JPH04111378A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH04111378A
JPH04111378A JP22915290A JP22915290A JPH04111378A JP H04111378 A JPH04111378 A JP H04111378A JP 22915290 A JP22915290 A JP 22915290A JP 22915290 A JP22915290 A JP 22915290A JP H04111378 A JPH04111378 A JP H04111378A
Authority
JP
Japan
Prior art keywords
layer
active layer
algaas
semiconductor laser
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22915290A
Other languages
Japanese (ja)
Inventor
Shoji Hirata
照二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP22915290A priority Critical patent/JPH04111378A/en
Publication of JPH04111378A publication Critical patent/JPH04111378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To expand an oscillation wavelength to the side of a short wavelength by a method wherein an AlGaAs window formation layer whose energy band gap is higher than that of an active layer is arranged so as to come into contact with both edges in the light extraction direction of the active layer. CONSTITUTION:A lower-layer clad layer 32A, a lower-layer guide layer 22A, an active layer 21, an upper-layer guide layer 22B, a clad layer 32B and a cap layer 33 are grown sequentially on an n-type GaAs substrate 31 by a continuous epitaxial operation by an MOCVD method. After that, both ends of the active layer 21 are etched and removed; recessed parts 34 are formed. An AlGaAs layer 35 whose Al content has been selected so as to make an energy band gap large as compared with that of GaInP or AlGaInP in the active layer 21 is epitaxially grown so as to fill the recessed parts 34 by an MOCVD method, an MBE method, an LPE method or the like. In addition, uneven parts of the layer 35 are filled with a filling material 36 such as a resist or the like; the whole surface is flattened and etched back. A flat etching operation is executed down to the position indicated by a medium dotted line (a) from the surface; this assembly is polished until the cap layer 33 is revealed on the surface. After that, flat edges 41 and 42 are formed by a cleavage operation by means of a cleanage face so as to traverse the individual epitaxial layers 32A and 22A formed on the substrate 31 including the AlGaAs layer 35; a window structure part 23 by the AlGaAs formation layer 35 is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザ特にAjGaInP系窓構造の可
視光半導体レーザに係わる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a semiconductor laser, particularly a visible light semiconductor laser having an AjGaInP window structure.

〔発明の概要〕[Summary of the invention]

本発明は、(低エネルギーバンドギャップのGa1nP
)活性層を挟んでその上下層にこれより高エネルギーバ
ンドギャップのAZGalnPクラッド層もしくはガイ
ド層が積層され、活性層の光取り出し方向に関する両端
面に接してこの活性層より高エネルギーバンドギャップ
のAlGaAs窓形成層が配置された窓構造を採るよう
にして信転性の高い安定した特性を有する半導体レーザ
を構成する。
The present invention is based on (low energy bandgap Ga1nP)
) AZGalnP cladding layers or guide layers with a higher energy bandgap are laminated on the upper and lower layers with the active layer in between, and AlGaAs windows with a higher energy bandgap than the active layer are in contact with both end faces of the active layer in the light extraction direction. By adopting a window structure in which the formation layer is arranged, a semiconductor laser having stable characteristics with high reliability is constructed.

[従来の技術] pJGaInP系半導体レーザは、可視光(560〜6
80nm)発光レーザとして期待されているものの、高
出力動作に関しては波長がl1jGaAs系半導体レー
ザに比べて短いだけ、より光閉込め密度が高くなりc。
[Prior art] A pJGaInP semiconductor laser emits visible light (560 to 6
Although it is expected to be used as a light-emitting laser (80 nm), in terms of high-output operation, the optical confinement density is higher as the wavelength is shorter than that of the l1j GaAs semiconductor laser.

D(光学損傷)によるパワーレベルが下がるという点で
不利である。
This is disadvantageous in that the power level due to D (optical damage) is reduced.

そこで、この種のAfGalnP系半導体レーザにおい
ても、通常のAI G a A s系半導体レーザにお
けると同様に活性層の光取り出し方向に関する両端すな
わち共振器長方向の両端部に活性層に比しエネルギーバ
ンドギャップの大きいガイド層ないしはクラッド層を配
置した窓構造型を採ることが必要となってきている。
Therefore, in this type of AfGalnP semiconductor laser as well, as in a normal AI Ga As semiconductor laser, there is an energy band at both ends of the active layer in the light extraction direction, that is, at both ends in the cavity length direction, compared to the active layer. It has become necessary to adopt a window structure type in which a guide layer or cladding layer with a large gap is arranged.

ところが、AfGaInP系半導体レーザは、その結高
成長に関する困難性からAlGaAs系に比して窓構造
を採りにくいという問題点がある。すなわち通常窓構造
を形成する場合、その活性層の両端を包込むようにクラ
ッド層ないしはガイド層が配置されることから、活性層
の生成後にその両端をエツチング除去し、このようにし
て生じた凹凸面上に上層のガイド層あるいはクラッド層
をMOCVD(Metal Organic Chem
ical Vapor Deposition :有機
金属化学的気相成長法)によってエピタキシャル成長さ
せることが考えられるが、実際上AIGaTnP系化合
物半導体の凹凸面へのCVDは困難であること、また活
性層両端に対してこのAfGalnP系の再成長が難し
いということなどによってこの種AfGaInP系の窓
構造半導体レーザは未だ普及されていない。
However, AfGaInP-based semiconductor lasers have a problem in that it is difficult to form a window structure compared to AlGaAs-based semiconductor lasers due to difficulties in growing their crystal height. In other words, when forming a window structure, a cladding layer or a guide layer is placed so as to wrap around both ends of the active layer, so after the active layer is formed, both ends are removed by etching, and the unevenness created in this way is removed. The upper guide layer or cladding layer is deposited on the surface using MOCVD (Metal Organic Chemistry).
Although epitaxial growth using metal-organic vapor deposition (organic vapor deposition) is considered, in practice it is difficult to perform CVD on the uneven surface of an AIGaTnP-based compound semiconductor, and it is difficult to deposit this AfGalnP-based compound semiconductor on both ends of the active layer. This kind of AfGaInP-based window structure semiconductor laser has not yet become popular due to the difficulty of re-growing the semiconductor laser.

このため、この種のpL!Ga1nP系半導体レーザに
おける窓構造を得るものとして第5図に示すように例え
ばn型のGaAs半導体基体(1)上にn型のIuGa
InPよりなる第1のクラッド層(2)と、自然超格子
構造のGa1nPよりなる活性層(3)と、n型のA/
Ga1nPよりなる第2のクラッド層(4)と、これの
上に同様にn型のGaAsよりなるキャップ層(5)と
を順次エピタキシャル成長し、その後その活性N(3)
の共振器長方向の両端面の窓構造を形成する部分にZn
等の不純物を拡散することによって、活性層(3)のこ
の部分における超格子構造を破壊して自然超格子構造が
採られていたことにより小なるエネルギーバンドギャッ
プとされていたこの活性層のエネルギーバンドギャップ
を大にしてそのとじ込めを弱めた窓構造部(6)を形成
するという方法の提案がある(例えば、゛90春応用物
理学会予稿集29a −SA4、930頁参照)。
For this reason, this kind of pL! As shown in FIG. 5, for example, n-type IuGa is deposited on an n-type GaAs semiconductor substrate (1) to obtain a window structure in a Ga1nP semiconductor laser.
A first cladding layer (2) made of InP, an active layer (3) made of Ga1nP with a natural superlattice structure, and an n-type A/
A second cladding layer (4) made of Ga1nP and a cap layer (5) similarly made of n-type GaAs are epitaxially grown on this, and then the active N(3)
Zn is applied to the portions forming the window structure on both end faces in the longitudinal direction of the resonator.
By diffusing impurities such as, the superlattice structure in this part of the active layer (3) is destroyed and a natural superlattice structure is adopted, which reduces the energy band gap of this active layer. There is a proposal for a method of forming a window structure (6) in which the bandgap is increased and the confinement is weakened (see, for example, Proceedings of the Japan Society of Applied Physics, Spring 1990, 29a-SA4, p. 930).

しかしながら、このような構造を採る場合、活性層に高
い不純物例えばZn注入を行うことがら信顛性の低下を
来すこと、さらにまた拡散による窓の長さの制御が難し
いこと、さらにまたGa1nP活性層の場合、その発光
領域すなわち励起領域は、自然超格子を保持する必要が
あるため長波例えば680nm付近より大なる発振波長
しか得られないという制約がある。
However, when adopting such a structure, implantation of high impurities such as Zn into the active layer leads to a decrease in reliability, and furthermore, it is difficult to control the length of the window by diffusion, and furthermore, it is difficult to control the length of the window by diffusion. In the case of a layer, the emission region, that is, the excitation region, must maintain a natural superlattice, so there is a restriction that only an oscillation wavelength larger than a long wavelength, for example, around 680 nm can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明においては、IuGaInP系半導体レーザにお
いて上述した諸問題の解決をはかり、信転性が高く、ま
た発振波長を短波長側に広げ得るようにした半導体レー
ザ特にAJGalnP系半導体レーザを提供する。
The present invention aims to solve the above-mentioned problems in IuGaInP semiconductor lasers, and provides a semiconductor laser, particularly an AJGalnP semiconductor laser, which has high reliability and can extend the oscillation wavelength toward shorter wavelengths.

〔課題を解決するための手段〕[Means to solve the problem]

本発明においては、例えば第1図にその一例の路線的拡
大断面図を示すように、低エネルギーバンドギャップの
活性層(21)を挟んでその上下層にこれより高エネル
ギーバンドギャップのA/Ga1nPクラッド層もしく
はガイド層(22)を積層し、活性層(21)の光取出
し方向に関する両端面すなわち共振器長方向の両端に接
して活性層(21)より高エネルギーバンドギャップの
uGaAs窓形成層よりなる窓構造部(23)を配置し
た構成とする。
In the present invention, for example, as shown in an enlarged cross-sectional view of an example in FIG. A cladding layer or a guide layer (22) is laminated, and a uGaAs window forming layer having a higher energy bandgap than the active layer (21) is in contact with both end faces in the light extraction direction of the active layer (21), that is, both ends in the cavity length direction. The window structure section (23) is arranged as shown in FIG.

AZGaAs層が用いられるようにしたので、このAl
GaAs層はよく知られているように通常の気相成長法
例えばMOCVD、あるいはM B E (Molec
ularBears Epitaxy :分子線エピタ
キシ)、LPE(Liquid  Phase Epi
taxy :液相エピタキシ)等によってこれが凹凸を
有する面においても容易にエピタキシャル成長し、また
その結晶性に優れていることがら信転性の高い窓構造型
半導体レーザを構成することができる。
Since the AZGaAs layer is used, this Al
As is well known, the GaAs layer is grown using a conventional vapor phase growth method such as MOCVD or MBE (Molecular
ularBears Epitaxy: Molecular Beam Epitaxy), LPE (Liquid Phase Epitaxy)
It can be easily epitaxially grown even on an uneven surface by liquid phase epitaxy (taxy: liquid phase epitaxy) or the like, and because it has excellent crystallinity, a window structure type semiconductor laser with high reliability can be constructed.

さらに、またこの場合、活性層(21)としては自然超
格子構造によらないことから、その発振波長範囲を広げ
ることができ、また不純物ドープによって自然超格子構
造をくずした窓構造を得る場合に比してその窓構造のい
わゆるウィンドー長を確実に設定することができること
から、その特性の均一安定した信転性の高い半導体レー
ザを構成することができる。
Furthermore, in this case, since the active layer (21) does not rely on a natural superlattice structure, its oscillation wavelength range can be expanded, and it is also possible to obtain a window structure in which the natural superlattice structure is destroyed by doping with impurities. In contrast, since the so-called window length of the window structure can be set reliably, a semiconductor laser with uniform and stable characteristics and high reliability can be constructed.

〔作用〕[Effect]

上述の本発明によれば、窓構造部においては〔実施例〕 実施例1 二の例においては、第1図にその路線的断面図を示すよ
うに、S CH(Separate Confinem
entHeterospructure)型半導体レー
ザに適用した場合で、この例を、その理解を容易にする
ために第2図の製造工程図を参照してその製造方法の一
例と共に説明する。この場合、化合物半導体基体(31
)例えば第1導電型、この例ではn型のGaAs基板(
31)上に、順次これと同導電型のn型のAfGaln
Pよりなる下層クラッド層(32A)  と、これに比
してバンドギャップが小さい、同様にn型のIuGaI
nPよりなる下層ガイド層(22A)  と、更にこれ
よりバンドギャップの小さいGaInPまたはIuGa
InPよりなる活性層(21)と、これに比しバンドギ
ャップの大なるp型のAfGalnPよりなる上層のガ
イド層(22B)  と、さらにこれの上にこれよりバ
ンドギャップの大なる第2導電型のp型のAfGaAs
あるいはAZGaInPよりなる上層のクラッド層(3
2B)と、さらにこれの上にP型のGaAsよりなるキ
ャップ層(33)を順次MOCVDによって連続エピタ
キシによって成長させる。
According to the above-mentioned present invention, in the window structure section [Examples] Example 1 In the second example, as shown in FIG.
In order to facilitate understanding, this example will be explained along with an example of its manufacturing method with reference to the manufacturing process diagram of FIG. 2. In this case, the compound semiconductor substrate (31
) For example, a GaAs substrate of the first conductivity type, in this example an n-type (
31) On top of this, n-type AfGaln of the same conductivity type is sequentially added.
A lower cladding layer (32A) made of P and a similarly n-type IuGaI layer with a smaller bandgap than this.
A lower guide layer (22A) made of nP, and further made of GaInP or IuGa with a smaller band gap.
An active layer (21) made of InP, an upper guide layer (22B) made of p-type AfGalnP with a larger band gap than this, and a second conductivity type layer (22B) with a larger band gap than this. p-type AfGaAs
Alternatively, the upper cladding layer (3
2B) and a cap layer (33) made of P-type GaAs is grown thereon by continuous epitaxy using MOCVD.

その後、第2図Bに示すように、キャンプ層(33)側
から活性層(21)を横切る位置まで所要の発振(励起
)領域に対応する長さすなわち共振器長に活性層(21
)を残して選択的に活性層(21)の両端をエツチング
除去して凹部(34)を形成する。
Thereafter, as shown in FIG. 2B, the active layer (21
) are selectively etched away at both ends of the active layer (21) to form recesses (34).

第2図Cに示すように、凹部(34)を埋込むように活
性層(21)のGaInPあるいはVGaInPに比し
てエネルギーバンドギャップが大なるようにM含有量の
選定がなされたkl G aAs層(35)をMOCV
D。
As shown in FIG. 2C, the M content is selected so that the energy band gap is larger than that of GaInP or VGaInP of the active layer (21) so as to fill the recess (34). MOCV layer (35)
D.

MBE、LPE等によってエピタキシャル成長する。そ
してさらに必要に応じてこの層(35)上の凹凸をレジ
スト杵の埋込み材(36)によって埋込んで全体を平坦
化してエッチバンクすることによって第2図C中鎖線a
に示す位置まで表面より平坦エツチングをしてキャップ
層(33)が表面に出る位置まで研磨する。
Epitaxial growth is performed by MBE, LPE, etc. Then, if necessary, the unevenness on this layer (35) is filled in with a filling material (36) of a resist punch, the entire surface is flattened, and an etch bank is performed, as shown in the dashed line a in FIG. 2C.
The cap layer (33) is etched flat from the surface to the position shown in , and polished to a position where the cap layer (33) appears on the surface.

その後、uGaAs層(35)を含んで基板(31)上
に形成した各エピタキシャル層(32A)及び(22A
)を横切るようにその襞間面による襞間によって平坦な
端面(41)及び(42)を形成して第1図に示す目的
とするAfGaAs形成層(35)による窓構造部(2
3)が形成されたSCH型の半導体レーザを得る。
Thereafter, epitaxial layers (32A) and (22A) were formed on the substrate (31) including the uGaAs layer (35).
) to form flat end surfaces (41) and (42) between the folds of the inter-fold surfaces to form a window structure (2) made of the desired AfGaAs forming layer (35) as shown in FIG.
3) is obtained. An SCH type semiconductor laser is obtained.

実施例2 この例においては、第3図にその路線的断面図を示すよ
うにL OC(Large 0ptical Cavi
ty)型の半導体レーザに適用した場合で、この場合に
おいてもその理解を容易にするために、第4図を参照し
てその製造方法の一例と共に説明する。この例において
も例えばn型のGaAsよりなる基体(31)上に例え
ばn型のAfGalnPよりなる下層クラッド層(32
A)とn型のuGaInPより成る下層ガイド層(22
A)と、さらにこれの上にGa1nPまたはAlGa1
nPよりなる活性層(21)と、さらにこれの上に例え
ば5000Å以上の厚さの上層のP型のuGaInPよ
りなる第1のクラッド層(32B+)とを順次MOCV
Dによってエピタキシャル成長する。
Embodiment 2 In this example, as shown in FIG.
ty) type semiconductor laser, and in order to facilitate understanding in this case as well, an example of its manufacturing method will be described with reference to FIG. In this example, a lower cladding layer (32) made of, for example, n-type AfGalnP is placed on a substrate (31) made of, for example, n-type GaAs.
A) and a lower guide layer (22
A) and further on this, Ga1nP or AlGa1
An active layer (21) made of nP and a first cladding layer (32B+) made of P-type uGaInP with a thickness of, for example, 5000 Å or more are sequentially formed on this by MOCVD.
Epitaxial growth is performed by D.

その後、第4図Bに示すように、活性層(21)を横切
る位置までクラッド層(22B 、 )と、活性層(2
1)とを横切る深さにパターンエツチングして特に両端
をエツチング除去する。
Thereafter, as shown in FIG. 4B, the cladding layer (22B, ) and the active layer (2
1) A pattern is etched to a depth that crosses the pattern, and both ends are particularly etched away.

次に、第4図Cに示すように、全面的に第2の上層クラ
ッド層(32B、)と窓形成層(35)となるP型のA
fGaAs層とp型のGaAsのキャップ層(33)と
をMOCVD、MBE、LPE等によって連続エピタキ
シする。
Next, as shown in FIG. 4C, the second upper cladding layer (32B,
The fGaAs layer and a p-type GaAs cap layer (33) are successively epitaxied by MOCVD, MBE, LPE, or the like.

その後、第3図に示すようにこのキャップ層(33)を
選択的に活性層(21)と対向する部分上の中央部にス
トライブ状に残して他部をエツチング除去し、さらに基
体(31)と、これの上の各エピタキシャル成長層を襞
間面によって切断して活性層(21)の両端から活性層
(21)に比しバンドギャップの大なる窓形成層(35
)による窓構造部(23)を介して所要の距離を隔てた
位置に光出射端面(41)及び(42)を形成する。
Thereafter, as shown in FIG. 3, this cap layer (33) is selectively left in a stripe shape in the central part on the part facing the active layer (21), and the other part is etched away. ) and each epitaxially grown layer thereon is cut by the inter-fold plane to form a window forming layer (35) with a larger band gap than the active layer (21) from both ends of the active layer (21).
) are formed at positions separated by a required distance via the window structure (23).

尚、上述の各側において活性層(21)は、上述したよ
うに、ArGa1nP系でAノの含有量が零の場合、或
いはMを含有する場合の何れの組成をも採り得るが、そ
のバンドギャップはガイド層(22) (22A。
In addition, as described above, the active layer (21) on each side can have a composition of ArGa1nP with zero content of A or a composition containing M, but its band The gap is the guide layer (22) (22A).

23B)、クラッド層(32A)、(32B) 、窓形
成層(35)のいずれのバンドギャップより小に例えば
そのM含有量が選定される。
23B), the cladding layers (32A) and (32B), and the window forming layer (35), for example, the M content is selected to be smaller than any of the band gaps.

また、上述した各側においては、第1導電型がn型であ
る場合について説明したが、各導電型を図示とは逆の導
電型に選定することもできる。
Moreover, although the case where the first conductivity type is the n-type on each of the above-mentioned sides has been described, each conductivity type may be selected to be a conductivity type opposite to that shown in the drawings.

また、上述したSCH型あるいはLOC型のみならず例
えばCS P (Channeled 5ubstra
te Planar)型の半導体レーザ構造とすること
もできる。この場合においては第2図及び第4図で説明
した窓構造部(23)の形成後に、活性層(21)をス
トライプ状に、すなわち光取出し方向と直交するいわゆ
る横方向についてエツチングして例えばGaAsによる
光吸収層を埋込み形成して横方向にインデックスガイド
構造とするなど種々の構造を採ることができる。
In addition to the above-mentioned SCH type or LOC type, for example, CSP (Channeled 5
It is also possible to use a te Planar type semiconductor laser structure. In this case, after forming the window structure (23) explained in FIG. 2 and FIG. Various structures can be adopted, such as embedding a light absorption layer according to the method of the present invention to form an index guide structure in the lateral direction.

安定して窓構造の形成が可能となり、また自然超格子構
造の活性層に対し不純物を拡散して窓構造を形成する場
合における冒頭に述べた信転性の問題、特性の不均一性
の問題、発振波長の問題を改善できる。
It is possible to stably form a window structure, and it also solves the problems of reliability and non-uniformity of characteristics mentioned at the beginning when forming a window structure by diffusing impurities into the active layer of a natural superlattice structure. , the problem of oscillation wavelength can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図はそれぞれ本発明による半導体レーザ
の各側の路線的拡大断面図、第2図及び第4図はそれぞ
れその製造工程図、第5図は従来の半導体レーザの路線
的拡大断面図である。 (31)は基体、(22) (22A) (22B)は
ガイド層、(32A)(32B) (32B、) (3
2B、)はクラッド層、(21)は活性層、(35)は
窓形成層、(23)は窓構造部である。 〔発明の効果〕
FIGS. 1 and 3 are enlarged cross-sectional views of each side of the semiconductor laser according to the present invention, FIGS. 2 and 4 are manufacturing process diagrams, and FIG. 5 is an enlarged view of the conventional semiconductor laser. FIG. (31) is the base, (22) (22A) (22B) is the guide layer, (32A) (32B) (32B, ) (3
2B,) is a cladding layer, (21) is an active layer, (35) is a window forming layer, and (23) is a window structure. 〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 活性層を挟んでその上下層にこの活性層より高エネルギ
ーバンドギャップのAlGaInPのクラッド層もしく
はガイド層が積層され、 上記活性層の光取出し方向に関する両端面に接してこの
活性層より高エネルギーバンドギャップのAlGaAs
窓形成層が配されてなることを特徴ととする半導体レー
ザ。
[Claims] A cladding layer or a guide layer of AlGaInP having a higher energy bandgap than the active layer is laminated on the upper and lower layers with the active layer in between, and the active layer is in contact with both end faces in the light extraction direction of the active layer. AlGaAs with a higher energy bandgap than the layer
A semiconductor laser characterized by comprising a window forming layer.
JP22915290A 1990-08-30 1990-08-30 Semiconductor laser Pending JPH04111378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22915290A JPH04111378A (en) 1990-08-30 1990-08-30 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22915290A JPH04111378A (en) 1990-08-30 1990-08-30 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH04111378A true JPH04111378A (en) 1992-04-13

Family

ID=16887594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22915290A Pending JPH04111378A (en) 1990-08-30 1990-08-30 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH04111378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004328C2 (en) * 1995-10-20 1998-07-15 Sony Corp A method of manufacturing a light-emitting semiconductor element and thus fabricating a light-emitting semiconductor element.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004328C2 (en) * 1995-10-20 1998-07-15 Sony Corp A method of manufacturing a light-emitting semiconductor element and thus fabricating a light-emitting semiconductor element.

Similar Documents

Publication Publication Date Title
US6989550B2 (en) Distributed feedback semiconductor laser equipment employing a grating
US4928285A (en) Impurity-doped semiconductor laser device for single wavelength oscillation
EP0177221B1 (en) Semiconductor laser
US6682949B2 (en) Semiconductor laser and production method thereof
US4852111A (en) Semiconductor laser device
JP3791589B2 (en) End face non-injection type semiconductor laser and manufacturing method thereof
EP0579244B1 (en) A semiconductor laser and a method for producing the same
JP3510305B2 (en) Semiconductor laser manufacturing method and semiconductor laser
JPH07162086A (en) Manufacture of semiconductor laser
JP2001057459A (en) Semiconductor laser
JPH04111378A (en) Semiconductor laser
EP0298778B1 (en) Semiconductor laser devices and methods of making same
JP2679974B2 (en) Semiconductor laser device
JPH0648742B2 (en) Method for manufacturing semiconductor laser
EP0867949B1 (en) Semiconductor light-emitting device
WO2023281741A1 (en) Semiconductor optical element
US6717186B2 (en) Semiconductor laser device
JP2751699B2 (en) Semiconductor laser
JP2000208872A (en) Semiconductor element and its manufacture
JP2973215B2 (en) Semiconductor laser device
JPH07235725A (en) Semiconductor laser element and its manufacture
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP3022351B2 (en) Optical semiconductor device and method of manufacturing the same
JPH0590706A (en) Semiconductor laser element
JPH0410705Y2 (en)