JPH04111375A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH04111375A
JPH04111375A JP22910690A JP22910690A JPH04111375A JP H04111375 A JPH04111375 A JP H04111375A JP 22910690 A JP22910690 A JP 22910690A JP 22910690 A JP22910690 A JP 22910690A JP H04111375 A JPH04111375 A JP H04111375A
Authority
JP
Japan
Prior art keywords
electrode
layer
semiconductor laser
clad layer
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22910690A
Other languages
Japanese (ja)
Inventor
Norihiro Iwai
則広 岩井
Tetsuro Ijichi
哲朗 伊地知
Shigeto Matsumoto
成人 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22910690A priority Critical patent/JPH04111375A/en
Publication of JPH04111375A publication Critical patent/JPH04111375A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To simplify a manufacturing process by a method wherein an electrode which is ohmic-joined to a contact layer and which is Schottky-joined to a clad layer is laminated on the clad layer and the contact layer. CONSTITUTION:An n-InGaP clad layer 2, an InGaAs/GaAs strain quantum well active layer 3, a p-InGaP clad layer 4 and a p-InGaAs contact layer 5 are laminated sequentially on an n-GaAs substrate 1 by an MOCVD method. An etching operation is executed down to a halfway part of the p-InGaP clad layer 4 by a photolithographic method or the like; a mesa is formed; after that, Ti/Pt/Au is vapor-deposited as a p-electrode 7 and Au-Ge-Ni/Au is vapor-deposited sequentially as an n-electrode 8. When an electric current flows to an element manufactured in this manner, a Schottky junction part 9 is formed between the p-InGaP clad layer 4 and the p-electrode 7, the electric current flows only between the p-electrode and the p-InGaAs contact layer 5 and the electric current is constricted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リッジ導波路型半導体レーザ素子の構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to the structure of a ridge waveguide type semiconductor laser device.

InGaAs/GaAs歪量子井戸レーザ素子は、例え
ば第3図に示すような構造をしている。即ち、n−Ga
As基板1上にn−1nGaPクラッド層2、InGa
As/GaAs歪量子井戸活性層3、p−1nGaPク
ラッド層4、pInGaAsコンタクト層5を順次積層
し、次にフォトリソグラフィ等の手法によりp−1nG
aPクラッド層4の途中までエツチングしてメサを形成
する。次に、スバンタにより、電流狭窄用の絶縁膜とし
て5iOW!6を形成した後、再びフォトリングラフィ
などの手法により、メサ上部の5iOii6をエツチン
グし、電流通路を形成した後、Ti/PL/Au1i極
7およびAu−Ge−Ni/^U電極8を蒸着したもの
である。
An InGaAs/GaAs strained quantum well laser device has a structure as shown in FIG. 3, for example. That is, n-Ga
n-1nGaP cladding layer 2, InGa on As substrate 1
An As/GaAs strained quantum well active layer 3, a p-1nGaP cladding layer 4, and a pInGaAs contact layer 5 are sequentially laminated, and then p-1nG is formed by a method such as photolithography.
The aP cladding layer 4 is etched halfway to form a mesa. Next, Svanta developed 5iOW! as an insulating film for current confinement. After forming 6, 5iOii6 on the upper part of the mesa is etched again by a method such as photolithography to form a current path, and then Ti/PL/Au1i electrode 7 and Au-Ge-Ni/^U electrode 8 are deposited. This is what I did.

このタイプの半導体レーザ素子は、−回の気相成長で製
作でき、しかも活性層を平坦なまま残しているので、信
転性の高い半導体レーザ素子となる。
This type of semiconductor laser device can be manufactured by -times of vapor phase growth, and since the active layer remains flat, the semiconductor laser device has high reliability.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の半導体レーザ素子の製作工程では
、電流狭窄用のSiO膜6の成膜工程と、電流注入用の
窓開けのためのフォトリソグラフィを含む工程が必要に
なり、製作工程が複雑になるという問題があった。
However, the manufacturing process of the semiconductor laser device described above requires a process including a process of forming the SiO film 6 for current confinement and a process including photolithography for opening a window for current injection, making the manufacturing process complicated. There was a problem.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明は上記問題点を解決した半導体レーザ素子を提供
するもので、活性層上にリッジ部を有するInGaPク
ラッド層、リッジ部側面にInGaAsコンタクト層、
コンタクト層上部に電極が順次形成されたリッジ導波路
型半導体レーザ素子において、電極はコンタクト層とオ
ーミック接合し、クランド層とショットキー接合する金
属からなり、tJN極はリッジ部側面において直接にク
ラッド層と接するように形成されたことを特徴とするも
のである。
The present invention provides a semiconductor laser device that solves the above problems, and includes an InGaP cladding layer having a ridge portion on the active layer, an InGaAs contact layer on the side surface of the ridge portion, and an InGaP cladding layer having a ridge portion on the active layer.
In a ridge waveguide semiconductor laser device in which electrodes are sequentially formed on the top of a contact layer, the electrodes are made of a metal that forms an ohmic contact with the contact layer and a Schottky contact with the cladding layer, and the tJN pole is directly connected to the cladding layer on the side surface of the ridge. It is characterized by being formed so as to be in contact with the

上記の構造を有する半導体レーザ素子において、電極と
InGaAsコンタクト層との接合はオーミック接合を
なし、電極とInGaPクラッド層との接合はショトキ
ー接合をなしている。このような性質を有する電極材と
してはTiがある。第4図に、TiInGaAsオーミ
ック接合およびTi−InGaPショットキー接合の電
流・電圧特性例を示した。
In the semiconductor laser device having the above structure, the junction between the electrode and the InGaAs contact layer is an ohmic junction, and the junction between the electrode and the InGaP cladding layer is a Schottky junction. Ti is an electrode material having such properties. FIG. 4 shows examples of current/voltage characteristics of a TiInGaAs ohmic junction and a Ti-InGaP Schottky junction.

従って、前記電極から電流を注入しようとすると、電流
はコンタクト層からは注入されるが、クラッド層からは
ショットキーバリアーに妨げられて注入されない。この
ようにして、本発明によれば、絶縁膜を設けることなく
電流狭窄を行うことができる。
Therefore, when trying to inject a current from the electrode, the current is injected from the contact layer, but not from the cladding layer because it is blocked by the Schottky barrier. In this way, according to the present invention, current confinement can be performed without providing an insulating film.

〔実施例] 以下1図面に示した実施例に基づいて本発明の詳細な説
明する。
[Example] The present invention will be described in detail below based on an example shown in one drawing.

第1図は本発明に係る半導体レーザ素子の一実施例の断
面図である。本実施例の製作工程は、MOCVD法によ
り、n−GaAs基板1上にn−1nGaPクランド層
2、InGaAs/GaAs歪量子井戸活性層3、p−
1nGaPクラッド層4、p−1nGaAsコンタクト
層5を順次積層し、フォトリソグラフィなどの手法によ
り、p−1nGaPクラッド層4の途中までエツチング
を行い、メサを形成した後、P電極7としてT1/Pt
/Auを、nii極8としてAu−Ge−Ni/Auを
順次蒸着した。このようにして製作された素子にtff
lを流すと、p−1nGaPクラッド層4とP電極7の
間にはショットキー接合部9が形成され、P電極とpI
nGaAsコンタクト層5の間にのみ電流が流れ、電流
狭窄が行われた。本実施例と、比較例として第3図に示
した従来例の発光特性を第2図に示す。
FIG. 1 is a sectional view of one embodiment of a semiconductor laser device according to the present invention. In the manufacturing process of this example, an n-1nGaP ground layer 2, an InGaAs/GaAs strained quantum well active layer 3, a p-
A 1nGaP cladding layer 4 and a p-1nGaAs contact layer 5 are sequentially laminated, and the p-1nGaP cladding layer 4 is etched halfway through using a method such as photolithography to form a mesa, and then a T1/Pt layer is formed as a P electrode 7.
/Au as the nii electrode 8, and Au-Ge-Ni/Au were sequentially deposited. Tff is applied to the device manufactured in this way.
When l flows, a Schottky junction 9 is formed between the p-1nGaP cladding layer 4 and the P electrode 7, and the P electrode and the pI
Current flowed only between the nGaAs contact layers 5, resulting in current confinement. FIG. 2 shows the light emission characteristics of this example and the conventional example shown in FIG. 3 as a comparative example.

第2図より、本実施例は従来例に劣らない発光特性を有
することがわかる。なお、P電極材としては、Tiに限
定されず、Crを用いてもよい。
From FIG. 2, it can be seen that this example has light emission characteristics comparable to those of the conventional example. Note that the P electrode material is not limited to Ti, and Cr may also be used.

さらに、本発明は上記実施例に限定されることはなく、
上記実施例においてn型とp型を逆にしてもよい。
Furthermore, the present invention is not limited to the above embodiments,
In the above embodiments, the n-type and p-type may be reversed.

〔発明の効果] 以上説明したように本発明によれば、活性層上にInG
aPクラッド層、InGaAsコンタクト層を積層し、
メサを形成した後、前記クラッド層およびコンタクト層
上に、コンタクト層とオーミンク接合し、クランド層と
ショットキー接合する電極を積層するため、リッジ導波
路型半導体レーザ素子の製作工程が簡略化され、信顧性
のある低コストの半導体レーザ素子が得られるという優
れた効果がある。
[Effects of the Invention] As explained above, according to the present invention, InG is formed on the active layer.
Stacking an aP cladding layer and an InGaAs contact layer,
After forming the mesa, an electrode is laminated on the cladding layer and the contact layer to form an ohmink contact with the contact layer and a Schottky contact with the cladding layer, thereby simplifying the manufacturing process of the ridge waveguide semiconductor laser device. An excellent effect is that a reliable and low-cost semiconductor laser device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る半導体レーザ素子の一実施例の断
面図、第2図は前記実施例の発光出力特性図、第3図は
半導体レーザ素子の従来例の断面図、第4図は、Ti−
1nGaAsオ一ミツク接合およびTi−1nGaPシ
ヨツトキ一接合の電流・電圧特性例を示す図である。 ■・・・基板、  2,4・・・クラ・ノド層、  3
・・・活性層、  5・・・コンタクト層、  6・・
・SiO膜、7、 8・・・電極、 9・・・ショット
キー接合部。
FIG. 1 is a sectional view of an embodiment of a semiconductor laser device according to the present invention, FIG. 2 is a light emission output characteristic diagram of the embodiment, FIG. 3 is a sectional view of a conventional example of a semiconductor laser device, and FIG. 4 is a sectional view of a conventional example of a semiconductor laser device. , Ti-
FIG. 3 is a diagram showing an example of current/voltage characteristics of a 1nGaAs ohmic junction and a Ti-1nGaP shortcut junction. ■...Substrate, 2,4...Kura Nodo layer, 3
...Active layer, 5...Contact layer, 6...
-SiO film, 7, 8...electrode, 9...Schottky junction.

Claims (1)

【特許請求の範囲】[Claims] 活性層上にリッジ部を有するInGaPクラッド層、リ
ッジ部上部にInGaAsコンタクト層、コンタクト層
上部に電極が順次形成されたリッジ導波路型半導体レー
ザ素子において、電極はコンタクト層とオーミック接合
し、クラッド層とショットキー接合する金属からなり、
該電極はリッジ部側面において直接にクラッド層と接す
るように形成されたことを特徴とするリッジ導波路型半
導体レーザ素子。
In a ridge waveguide semiconductor laser device in which an InGaP cladding layer having a ridge portion is formed on the active layer, an InGaAs contact layer is formed above the ridge portion, and an electrode is formed on the contact layer in this order, the electrode is in ohmic contact with the contact layer, and the cladding layer Consists of metal that is Schottky bonded to
A ridge waveguide type semiconductor laser device, characterized in that the electrode is formed on a side surface of a ridge portion so as to be in direct contact with a cladding layer.
JP22910690A 1990-08-30 1990-08-30 Semiconductor laser element Pending JPH04111375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22910690A JPH04111375A (en) 1990-08-30 1990-08-30 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22910690A JPH04111375A (en) 1990-08-30 1990-08-30 Semiconductor laser element

Publications (1)

Publication Number Publication Date
JPH04111375A true JPH04111375A (en) 1992-04-13

Family

ID=16886837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22910690A Pending JPH04111375A (en) 1990-08-30 1990-08-30 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPH04111375A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301202A (en) * 1993-02-25 1994-04-05 International Business Machines, Corporation Semiconductor ridge waveguide laser with asymmetrical cladding
WO2004032296A1 (en) * 2002-09-20 2004-04-15 Sony Corporation Semiconductor laser device and production method therefor
JP2005183927A (en) * 2003-11-27 2005-07-07 Sharp Corp Semiconductor laser element, optical disc apparatus, and light transmission system
JP2006156639A (en) * 2004-11-29 2006-06-15 Sharp Corp Semiconductor laser element, optical disc apparatus, and light transmission system
US7492801B2 (en) 2003-11-11 2009-02-17 Sharp Kabushiki Kaisha Semiconductor laser element, manufacturing method thereof, optical disk apparatus and optical transmission system
US7558307B2 (en) 2004-02-16 2009-07-07 Sharp Kabushiki Kaisha Semiconductor laser device, semiconductor laser device manufacturing method, optical disk apparatus and optical transmission system
JP2009158550A (en) * 2007-12-25 2009-07-16 Sony Corp Semiconductor light emitting element and display using the same
JP2009188435A (en) * 2003-11-11 2009-08-20 Sharp Corp Semiconductor laser element, manufacturing method thereof, optical disk apparatus, and optical transmission system
US7593442B2 (en) 2004-08-26 2009-09-22 Sharp Kabushiki Kaisha Semiconductor laser device, semiconductor laser device manufacturing method, optical disk apparatus and optical transmission system
US7760783B2 (en) * 2005-02-23 2010-07-20 Sharp Kabushiki Kaisha Semiconductor device such as semiconductor laser device and manufacturing method therefor, and optical transmission module and optical disk unit employing the semiconductor laser device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301202A (en) * 1993-02-25 1994-04-05 International Business Machines, Corporation Semiconductor ridge waveguide laser with asymmetrical cladding
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
WO2004032296A1 (en) * 2002-09-20 2004-04-15 Sony Corporation Semiconductor laser device and production method therefor
US7492801B2 (en) 2003-11-11 2009-02-17 Sharp Kabushiki Kaisha Semiconductor laser element, manufacturing method thereof, optical disk apparatus and optical transmission system
JP2009188435A (en) * 2003-11-11 2009-08-20 Sharp Corp Semiconductor laser element, manufacturing method thereof, optical disk apparatus, and optical transmission system
JP2005183927A (en) * 2003-11-27 2005-07-07 Sharp Corp Semiconductor laser element, optical disc apparatus, and light transmission system
US7558307B2 (en) 2004-02-16 2009-07-07 Sharp Kabushiki Kaisha Semiconductor laser device, semiconductor laser device manufacturing method, optical disk apparatus and optical transmission system
US7593442B2 (en) 2004-08-26 2009-09-22 Sharp Kabushiki Kaisha Semiconductor laser device, semiconductor laser device manufacturing method, optical disk apparatus and optical transmission system
JP2006156639A (en) * 2004-11-29 2006-06-15 Sharp Corp Semiconductor laser element, optical disc apparatus, and light transmission system
US7760783B2 (en) * 2005-02-23 2010-07-20 Sharp Kabushiki Kaisha Semiconductor device such as semiconductor laser device and manufacturing method therefor, and optical transmission module and optical disk unit employing the semiconductor laser device
US7816162B2 (en) 2005-02-23 2010-10-19 Sharp Kabushiki Kaisha Semiconductor device manufacturing method
JP2009158550A (en) * 2007-12-25 2009-07-16 Sony Corp Semiconductor light emitting element and display using the same

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH07135369A (en) Semiconductor laser and its fabrication
JPH04111375A (en) Semiconductor laser element
US20070045633A1 (en) Semiconductor optical device having an improved current blocking layer and manufacturing method thereof
JPH07111339A (en) Surface emission type semiconductor light emitting device
JPH09129865A (en) Semiconductor device
JP2001015851A (en) Semiconductor laser device and its manufacture
US5442649A (en) Semiconductor laser device
US5898190A (en) P-type electrode structure and a semiconductor light emitting element using the same structure
KR920005132B1 (en) Rib-wave guide type light emitted semiconductor device
JPS61159784A (en) Semiconductor laser device
US5218614A (en) Semiconductor laser device
JPH0927651A (en) Semiconductor laser
JPH0945999A (en) Semiconductor device and manufacture thereof
KR940005759B1 (en) Manufacturing method of laser diode
JPH07115251A (en) Semiconductor laser
JP2812024B2 (en) Manufacturing method of surface emitting element
JP3241360B2 (en) Optical semiconductor device
JP3568147B2 (en) Semiconductor light emitting device
JP2763102B2 (en) Semiconductor laser device
JP2748570B2 (en) Semiconductor laser device
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH0513872A (en) Hetero junction type semiconductor laser
JP2716717B2 (en) Semiconductor laser device