JPH04110655A - Method for inspecting medium for ultrasonic-wave microscope and electronic part - Google Patents

Method for inspecting medium for ultrasonic-wave microscope and electronic part

Info

Publication number
JPH04110655A
JPH04110655A JP2226560A JP22656090A JPH04110655A JP H04110655 A JPH04110655 A JP H04110655A JP 2226560 A JP2226560 A JP 2226560A JP 22656090 A JP22656090 A JP 22656090A JP H04110655 A JPH04110655 A JP H04110655A
Authority
JP
Japan
Prior art keywords
solder
water
medium
ultrasonic
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2226560A
Other languages
Japanese (ja)
Inventor
Isao Watanabe
勲 渡辺
Seiki Sakuyama
誠樹 作山
Katsuhide Natori
名取 勝英
Masanori Gotou
後藤 正伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2226560A priority Critical patent/JPH04110655A/en
Publication of JPH04110655A publication Critical patent/JPH04110655A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent the corrosion of solder without forming a film on the surface of the solder by adding a material, which suppresses the anode reaction of the solder in water, into the water. CONSTITUTION:A pad 2 is provided with a metallized layer of Cr-Cu-Ni-Au on a ceramic substrate 1. Creme solder is applied on the pad. Then, reflow is performed by gaseous-phase soldering. Thus, a solder bump 3 is formed, and a simulated element 4 is formed. The simulated element formed in this way is submerged into solution wherein sodium metavanadate is dissolved in purified water, and the solution is left alone. When the surface state of the solder bump of the simulated element is observed with an optical microscope after the specified days, the corrosion of the solder is not recognized. When the material which suppresses the anode reaction of the solder in the water is added into the water, the corrosion does not occur in the solder, and the clear image is obtained.

Description

【発明の詳細な説明】 〔発明の概要〕 高密度電子部品の多数の半田バンプ接合部分の接合状態
を超音波顕微鏡により検査する際に使用する媒質に関し
、 半田を腐食せず且つ伝搬特性の優れた媒質を提供するこ
とを目的とし、 水中における半田のアノード反応を抑制する物質を水に
添加するように構成する。
[Detailed Description of the Invention] [Summary of the Invention] The present invention relates to a medium that does not corrode solder and has excellent propagation characteristics when inspecting the joint state of a large number of solder bump joints of high-density electronic components using an ultrasonic microscope. The purpose of the present invention is to add a substance to water that suppresses the anodic reaction of solder in water.

〔産業上の利用分野〕[Industrial application field]

本発胡は、高密度電子部品の多数の半田バンプ接合部分
の接合状態を超音波顕微鏡により検査する際に使用する
媒質、及びこの媒質を使って電子部品の半田接合部分の
接合状態を検査する方法に関する。
This product is a medium used when inspecting the bonding condition of a large number of solder bump joints on high-density electronic components using an ultrasonic microscope, and a method that uses this medium to inspect the bonding condition of solder bump joints on electronic components. Regarding the method.

〔従来の技術〕[Conventional technology]

近年、電子機器の小型化、高密度実装化、高性能化指向
に伴い、部品の形態やその実装方式が変わって来ている
。例えば高密度部品を実装する一つの方法として、高密
度チップの裏面に多くの半田バンプを設けたフリップチ
ップ状部品を基板に半田付けする方式が注目されている
。このように裏面に多くの接続部分を持った部品と基板
との接合状態は、従来の光学的な外観検査やプローブに
よる電気的な検査が不可能になっている。そのたt1超
音波顕微鏡による画像処理方式の利用が推進されている
In recent years, the form of components and their mounting methods have been changing as electronic devices have become smaller, have higher density packaging, and have become more sophisticated. For example, as one method for mounting high-density components, attention has been paid to a method in which a flip-chip component, in which many solder bumps are provided on the back side of a high-density chip, is soldered to a board. In this way, the state of bonding between a component having many connection parts on the back surface and a board cannot be inspected by conventional optical visual inspection or electrical inspection using a probe. In addition, the use of image processing methods using t1 ultrasound microscopes is being promoted.

超音波顕微鏡検査を利用する場合、被検査物は超音波を
伝播するための媒質中に浸漬される。この媒質として通
常用いられているのは水である。
When using ultrasonic microscopy, the object to be inspected is immersed in a medium for propagating ultrasonic waves. Water is commonly used as this medium.

〔発胡が解決しようとする課題〕[Issues that Hathu tries to solve]

半田バンプを検査する場合には、検査中に媒質の水によ
り半日が腐食され、そして微細な半田接合部の信頼性が
低下するため、超音波顕微鏡による半田接合部の検査は
期待されたほどの成果をあげることができなかった。そ
こで、水に代る媒質としてフルオロカーボンやアルコー
ル類等の有機溶剤系が試みられているが、これらは超音
波の伝搬特性が悪く、そのため鮮門な画像を得るには至
っていな1.l)。
When inspecting solder bumps, the inspection of solder joints by ultrasonic microscope is not as expected because half a day is corroded by the water medium during the inspection, and the reliability of the minute solder joints is reduced. I was unable to achieve any results. Therefore, attempts have been made to use organic solvents such as fluorocarbons and alcohols as a medium to replace water, but these have poor ultrasonic propagation characteristics, and as a result, it has not been possible to obtain clear images1. l).

このように、裏面にたくさんの半田バンプ接合部をもつ
高密度電子部品の接合状態の検査にとって超音波顕微鏡
!鏡は極めて有効な検査手段であるにもかかわらず、従
来の超音波顕微鏡用の媒質には、半田の腐食に起因する
半田接合部の信頼性の低下をもたらし、あるいは得られ
る画像が媒質の伝搬特性が思わしくないため不鮮明にな
るという問題があった。
In this way, an ultrasonic microscope can be used to inspect the bonding condition of high-density electronic components that have many solder bump joints on the back side. Although mirrors are extremely effective inspection tools, traditional ultrasound microscopy media can cause unreliable solder joints due to solder corrosion, or the resulting images may be affected by media propagation. There was a problem that the characteristics were not as expected and the image became unclear.

本発明は、半田を腐食せず且つ伝搬特性の優れた媒質を
提供し、これにより多数の半田バンプ接合部分の接合状
態の超音波顕微鏡による検査を実用的なものにすること
である。
An object of the present invention is to provide a medium that does not corrode solder and has excellent propagation characteristics, thereby making it practical to inspect the bonded state of a large number of solder bump bonded portions using an ultrasonic microscope.

〔課題を解決するたtの手段〕[Means to solve the problem]

本発明が提供する媒質は、水中における半田のアノード
反応を抑制する物質を水に添加してなることを特徴とす
る、高密度電子部品の半日バンプ接合部を検査するため
の超音波顕微鏡用媒質である。
The medium provided by the present invention is a medium for ultrasonic microscopy for inspecting half-day bump joints of high-density electronic components, which is made by adding a substance to water that suppresses the anodic reaction of solder in water. It is.

また、本発明の電子部品の検査方法は、被検査物である
電子部品を、超音波を伝播する媒質中に浸漬し、該電子
部品の半田接合部分の接合状態を超音波画像処理により
検査する電子部品の検査方法において、上記媒質として
水中における半田のアノード反応を抑制する物質を水に
添加したものを用いることを特徴とする検査方法である
Further, in the method for inspecting electronic components of the present invention, an electronic component to be inspected is immersed in a medium that propagates ultrasonic waves, and the bonding state of the solder joint portion of the electronic component is inspected by ultrasonic image processing. The present invention is an inspection method for electronic components, characterized in that the medium includes water to which a substance that suppresses the anodic reaction of solder in water is added.

半田合金の水中における腐食には、半田合金自体の異種
金属間で起こる腐食と同時に、接合する金属と半田合金
との異種金属接触部で起こる腐食がある。すなわち、半
田合金は各々腐食電位が異なる2種以上の金属の複合体
であり、水中では卑な金属と責な金属とが腐食電池を形
成し、卑な金属が腐食する。また同様に接合部でも半日
合金と接合する金属との間で電池を形成し、卑な金属(
一般には半田側)が腐食する。
Corrosion of solder alloys in water includes corrosion that occurs between dissimilar metals within the solder alloy itself, as well as corrosion that occurs at dissimilar metal contact points between the metal to be joined and the solder alloy. In other words, a solder alloy is a composite of two or more metals each having a different corrosion potential, and in water, the base metal and the base metal form a corrosion cell, and the base metal corrodes. Similarly, at the joint, a battery is formed between the half-metal alloy and the metal to be joined, and the base metal (
(generally the solder side) corrodes.

このような水中における金属の腐食を抑制させるために
は、一般にインヒビター(腐食抑制剤)を添加する方法
が用いられている。公知のインヒビターの多くは皮膜形
成型であって、この種のインヒビターを用いた場合には
防食すべき金属の表面に薄い皮膜が形成される。それゆ
えに、皮膜形成型インヒビターを添加した水中に半日合
金を浸漬すると、半田合金表面に皮膜が形成され、後に
半田付けを行う際に妨げとなりかねないので、半田バン
プ接合部の超音波顕微鏡用媒質で使用するにはそれほど
好ましくはない。また、この種のインヒビターでは、形
成された皮膜のピンホール部分で局所的な腐食が進行す
るたt1半田バンプ接合部の超音波顕微鏡用媒質に使用
するのにはやはり余り適したものとは言えない。例えば
、無機系のインヒビターとしてはクロム酸塩、リン酸塩
、ポリリン酸塩、ケイ酸塩、ホウ酸塩、モリブデン酸塩
、タングステン酸塩、亜硝酸塩等、有機系のインヒビタ
ーとしてはアミン類、ベンゾトリアゾール、メルカプト
ベンゾチアゾーノベホスホン酸塩、トリエタノールアミ
ン等が知られているが、これらはいずれも皮膜形成型で
あるため、半田バンプ接合部の検査用媒質としては余り
適当ではない。
In order to suppress such corrosion of metals in water, a method of adding an inhibitor (corrosion inhibitor) is generally used. Many of the known inhibitors are of the film-forming type, and when this type of inhibitor is used, a thin film is formed on the surface of the metal to be protected against corrosion. Therefore, if a half-day alloy is immersed in water containing a film-forming inhibitor, a film will be formed on the surface of the solder alloy, which may interfere with subsequent soldering. Not so desirable for use. In addition, this type of inhibitor is not very suitable for use as a medium for ultrasonic microscopy at the T1 solder bump joint because local corrosion progresses at the pinhole portion of the formed film. do not have. For example, inorganic inhibitors include chromates, phosphates, polyphosphates, silicates, borates, molybdates, tungstates, and nitrites, and organic inhibitors include amines and benzenes. Triazole, mercaptobenzothiazonobephosphonate, triethanolamine, etc. are known, but all of these are film-forming types, so they are not very suitable as media for testing solder bump joints.

これに対して、アノード反応を抑制する物質すなわちア
ノード反応抑制型インヒビターは、水中における金属の
腐食アノード反応機構に直接作用してアノード反応を抑
制し、このため金属表面に皮膜を形成することなしに金
属の腐食を防止する。
On the other hand, substances that suppress the anodic reaction, i.e., anodic reaction inhibitors, act directly on the corrosion anode reaction mechanism of metals in water, suppressing the anodic reaction, and therefore do not form a film on the metal surface. Prevents metal corrosion.

すなわち、アノード反応抑制型インヒビターには、半田
バンブ接合部の超音波顕微鏡用媒質として使用した場合
に皮膜形成型インヒビターを用いた場合に起こるような
不都合がない。従って本発明の超音波顕微鏡用媒質にお
いては、専らアノード反応抑制型インヒビターを利用す
る。
That is, anodic reaction inhibiting inhibitors do not have the disadvantages that occur when film-forming inhibitors are used as a medium for ultrasound microscopy of solder bump joints. Therefore, in the ultrasonic microscopy medium of the present invention, anode reaction-suppressing inhibitors are exclusively used.

アノード反応抑制型インヒビターの代表例は、メタバナ
ジン酸塩である。メタバナジン酸塩を構成する金属陽イ
オンの典型例は、ナ) IJウム、カリウム等であるが
、これら以外の金属のメタバナジン酸塩も使用可能であ
る。本発明の超音波顕微鏡用媒質中のメタバナジン酸塩
濃度は、0,01〜0、5重量%程度とするのが好まし
い。0.01重量%より低い濃度では適度の半田の腐食
抑制効果を期待することができず、一方、0.5重量%
より高い濃度にしてもより以上の目ざましい効果を得る
ことはできない。メタバナジン酸塩は、どのような方法
で水に溶解させても差支えない。メタバナジン酸塩を溶
解すべき水は、好ましくは精製水である。
A typical example of an anodic reaction inhibiting inhibitor is metavanadate. Typical examples of metal cations constituting the metavanadate are sodium, potassium, etc., but metavanadates of metals other than these can also be used. The concentration of metavanadate in the medium for ultrasonic microscopy of the present invention is preferably about 0.01 to 0.5% by weight. If the concentration is lower than 0.01% by weight, it is not possible to expect a suitable solder corrosion inhibiting effect;
Even higher concentrations do not provide a more dramatic effect. Metavanadate may be dissolved in water by any method. The water in which metavanadate is to be dissolved is preferably purified water.

本発明の媒質を用いて超音波顕微鏡検査することのでき
る半円は、通常の各種半田合金類である。
Semicircles that can be examined using ultrasound microscopy using the medium of the present invention are various common solder alloys.

例を挙げれば、5n−Pb 、 5n−Pb−Bi 、
 In−3n 、 In−Pb 、^u −5n 、 
5n−Pb −Ag 、 Pb−Ag 、Sn −Pb
 −Ag等の半田合金である。
Examples include 5n-Pb, 5n-Pb-Bi,
In-3n, In-Pb, ^u-5n,
5n-Pb-Ag, Pb-Ag, Sn-Pb
-A solder alloy such as Ag.

〔作 用〕[For production]

本発明の超音波顕微鏡用媒質に添加されるアノード反応
抑制型インヒビターは、水中における半田の腐食アノー
ド反応機構に直接作用してアノード反応を抑制し、半田
の表面に皮膜を形成することなしに半田の腐食を防止す
る。またこのインヒビターは、本発明の媒質の超音波伝
搬特性に水のそれと比べて有意の変化を引き起こさず、
従って本発明の超音波顕微鏡用媒質は従来のようにイン
ヒビターの添加されていない水を媒質として使った場合
と同様の鮮明な画像をもたらす。
The anodic reaction suppressing inhibitor added to the medium for ultrasonic microscopy of the present invention directly acts on the corrosion anode reaction mechanism of solder in water, suppresses the anodic reaction, and prevents the solder from forming a film on the surface of the solder. prevent corrosion. The inhibitor also does not cause any significant change in the ultrasound propagation properties of the medium of the invention compared to that of water;
Therefore, the medium for ultrasonic microscopy of the present invention provides a clear image similar to that obtained when water to which no inhibitor is added is used as a medium as in the past.

C実施例〕 次に、実施例により本発明を更に説明する。C Example] Next, the present invention will be further explained by examples.

実施例 Sn −Pb 、 In −5n 、 In −Pb 
、 Sn −Pb−Biの4種類の半田について実験を
行った。
Examples Sn-Pb, In-5n, In-Pb
Experiments were conducted on four types of solder: , Sn-Pb-Bi.

第1図に示した20 X20 X 1 mmのセラミッ
ク基板1上にCr−Cu−Ni−八Uのメタライズ層で
パッド2を設け、この上にクリーム半田を塗布後、気相
半田付け(VPS)でリフローして半田バンブ3を形成
し、模擬素子4を作製した。こうして作製された模擬素
子を、精製水に0.1重量%のメタバナジン酸ナトリウ
ム(NaV口。)を溶解させた溶液に浸漬し、室温で1
0日間放置した。10日後に各模擬素子の半田バンプの
表面状態を光学顕微鏡で観察したところ、半田バンプの
表面にはいずれも浸漬前の初期のものと同等の光沢があ
って、半田の腐食は認袷られなかった。
A pad 2 is provided with a metallized layer of Cr-Cu-Ni-8U on a ceramic substrate 1 of 20 x 20 x 1 mm shown in Fig. 1, and after applying cream solder thereon, vapor phase soldering (VPS) is performed. Solder bumps 3 were formed by reflowing, and a simulated element 4 was produced. The simulated element thus prepared was immersed in a solution of 0.1% by weight of sodium metavanadate (NaV) dissolved in purified water, and then heated for 1 hour at room temperature.
It was left for 0 days. After 10 days, the surface condition of the solder bumps on each simulated element was observed using an optical microscope, and the surface of each solder bump had the same gloss as the initial surface before immersion, and no corrosion of the solder was observed. Ta.

次に、第2図に示すように、上記の模擬素子と同等のパ
ッド5を有する素子搭載用の基板6を作製した。この搭
載用基板のパッド5に模擬素子4のバンプと同じクリー
ム半田を塗布し、位置合せして、先に浸漬実験で使用し
たのとは別の模擬素子4を基板6の上に載せ、そして気
相半田付けによりリフローして素子を基板に接合した。
Next, as shown in FIG. 2, a substrate 6 for mounting an element having pads 5 equivalent to those of the above-described simulated element was prepared. Apply the same cream solder as the bumps of the simulated element 4 to the pads 5 of this mounting board, align them, and place the simulated element 4, which is different from the one used in the immersion experiment, on the board 6, and The device was bonded to the substrate by reflow using vapor phase soldering.

精製水にメタバナジン酸ナトリウムを0.1重量%添加
した媒質を使って、超音波顕微鏡により素子と基板との
半田接合部を検査したところ、鮮明な画像が得られた。
When the solder joint between the device and the substrate was inspected using an ultrasonic microscope using a medium containing purified water with 0.1% by weight of sodium metavanadate added, a clear image was obtained.

比較例 この例においても、5n−Pb 、 In−3n 、 
In −PbSn−Pb−Biの4種類の半田について
実験を行った。
Comparative Example Also in this example, 5n-Pb, In-3n,
Experiments were conducted using four types of solder: In-PbSn-Pb-Bi.

上記の実施例におけるのと同じように模擬素子を作製し
、これらを精製水に浸漬して室温で10日間放置した。
Simulated devices were prepared in the same manner as in the above examples, immersed in purified water, and left at room temperature for 10 days.

10日後に光学顕微鏡により各素子の半田バンブの表面
状態を観察すると、白い腐食生酸物が認められ、4種類
のいずれの半田も腐食していることが示された。
When the surface condition of the solder bumps of each element was observed using an optical microscope after 10 days, white corrosive acid was observed, indicating that all four types of solder were corroded.

次に、やはり上記の実施例におけるのと同じように素子
搭載用の基板に、浸漬実験で使用したのとは別の模擬素
子を接合し、そして媒質として精製水を使用して超音波
顕微鏡により半田接合部を検査したところ、鮮明な画像
が得られた。
Next, in the same way as in the above example, a simulated element different from that used in the immersion experiment was bonded to a substrate for mounting the element, and an ultrasonic microscope was used using purified water as a medium. When inspecting the solder joints, a clear image was obtained.

比較例で得られた画像と実施例で得られた画像とを比較
してみると、鮮明度の点で両者間に有意の相違は見いだ
せなかった。
When the images obtained in the comparative example and the images obtained in the examples were compared, no significant difference was found between them in terms of sharpness.

用的なものとなる。It becomes useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例及び比較例で使用した模擬素子
の側面図、第2図は本発明の実施例及び比較例で使用し
た素子搭載用基板の斜視図である。 図中、1はセラミック基板、2はメタライズ層のパッド
、3は半田バンプ、4は模擬素子、5はパッド、6は素
子搭載用基板。 〔発胡の効果〕
FIG. 1 is a side view of a simulated element used in the examples and comparative examples of the present invention, and FIG. 2 is a perspective view of the element mounting substrate used in the examples and comparative examples of the present invention. In the figure, 1 is a ceramic substrate, 2 is a pad of a metallized layer, 3 is a solder bump, 4 is a simulated element, 5 is a pad, and 6 is a substrate for mounting an element. [Effect of Hathu]

Claims (1)

【特許請求の範囲】 1、水中における半田のアノード反応を抑制する物質を
水に添加してなることを特徴とする、高密度電子部品の
半田バンプ接合部を検査するための超音波顕微鏡用媒質
。 2、前記水中における半田のアノード反応を抑制する物
質がメタバナジン酸塩である、請求項1記載の超音波顕
微鏡用媒質。 3、被検査物である電子部品を、超音波を伝播する媒質
中に浸漬し、該電子部品の半田接合部分の接合状態を超
音波画像処理により検査する電子部品の検査方法におい
て、上記媒質として水中における半田のアノード反応を
抑制する物質を水に添加したものを用いることを特徴と
する電子部品の検査方法。
[Claims] 1. A medium for ultrasonic microscopy for inspecting solder bump joints of high-density electronic components, characterized by adding a substance to water that suppresses the anodic reaction of solder in water. . 2. The medium for an ultrasonic microscope according to claim 1, wherein the substance that suppresses the anodic reaction of solder in water is metavanadate. 3. In an electronic component inspection method in which an electronic component to be inspected is immersed in a medium that propagates ultrasonic waves, and the bonding state of the solder joint portion of the electronic component is inspected by ultrasonic image processing, as the medium A method for inspecting electronic components, characterized by using water containing a substance that suppresses the anodic reaction of solder in water.
JP2226560A 1990-08-30 1990-08-30 Method for inspecting medium for ultrasonic-wave microscope and electronic part Pending JPH04110655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2226560A JPH04110655A (en) 1990-08-30 1990-08-30 Method for inspecting medium for ultrasonic-wave microscope and electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2226560A JPH04110655A (en) 1990-08-30 1990-08-30 Method for inspecting medium for ultrasonic-wave microscope and electronic part

Publications (1)

Publication Number Publication Date
JPH04110655A true JPH04110655A (en) 1992-04-13

Family

ID=16847080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2226560A Pending JPH04110655A (en) 1990-08-30 1990-08-30 Method for inspecting medium for ultrasonic-wave microscope and electronic part

Country Status (1)

Country Link
JP (1) JPH04110655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192660A (en) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 It is a kind of to be used for the apparatus and method that dynamic observes Cdl-x_Znx_Te chemical attack hole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107192660A (en) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 It is a kind of to be used for the apparatus and method that dynamic observes Cdl-x_Znx_Te chemical attack hole
CN107192660B (en) * 2017-05-27 2023-09-12 中国科学院上海技术物理研究所 Device and method for dynamically observing tellurium-zinc-cadmium material chemical corrosion pits

Similar Documents

Publication Publication Date Title
US5462638A (en) Selective etching of TiW for C4 fabrication
JPH04320056A (en) Substrate soldering method using reducing atmosphere and soldering template
WO2013187363A1 (en) Flux composition, liquid flux, resin flux cored solder, and solder paste
EP0036594B1 (en) Method for forming a porous aluminum layer
JP2001059183A (en) Chemical film from kf solution to aluminum for fluxless brazing
TW476814B (en) Silver alloy plating bath and a method of forming a silver alloy film by means of the same
TW304208B (en)
JP2008501861A (en) Improvement of corrosion resistance of tin surface
JP5878290B2 (en) Lead-free solder alloy
US4360392A (en) Solder flux composition
JPH04110655A (en) Method for inspecting medium for ultrasonic-wave microscope and electronic part
US4260451A (en) Method of reworking substrates, and solutions for use therein
Graff Macrosonics in industry: Ultrasonic soldering
TW555886B (en) Electrochemical etch for high tin solder bumps
Vianco et al. Effect of Substrate Preheating on SolderabilityPerformance as a Guideline for Assembly Process Development Part 1: BaselineAnalysis
Vianco et al. Ultrasonic soldering for structural and electronic applications
JPS61292350A (en) Improved solder plating method and semiconductor product manufactured thereby
US3393447A (en) Fluxless brazing of aluminum
JP2001279491A (en) Sealing agent
Sunwoo et al. The effect of pretinning on the solderability of copper
Dunn et al. The corrosive effect of soldering fluxes and handling on some electronic materials
JPH1046327A (en) Sputtering target and its production
Sunwoo et al. Pre‐tinning and Flux Considerations on the Reliability of Solder Surfaces
US20210296203A1 (en) Heat dissipation substrate, preparation method and application thereof, and electronic component
JPS5976845A (en) Homogeneous low melting point copper base alloy