for producing isomaltooligosaccharide. The present invention relates to a method for producing the isomalto-oligosaccharide used.

[従来の技術] 従来より糖類は、食品工業における重要な甘味料として
広く使用されているが、最近は微生物白米の酵素を利用
した生理活性を有する新しい糖類の開発が相次いで行わ
れている。中でも特にオリゴ糖の研究開発は盛んで例え
ば、イソマルトオリゴ糖を製造する方法については種々
の提案がされている。
[Prior Art] Saccharides have traditionally been widely used as important sweeteners in the food industry, but recently new saccharides with physiological activity using microbial white rice enzymes have been developed one after another. Among these, research and development on oligosaccharides is particularly active, and various proposals have been made regarding, for example, methods for producing isomalto-oligosaccharides.

例えば特開昭58−72598にグルコアミラーゼによ
るグルコース逆合成反応過程でイソマルトースを含有し
た原糖液をアルカリまたはアルカリ土類金属型強酸性カ
チオン交換樹脂に通し、その後樹脂に吸着したイソマル
トースを水で溶出し、高純度で得る方法が開示されてい
る。
For example, in JP-A-58-72598, in the glucose retrosynthesis reaction process using glucoamylase, a raw sugar solution containing isomaltose is passed through an alkaline or alkaline earth metal type strongly acidic cation exchange resin, and then the isomaltose adsorbed on the resin is hydrated. A method for obtaining high purity by elution is disclosed.

[発明が解決しようとする課題] ところが、上記特開昭58−72598の方法は水中で
の酵素反応で、反応速度が遅いため長時間を要し、また
多数の副生成物が生成し、煩雑な精製過程が必要で目的
物の生産効率が悪いという問題があった。
[Problems to be Solved by the Invention] However, the method of JP-A-58-72598 involves an enzymatic reaction in water, which requires a long time due to the slow reaction rate, and produces many by-products, making it complicated. There was a problem that the production efficiency of the target product was low because it required a long purification process.

本発明は上記の問題点に鑑み、短い反応時間で、高収率
、高濃度かつ、精製過程が簡単なイソマルトオリゴ糖の
製造方法を提供することを目的とするものである。
In view of the above-mentioned problems, it is an object of the present invention to provide a method for producing isomalto-oligosaccharides, which requires a short reaction time, has a high yield, is highly concentrated, and has a simple purification process.

[課題を解決するための手段] 本発明は、水を疎水性有機溶剤中に分散させた系におい
てグルコースまたはマルトースを加水分解酵素による酵
素転移反応で、イソマルトオリゴ糖に変換することを特
徴とするイソマルトオリゴ糖の製造方法を提供するもの
である。すなわち、本発明は反応系が水−疎水性有機溶
剤の二相の撹拌分散系であること、及び加水分解酵素を
使用することを特徴とするものである。本発明において
グルコースを基質として反応させた場合、主としてイソ
マルトオリゴ糖が生成され、またマルトースを基質とし
て反応させた場合、イソマルトトリオースオリゴ糖が生
成される。
[Means for Solving the Problems] The present invention is characterized in that glucose or maltose is converted into isomalto-oligosaccharide by an enzymatic transfer reaction using a hydrolase in a system in which water is dispersed in a hydrophobic organic solvent. A method for producing isomalto-oligosaccharide is provided. That is, the present invention is characterized in that the reaction system is a two-phase stirred dispersion system of water and a hydrophobic organic solvent, and in that a hydrolytic enzyme is used. In the present invention, when the reaction is carried out using glucose as a substrate, isomalto-oligosaccharides are mainly produced, and when the reaction is carried out using maltose as a substrate, isomaltotriose-oligosaccharides are produced.

イソマルトオリゴ糖とは、単糖類であるブドウ糖がα−
1,6結合、α−1,2結合、α−1,3結合というα
−1,4結合以外の結合部分を有し、重合度2〜4を主
体とし、重合度10以下までのオリゴ糖を総称する。
Isomalto-oligosaccharide is a monosaccharide glucose that is α-
α 1,6 bond, α-1,2 bond, α-1,3 bond
A general term for oligosaccharides that have a bonding moiety other than a -1,4 bond and have a polymerization degree of 2 to 4, with a polymerization degree of 10 or less.

本発明において、疎水性有機溶剤として水と相溶性ない
ものであればいずれも使用可能であるが、具体的にはn
−ペンタン、2−メチルブタン、2−メチルペンタン、
2.2−ジメチルブタン、2,3−ジメチルブタン、ヘ
プタン、オクタン、2−メチルへブタン、2,2.3−
トリメチルへブタン、2.2.4−トリメチルへブタン
、ノナン、デカン、ウンデカン、ドデカンなどの鎖状飽
和炭化水素系溶剤;シクロペンタン、メチルシクロブタ
ン、シクロヘキサン、メチルシクロヘキサンなどの環状
飽和炭化水素系溶剤;ベンゼン、O−キシレン、m−キ
シレン、p−キシレン、エチルベンゼン、クメンなどの
芳香族炭化水素系溶剤;石油エーテル、軽ベンジン、リ
グロインなどの石油留分として得られる溶剤;ジクロル
メタン、クロロホルム、四塩化炭素、1.2−ジクロル
エタン、1,1,2.2−テトラクロルエタン、トリク
ロルエチレン、クロルベンゼン、2.6−ジクロルベン
ゼンなどのハロゲン化炭化水素系溶剤などが使用可能で
あるが、好ましくはペンタン、ヘキサン、ヘプタン、オ
クタン、2−メチルへブタン、ドデカンなどの鎖状飽和
炭化水素系溶剤である。
In the present invention, any hydrophobic organic solvent that is incompatible with water can be used, but specifically, n
-pentane, 2-methylbutane, 2-methylpentane,
2.2-dimethylbutane, 2,3-dimethylbutane, heptane, octane, 2-methylhebutane, 2,2.3-
Chain saturated hydrocarbon solvents such as trimethylhebutane, 2.2.4-trimethylhebutane, nonane, decane, undecane, and dodecane; Cyclic saturated hydrocarbon solvents such as cyclopentane, methylcyclobutane, cyclohexane, and methylcyclohexane; Aromatic hydrocarbon solvents such as benzene, O-xylene, m-xylene, p-xylene, ethylbenzene, and cumene; Solvents obtained as petroleum fractions such as petroleum ether, light benzene, and ligroin; dichloromethane, chloroform, carbon tetrachloride , 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, trichloroethylene, chlorobenzene, 2,6-dichlorobenzene, and other halogenated hydrocarbon solvents can be used, but preferably A linear saturated hydrocarbon solvent such as pentane, hexane, heptane, octane, 2-methylhebutane, and dodecane.

本発明で用いる酵素はセルロース加水分解酵素C以下セ
ルラーゼという)であり、アスペルギルス・ニガー(A
spergillus niger)などの由来のセル
ラーゼを使用することができる。特にAspergi−
flus nigerに由来するセルラーゼは安価であ
り、入手し易くかつ加水分解能力も高いため好ましく用
いられる。水層は緩衝溶液を用い緩衝溶液としては、酢
酸−酢酸ナトリウム系が好ましく使用される。緩衝溶液
の疎水性有機溶剤に対する割合は、20vo1%以下が
好ましく、20vo1%以上になるとイソマルトオリゴ
糖の生成量が低下する。水の容量が少ないほどイソマル
トオリゴ糖の生産比が増加する。緩衝溶液のイオン強度
は1M付近が好ましいがより低い値でもよく、本発明で
はこの値に制限されるものではない。
The enzyme used in the present invention is cellulose hydrolase C (hereinafter referred to as cellulase), which is produced by Aspergillus niger (A
Cellulases derived from, for example, Spergillus niger can be used. Especially Aspergi-
Cellulase derived from S. flus niger is preferably used because it is inexpensive, easily available, and has a high hydrolytic ability. A buffer solution is used for the aqueous layer, and an acetic acid-sodium acetate system is preferably used as the buffer solution. The ratio of the buffer solution to the hydrophobic organic solvent is preferably 20 vol % or less, and when it is 20 vol % or more, the amount of isomalto-oligosaccharide produced decreases. The smaller the water capacity, the higher the production ratio of isomalto-oligosaccharides. The ionic strength of the buffer solution is preferably around 1M, but a lower value may be used, and the present invention is not limited to this value.

酵素反応の至適温度は水系で37℃付近の狭い温度範囲
であるが、本発明では70℃以下の広い温度範囲で反応
が進行し、好ましくは10〜65℃、より好ましくは3
0〜60℃である。水の容量が少ない撹拌分散状態では
、0℃以下でも反応系が凍結することがないため、例え
ば−10℃でも反応させることが可能である。この場合
、水がbound Waterとして系内に存在するた
めと考えられる。
The optimal temperature for the enzyme reaction is a narrow temperature range of around 37°C in an aqueous system, but in the present invention, the reaction proceeds in a wide temperature range of 70°C or less, preferably 10 to 65°C, more preferably 37°C or less.
The temperature is 0 to 60°C. In a stirred and dispersed state with a small volume of water, the reaction system does not freeze even at 0°C or lower, so it is possible to carry out the reaction even at -10°C, for example. In this case, it is considered that water exists in the system as bound water.

本発明の酵素反応に適したpi(は3.5〜7.0であ
る。pH値は緩衝溶液によって容易に調整することがで
きる。
A suitable pi (pi) for the enzyme reaction of the present invention is 3.5 to 7.0. The pH value can be easily adjusted with a buffer solution.

反応は、例えば疎水性有機溶剤中に撹拌しながらグルコ
ースまたはマルトースを分散し、次いで所定のpH値の
緩衝溶液中にセルラーゼを溶解させ、この酵素溶液を前
記の有機溶剤中に添加して、所定の温度にて撹拌しなが
ら、分散させることにより行われる。
The reaction can be carried out, for example, by dispersing glucose or maltose in a hydrophobic organic solvent with stirring, then dissolving cellulase in a buffer solution with a predetermined pH value, and adding this enzyme solution into the organic solvent. It is carried out by dispersing while stirring at a temperature of .

反応後、撹拌を止めて放置すると有機層と水層とが相分
離するので、その水層をとり濃縮することにより生成物
を高濃度で含有する反応液が得られる。従来、このよう
な処理は雑菌の侵入を防止するために密閉系で行わなけ
ればならなかったが、本発明では疎水性有機溶剤を用い
るため、反応系の滅菌の必要がなくなり、反応系が系外
から侵入する雑菌から遮断され、雑菌による汚染が防止
される。また、有機溶剤臭を除(ため分離された水層を
活性炭や活性白土などの吸着処理剤による脱臭処理を施
してもよい。
After the reaction, if the stirring is stopped and the mixture is allowed to stand, the organic layer and the aqueous layer will phase separate, and by removing and concentrating the aqueous layer, a reaction solution containing a high concentration of the product can be obtained. Conventionally, such treatment had to be carried out in a closed system to prevent the intrusion of germs, but since the present invention uses a hydrophobic organic solvent, there is no need to sterilize the reaction system. It is blocked from germs that invade from outside, and contamination by germs is prevented. Further, to remove the odor of the organic solvent, the separated water layer may be subjected to deodorization treatment using an adsorption treatment agent such as activated carbon or activated clay.

なお、反応系中に界面活性剤を加えると微細な水滴が疎
水性有機溶剤中に分散されて反応速度が上昇するので界
面活性剤の使用は本発明を妨げるものではない。
Note that, when a surfactant is added to the reaction system, fine water droplets are dispersed in the hydrophobic organic solvent and the reaction rate increases, so the use of a surfactant does not hinder the present invention.

また、本発明において、活性炭やイオン交換樹脂を共存
させて酵素反応を進めると、分子量が大きいものほど、
吸着され易いため平衡がイソマルトオリゴ糖生成に有利
な方向に傾き、好ましい結果を与える。この場合反応後
に活性炭やイオン交換樹脂から、水性アルコール溶液な
どでイソマルトオリゴ糖を脱離し回収することができる
In addition, in the present invention, when the enzyme reaction is carried out in the presence of activated carbon or ion exchange resin, the larger the molecular weight, the more
Because it is easily adsorbed, the equilibrium is tilted in favor of isomalto-oligosaccharide production, giving favorable results. In this case, after the reaction, the isomalto-oligosaccharide can be removed and recovered from the activated carbon or ion exchange resin using an aqueous alcohol solution.

[実施例] 以下、実施例を挙げて本発明を説明する。[Example] The present invention will be explained below with reference to Examples.

実施例1 500mlのバッフルプレート付き三角フラスコにドデ
カン291m1とグルコース9gを入れ撹拌しながら分
散させた。一方、セルラーゼとしては市販のアスペルギ
ルス・ニガー(Aspergillusniger )
由来のセルラーゼを用いて酢酸緩衝溶液(pH5,0、
イオン強度LM)9ml中に0.3g(240u)を溶
解させ、この酵素水溶液を上記の三角フラスコに添加し
て、撹拌(600〜1001000rp、なから40℃
で酵素反応を行った。生成した糖の組成(%)は高速液
体クロマトグラフィー(HPLC、カラム; Bio 
Rad HPX87C)により下記測定条件で定量した
Example 1 291 ml of dodecane and 9 g of glucose were placed in a 500 ml Erlenmeyer flask with a baffle plate and dispersed with stirring. On the other hand, as a cellulase, commercially available Aspergillus niger
Using cellulase derived from
Dissolve 0.3 g (240 u) in 9 ml of ionic strength LM), add this enzyme aqueous solution to the above Erlenmeyer flask, and stir (600-1001000 rpm, from 40°C
An enzymatic reaction was performed. The composition (%) of the sugar produced was determined by high performance liquid chromatography (HPLC, column; Bio
Rad HPX87C) under the following measurement conditions.

HPLCの測定条件 HPLC、水系 カラム;Bio  Rad HPX87C移動層;蒸留
水 流  速;0.6ml/分 カラム温度;85℃ 検出方法、RI検出器 また酵素活性の測定はp−ニトロフェノールで修飾され
たアナログ基質を用いてUV測定により行った。酵素反
応における糖の組成の経時変化を第1図に示した。経過
時間とともにオリゴ糖の生成が増加し、反応時間160
hr経過後、イソマルトースなどオリゴ糖が23%を示
した(%はHPLCのピーク面積の比)。また、反応時
間166hr経過後、有機溶剤中の酵素活性を調べた結
果、同じ条件の水層中の酵素活性(100%)と比べて
88.4%活性が残存していることがわかった。すなわ
ち、水−疎水性有機溶剤系において長時間にわたって酵
素活性が持続しており、酵素が繰り返し使用できること
がわかった。
HPLC measurement conditions HPLC, aqueous column; Bio Rad HPX87C mobile phase; distilled water flow rate; 0.6 ml/min Column temperature: 85°C Detection method, RI detector and enzyme activity measurement using p-nitrophenol-modified analogs. This was carried out by UV measurement using a substrate. Figure 1 shows the change in sugar composition over time during the enzymatic reaction. The production of oligosaccharides increases with the passage of time, and the reaction time is 160
After hours, oligosaccharides such as isomaltose showed 23% (% is the ratio of HPLC peak areas). Furthermore, after a reaction time of 166 hours, the enzyme activity in the organic solvent was examined, and it was found that 88.4% of the enzyme activity remained compared to the enzyme activity (100%) in the aqueous layer under the same conditions. That is, it was found that the enzyme activity persisted for a long time in the water-hydrophobic organic solvent system, and the enzyme could be used repeatedly.

一方、水系中の場合は、このようなオリゴ糖が生成され
なかった。
On the other hand, such oligosaccharides were not produced in an aqueous system.

実施例2 ドデカン191011、セルラーゼ0.2g、緩衝溶液
9ml、マルトース9g、反応温度40℃で他の条件は
実施例1と同様にして生成した糖の組成の経時変化を第
2図に示した。反応時間55時間のHPLCの結果を第
3図に示した。
Example 2 Dodecane 191011, cellulase 0.2 g, buffer solution 9 ml, maltose 9 g, reaction temperature 40° C., and the other conditions were the same as in Example 1. Changes in the composition of sugar produced over time are shown in FIG. The results of HPLC after a reaction time of 55 hours are shown in FIG.

反応時間20時間後、グルコース38%、マルトースま
たはイソマルトース36%、イソマルトトリオース25
%、イソマルトテトラオース1%を示した(%はHPL
Cのピーク面積の比)。
After 20 hours of reaction time, glucose 38%, maltose or isomaltose 36%, isomaltotriose 25%
%, isomaltotetraose 1% (% is HPL
(ratio of peak areas of C).

第2図からイソマルトトリオースは2Ohr後にピーク
を示し、その後徐々に減少していき、一方グルコースと
イソアミロテトラオースは増加し続け、マルトースは次
第に減少することがわかる。
From FIG. 2, it can be seen that isomaltotriose shows a peak after 2 Ohr and then gradually decreases, while glucose and isoamylotetraose continue to increase, and maltose gradually decreases.

このことから、反応時間をコントロールすることにより
生成物の成分比率を制御することが可能である。
From this, it is possible to control the component ratio of the product by controlling the reaction time.

[発明の効果] 本発明の方法での、水と疎水性有機溶剤の二相の撹拌分
散系で反応させることにより、グルコースやマルトース
のように安価な原料からイソマルトオリゴ糖を高収率で
製造することが可能となった。反応速度も短縮され、例
えば基質がマルトースの場合、短時間で、生成物を選択
的に高濃度で得ることができる。それにより煩雑な精製
過程が不要であり操作が簡単にできる。さらに有機溶剤
を用いるため反応系の滅菌の必要がなく、反応系が雑菌
から遮断され汚染される心配がない。また、反応時間に
より生成物の成分比が異なるため、反応の進行に従って
任意の目的物を選んで得ることができる。
[Effects of the invention] Isomalto-oligosaccharides can be produced in high yield from inexpensive raw materials such as glucose and maltose by reacting in a two-phase stirred dispersion system of water and a hydrophobic organic solvent using the method of the present invention. It became possible to do so. The reaction rate is also shortened; for example, when the substrate is maltose, the product can be selectively obtained in a high concentration in a short time. This eliminates the need for complicated purification processes and allows for easy operation. Furthermore, since an organic solvent is used, there is no need to sterilize the reaction system, and there is no need to worry about the reaction system being isolated from germs and being contaminated. Furthermore, since the component ratio of the product varies depending on the reaction time, any target product can be selected and obtained according to the progress of the reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の酵素反応における各成分の経時変化
を示すグラフであり、第2図は実施例2の酵素反応にお
ける各成分の経時変化を示すグラフである。 第3図は実施例2の反応時間55hr後の反応溶液のH
PLCのチャートを示したものである。 出願人 株式会社フォークウェイズ・ジャパン代理人 
 弁理士  舘 野 公 衡!ig蛮(訳) 時間(hr) 保持時間
FIG. 1 is a graph showing the change over time of each component in the enzyme reaction of Example 1, and FIG. 2 is a graph showing the change over time of each component in the enzyme reaction of Example 2. Figure 3 shows the H of the reaction solution after a reaction time of 55 hours in Example 2.
This shows a PLC chart. Applicant Folkways Japan Co., Ltd. Agent
Patent attorney Kimihira Tateno! igban (translation) time (hr) retention time

Claims (1)

【特許請求の範囲】[Claims] 水を疎水性有機溶剤中に分散させた系において、グルコ
ースまたはマルトースを加水分解酵素による酵素転移反
応でイソマルトオリゴサッカライドに変換することを特
徴とするイソマルトオリゴ糖の製造方法。
1. A method for producing isomalto-oligosaccharides, which comprises converting glucose or maltose into isomalto-oligosaccharide by an enzymatic transfer reaction using a hydrolase in a system in which water is dispersed in a hydrophobic organic solvent.
JP23188790A 1990-08-31 1990-08-31 Production of isomaltooligosaccharide Pending JPH04112797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23188790A JPH04112797A (en) 1990-08-31 1990-08-31 Production of isomaltooligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23188790A JPH04112797A (en) 1990-08-31 1990-08-31 Production of isomaltooligosaccharide

Publications (1)

Publication Number Publication Date
JPH04112797A true JPH04112797A (en) 1992-04-14

Family

ID=16930590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23188790A Pending JPH04112797A (en) 1990-08-31 1990-08-31 Production of isomaltooligosaccharide

Country Status (1)

Country Link
JP (1) JPH04112797A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078615C (en) * 1998-08-06 2002-01-30 福州大学 Method for continuous preparation of isomalt oligose by use of hollow fiber enzyme membrane reactor
KR100387286B1 (en) * 2000-06-30 2003-06-12 주식회사 삼양제넥스 Method for production of isomaltooligosaccharides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078615C (en) * 1998-08-06 2002-01-30 福州大学 Method for continuous preparation of isomalt oligose by use of hollow fiber enzyme membrane reactor
KR100387286B1 (en) * 2000-06-30 2003-06-12 주식회사 삼양제넥스 Method for production of isomaltooligosaccharides

Similar Documents

Publication Publication Date Title
Fu et al. Chloroperoxidase-catalyzed asymmetric synthesis: enantioselective reactions of chiral hydroperoxides with sulfides and bromohydroxylation of glycals
JPH0157956B2 (en)
KR102414887B1 (en) Immobilized proteins and use thereof
Payne et al. Tyrosinase reaction and subsequent chitosan adsorption for selective removal of a contaminant from a fermentation recycle stream
JP4225731B2 (en) Cross-linked cyclodextrin and environmental hormone removal material using the same
Ghanem et al. Peracetylated β-cyclodextrin as additive in enzymatic reactions: enhanced reaction rate and enantiomeric ratio in lipase-catalyzed transesterifications in organic solvents
JPH04112797A (en) Production of isomaltooligosaccharide
CN112852766A (en) Method for synthesizing lactic acid
AU642439B2 (en) Production of glyoxylic acid by enzymatic oxidation of glycolic acid
NL8304496A (en) METHOD FOR INSULATING L-AMINO ACIDS
Hoffmann et al. The carboxyltransferase activity of the sodium‐ion‐translocating methylmalonyl‐CoA decarboxylase of Veillonella alcalescens
Broos et al. Acceleration of enzyme‐catalyzed reactions in organic solvents by crown ethers
Mateescu et al. Ready to use p-Benzoquinone activated supports for biochemical coupling, with special applications for laccase immobilization
US5219745A (en) Production of glyoxylic acid from glycolic acid
US4865976A (en) Method of cyclodextrin manufacture using an immobilized cyclodextrin glycosyltransferase
CN112501153A (en) Immobilized cellobiose epimerase and method for applying immobilized cellobiose epimerase to preparation of lactulose
FR2562087A1 (en) PROCESS FOR PURIFYING GLUCOSE ISOMERASE
Bianchi et al. Enzymatic transformation of cephalosporin C to 7-ACA by simultaneous action of immobilized d-amino acid oxidase and glutaryl-7-ACA acylase
JP2816872B2 (en) Method for producing α-maltopentaose by a method of decomposing starch-containing material by oxygen
JP2816871B2 (en) Method for producing oligosaccharide by oxygen decomposition method of starch-containing material
US4343902A (en) Production of immobilized glucose isomerase
HU213760B (en) Process for the production of glyoxylic acid by enzyme catalysed oxidation of glycolic acid
JPH02163091A (en) Production of fructose olilgosaccharide
JPH0956390A (en) Production of l-psicose
JPS6357601A (en) Three-dimensionally crosslinked polymeric sub-stance and its production