JPH04109178A - Detecting method for earth detecting current sensor - Google Patents

Detecting method for earth detecting current sensor

Info

Publication number
JPH04109178A
JPH04109178A JP2225412A JP22541290A JPH04109178A JP H04109178 A JPH04109178 A JP H04109178A JP 2225412 A JP2225412 A JP 2225412A JP 22541290 A JP22541290 A JP 22541290A JP H04109178 A JPH04109178 A JP H04109178A
Authority
JP
Japan
Prior art keywords
current
ground fault
earth
section
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225412A
Other languages
Japanese (ja)
Inventor
Takehiro Hayashi
林 武博
Ryoichi Tsuruoka
良一 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENKI SEIZO KK
Kyushu Electric Power Co Inc
Original Assignee
KYUSHU DENKI SEIZO KK
Kyushu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENKI SEIZO KK, Kyushu Electric Power Co Inc filed Critical KYUSHU DENKI SEIZO KK
Priority to JP2225412A priority Critical patent/JPH04109178A/en
Publication of JPH04109178A publication Critical patent/JPH04109178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To detect various earth currents with a simple circuit by directly full-wave-rectifying the input from a current transformer (CT), smoothing it with an integrating circuit, then detecting the quantity of the current and the time. CONSTITUTION:The current inputted from a CT 11 is rectified by a full-wave rectification section 12, then it is smoothed by a smooth section 13 and nearly converted into DC. When the AC component is removed from the full-wave- rectified current, the average value of the input current is obtained, and the current power can be smoothed time-wise for the earth current with a pulse- shaped current wave-form. The output of the smooth section 13 is compared with the threshold value by a comparison section 15, if the output exceeds the threshold value continuously for a fixed period or longer, it is detected by the AND function of the comparison section 15 and a clock 16. When the average value of the current component is obtained for the pulse-shaped intermittent current such as the current containing much high-frequency noise and a discharge earth, an earth can be correctly detected with an inexpensive device.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電流変流器(以下、CTという)を用いた微
小交流電流の検出方式に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of detecting minute alternating current using a current transformer (hereinafter referred to as CT).

(従来の技術) 第7図は従来の地絡事故検出センサの電流検出部を示す
ものであり、第7図(A)はブロックを、第7図(B)
は正弦波電流波形に対する各部の応答波形を第7図(C
)は高周波成分を含む電流波形に対する各部の応答波形
を、第7図(D)はパルス状電流波形に対する各部の応
答波形を示している。
(Prior art) Fig. 7 shows the current detection section of a conventional ground fault detection sensor, and Fig. 7 (A) shows the block, and Fig. 7 (B)
The response waveforms of each part to the sine wave current waveform are shown in Figure 7 (C
) shows the response waveform of each part to a current waveform containing a high frequency component, and FIG. 7(D) shows the response waveform of each part to a pulsed current waveform.

第7図において、30は接続線、31はCT、32は増
幅部、33は比較部、34はノイズ除去回路、35はカ
ウンタである。また、a+ ) r am ) + a
m )は増幅部32の出力波形、b、)、 b、)、 
b、)は比較部33の出力波形、C+ ) t Cm 
) + Cs )はノイズ除去回路34の出力波形であ
る。
In FIG. 7, 30 is a connection line, 31 is a CT, 32 is an amplification section, 33 is a comparison section, 34 is a noise removal circuit, and 35 is a counter. Also, a+ ) ram ) + a
m) is the output waveform of the amplifier section 32, b,), b,),
b, ) is the output waveform of the comparing section 33, C+ ) t Cm
) + Cs) is the output waveform of the noise removal circuit 34.

今、接地線30に商用周波交流電流が流れた場合、その
電流はCT31を通じて2次側に流れ増幅部32で増幅
された後、比較部33によりその瞬時値が一定値以上で
あれば、電圧が出力される。
Now, when a commercial frequency alternating current flows through the grounding wire 30, the current flows to the secondary side through the CT 31 and is amplified by the amplification section 32, and then the comparison section 33 determines that if the instantaneous value is above a certain value, the voltage is output.

比較部33のしきい値を検出したい電流の瞬時値より若
干低く設定しておくと、ノイズ除去回路34の出力電圧
は第7図CB)のc+)の様な周期的な矩形波となる。
If the threshold value of the comparator 33 is set slightly lower than the instantaneous value of the current to be detected, the output voltage of the noise removal circuit 34 becomes a periodic rectangular wave like c+) in FIG. 7 CB).

この周期は商用周波の周期(60Hz時16.7m5)
であり、この矩形波が一定回数連続したことで、しきい
値以上の電流が一定時間続いたことが認識できる。これ
が、従来の地絡事故検出センサの電流検定2時間検定の
方法である。
This cycle is the commercial frequency cycle (16.7m5 at 60Hz)
When this rectangular wave continues a certain number of times, it can be recognized that the current above the threshold has continued for a certain period of time. This is the conventional 2-hour current verification method for a ground fault detection sensor.

(発明が解決しようとする課題) しかしながら、上記従来の方法においては、検出しよう
とする電流が第7図(C)a、)の様に高周波雑音成分
を多く含む電流波形である場合には、雑音成分のピーク
値により比較部33が動作し、比較部33の出力は第7
図(C)b、)の様になり時間検出を誤らせる原因とな
る。また、ノイズにより時間検出部が起動されることが
無いよう、比較部33の出力には、ノイズ除去回路34
を用いているが、第7図(D)a、)のような短パルス
状の電流波形が断続的に発生した場合は、比較部33の
出力幅が第7図(D) b、)の様に短かいのでノイズ
としてカットされ電流検出自体が不可能になってしまう
(Problem to be Solved by the Invention) However, in the conventional method described above, when the current to be detected has a current waveform that includes many high-frequency noise components as shown in FIG. 7(C) a, The comparison unit 33 operates according to the peak value of the noise component, and the output of the comparison unit 33 is the seventh
The result will be as shown in Figure (C)b,), which will cause errors in time detection. Further, in order to prevent the time detection section from being activated due to noise, the output of the comparison section 33 is connected to a noise removal circuit 34.
However, if a short pulse-like current waveform as shown in Fig. 7(D) a,) occurs intermittently, the output width of the comparator 33 becomes as shown in Fig. 7(D) b,). Since it is so short, it is cut off as noise and current detection itself becomes impossible.

本発明は、上記の問題を解決するものであり、種々の電
流波形に対しても、正確な電流と時間検定を可能とし、
配電線に発生する様々な地絡現象に対して、実用に耐え
得る検出性能を保証することができる検出方式を提供す
ることを目的とするものである。
The present invention solves the above problems, and enables accurate current and time verification for various current waveforms.
The purpose of this invention is to provide a detection method that can guarantee detection performance that can withstand practical use against various ground fault phenomena that occur in power distribution lines.

(課題゛を解決するための手段) 本発明は、上記の目的を達成するために、地絡事故検出
センサの電流検出部は、CTからの入力を直接余波整流
し積分回路で平滑を行った後、電流の大きさと時間検定
を行うようにしたものである。
(Means for Solving the Problem) In order to achieve the above object, the present invention has a current detection section of a ground fault detection sensor that directly rectifies the input from the CT and smooths it using an integrating circuit. After that, the magnitude of the current and the time are verified.

(作 用) したがって本発明によれば、極めて簡単な回路で電流成
分の平均値を求めることが可能となり、コストアップす
ることなく種々の地絡電流にも適応できる検出方式が得
られる。
(Function) Therefore, according to the present invention, it is possible to obtain the average value of current components with an extremely simple circuit, and a detection method that can be applied to various ground fault currents without increasing costs can be obtained.

(実施例) 第1図は本発明の一実施例における地絡事故検出センサ
の概略を示しており、第1図(A)はブロックを、また
第1図(B)は各部の出力波形の特性を示すものである
。第1図において、lOは接地線、11はCT、12は
CTの出力電流波形を整流する全波整流部、13は余波
整流した波形を積分する平滑部、14は増幅部、15は
しきい値と比較する比較部、16はクロック、17はカ
ウンタ、18はリレ一部、18−1はリレ一部の接点、
19は連絡線、20は直流電源である。
(Example) Fig. 1 shows an outline of a ground fault detection sensor according to an embodiment of the present invention. Fig. 1 (A) shows the block, and Fig. 1 (B) shows the output waveform of each part. It shows the characteristics. In FIG. 1, lO is a grounding line, 11 is a CT, 12 is a full-wave rectifier that rectifies the output current waveform of the CT, 13 is a smoothing unit that integrates the rectified waveform, 14 is an amplifier, and 15 is a threshold. Comparison unit for comparing with the value, 16 is a clock, 17 is a counter, 18 is a relay part, 18-1 is a contact point of the relay part,
19 is a connection line, and 20 is a DC power supply.

上記実施例の構成は、電流のピーク値ではなく、平均値
を求める。また、回路構成が簡単で容易に実現できる考
えに基づいたものである。
The configuration of the above embodiment calculates the average value of the current instead of the peak value. Furthermore, it is based on the idea that the circuit configuration is simple and can be easily realized.

CTIIより入力された電流は全波整流部(ダイオード
ブリッジ)12で整流され、更に平滑部(R。
The current input from the CTII is rectified by a full-wave rectifier (diode bridge) 12, and is further passed through a smoothing part (R.

C)13で平滑化される。はぼ直流化された平滑部13
の出力は比較部15でしきい値との判定が行われ、比較
部15とクロック16のANDにより一定時間以上しき
い値を超えた状態が続けば、検出動作を行う。全波整流
部12はダイオードの損失電圧(順方向電圧、逆耐電圧
)を伴うが、CTの内部インピーダンスが大きい(CT
がほぼ定電流特性である)ことを逆に利用し、直接電流
を平滑化しても2次電流ロスは実用上問題ない。
C) Smoothed by 13. Smooth section 13 converted to direct current
The comparison unit 15 determines that the output is a threshold value, and if the output continues to exceed the threshold value for a certain period of time by ANDing the comparison unit 15 and the clock 16, a detection operation is performed. The full-wave rectifier 12 is accompanied by diode loss voltage (forward voltage, reverse withstand voltage), but the internal impedance of CT is large (CT
The secondary current loss does not pose a practical problem even if the current is directly smoothed by taking advantage of the fact that the current is almost a constant current characteristic.

第2図は、第1[!Iに示したブロックのうち、接地線
10. CTII、全波整流部12.平滑部13からな
る電流検出部と等価な回路を示したものであり、CTと
整流ダイオードD3〜D4、平滑用コンデンサCLとC
T負担抵抗RLで構成される。
Figure 2 shows the first [! Among the blocks shown in I, the grounding wire 10. CTII, full wave rectifier 12. This figure shows a circuit equivalent to the current detection section consisting of the smoothing section 13, consisting of CT, rectifier diodes D3 and D4, and smoothing capacitors CL and C.
It is composed of a T-bearing resistor RL.

第2図において、今、CT1次側に正弦波交流電流工、
が流れた時、負担抵抗RLに現われる電圧vLの電気的
意味を考える。第3図(A)に示す元の波形を余波整流
した第3図(B)に示す全波整流波形は、フーリエ展開
によると以下のように電流成分の重ね合わせと考えるこ
とができる。
In Figure 2, there is now a sine wave alternating current circuit on the primary side of the CT.
Consider the electrical meaning of the voltage vL that appears across the burden resistor RL when . According to Fourier expansion, the full-wave rectified waveform shown in FIG. 3(B) obtained by rectifying the original waveform shown in FIG. 3(A) can be considered as a superposition of current components as shown below.

元の波形・・・・・・1(t)=JΣ11・sinωt
  ・・・・・・(1)(2)式を計算すれば、 i (t)=0.90 I 、−0,60I 、Xco
s 2ωt−0,12I、Xcos4ω℃(DC)  
  (2倍調波)    (4倍調波)・・・・・・(
3) となり、(3)式から、全波整流電流(実効値)の90
%がDC分、60%が120Hz成分(60七時)とい
うことがわかる。第4図はこれを図式化したものである
Original waveform...1(t)=JΣ11・sinωt
......If you calculate equations (1) and (2), i (t) = 0.90 I , -0,60I , Xco
s2ωt-0,12I, Xcos4ω℃(DC)
(2nd harmonic) (4th harmonic)・・・・・・(
3) From equation (3), the full-wave rectified current (effective value) is 90
It can be seen that % is the DC component and 60% is the 120Hz component (607 o'clock). Figure 4 shows this diagrammatically.

次に、平滑後の端子電圧vLであるが、これは、上記の
各成分電流I n(n =0,2,4・・・)が流れた
時に現われる端子電圧V、(n =0,2.4)の和と
考えればよい。第5図に示す様に各成分電流は、ICD
v工□に分流するので、端子電圧vLをほぼ直流成分の
みにするには、平滑部のインピーダンスZ 11Z、・
・・・・・がほぼO(V、、V、=O)となるようRL
 vC4を決定すればよい。(但し、C4をあまり大き
くすると時定数が大きくなるため電流立上がりが遅くな
る)このようにして、全波整流された電流の交流会を取
り除くことで(3)式により、V  +V  ・・・ とすると、端子電圧のリップル分(、■、)は約12%
である。
Next is the terminal voltage vL after smoothing, which is the terminal voltage V, (n = 0, 2) that appears when each component current I n (n = 0, 2, 4...) flows You can think of it as the sum of .4). As shown in Figure 5, each component current is
Since the current is shunted to the V terminal, in order to make the terminal voltage vL almost only a DC component, the impedance of the smoothing part Z 11Z, ・
RL so that ... is almost O(V,,V,=O)
What is necessary is to determine vC4. (However, if C4 is made too large, the time constant becomes large and the current rises slowly.) In this way, by removing the alternating current of the full-wave rectified current, V + V... Then, the ripple component of the terminal voltage (,■,) is approximately 12%
It is.

第1表は、第2図において、1次電流に正弦波定電流電
源を用いた場合の2次電流■1′と平滑電流I、のそれ
ぞれ理論値と実測値を示したものである。
Table 1 shows the theoretical and actual values of the secondary current 1' and the smoothed current I, respectively, when a sine wave constant current power source is used for the primary current in FIG.

として入力電流の平均値がV、によって求められる。The average value of the input current is determined by V.

今、第2図において、RL=lkΩ、CL=10μF本
1.  I、(計算値)=Ig’(実測値)Xo、9第
1表から、1次電流I、=50mAの時は2次電流工、
′の理論値と実測値には開きがあるが、地絡事故検出セ
ンサの1次電流検出下限を100mAとしているので実
用上問題無い。また、平滑電流■8は2次電流の実測値
■1′からの計算値と実測値はほぼ合致していることが
わかる。
Now, in FIG. 2, RL=lkΩ, CL=10μF. I, (calculated value) = Ig' (actual value) Xo, 9 From Table 1, when the primary current I, = 50 mA, the secondary current
Although there is a difference between the theoretical value and the actual measured value of ', there is no problem in practical use because the lower limit of primary current detection of the ground fault detection sensor is set to 100 mA. Furthermore, it can be seen that the calculated value of the smoothed current (2) 8 from the actually measured value (1') of the secondary current almost matches the actual measured value.

第6図は、第2図の回路における地絡電流波形と平滑後
の出力電圧を示したものである。第6図において、aは
実際の配電線による人工地絡試験で得られた地絡電流波
形をシミュレーションで再現したもの(電流値の大きさ
は任意)、bは第2図の回路にて測定した平滑後の出力
電圧である。また、第6図(A)、(B)、(C)はそ
れぞれ地絡電流波形の異なった場合を示しており、第6
図(C)の様なパルス状態電流波形でも、本実施例の電
流検出部により電流パワーを時間的に平滑化しているこ
とがわかる。
FIG. 6 shows the ground fault current waveform and the smoothed output voltage in the circuit of FIG. 2. In Figure 6, a is a simulated reproduction of the ground fault current waveform obtained in an artificial ground fault test using an actual distribution line (the current value is arbitrary), and b is measured using the circuit in Figure 2. This is the output voltage after smoothing. In addition, Fig. 6 (A), (B), and (C) respectively show different cases of ground fault current waveforms.
It can be seen that even in the case of a pulsed current waveform as shown in Figure (C), the current power is temporally smoothed by the current detection section of this embodiment.

(発明の効果) 本発明は、上記実施例から明らかなように、多種多様な
発生要因を有する配電線の地絡事故において、高周波雑
音成分を多く含む電流や、放電地絡の様なインパルス状
の断続的な電流に対しても電流成分の平均値を求めるこ
とにより正しく地絡検出が可能となり、安価で高性能な
地絡検出方式が得られる。また、今まで検出し得なかっ
た地絡の前兆現象等もとらえる可能性もあり、事故予知
(Effects of the Invention) As is clear from the above embodiments, the present invention is applicable to ground faults in distribution lines that have a wide variety of causes, such as currents containing many high-frequency noise components and impulse-like electric currents such as discharge ground faults. By calculating the average value of the current components even for intermittent currents, ground faults can be detected correctly, and an inexpensive and high-performance ground fault detection method can be obtained. In addition, there is a possibility of detecting phenomena such as precursors of ground faults that could not be detected until now, making it possible to predict accidents.

未然防止に対する効果を有する。It has the effect of prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における地絡事故検出センサ
のブロック図および各部のaカ波形の特性を示す図、第
2図は第1図の実施例における電流検出部と等価な回路
図、第3図、第4図、第5図および第6図は、第2図に
示した電流検出部の説明図、第7図は従来の地絡事故検
出センサの電流検出部を示すブロック図および各部の応
答波形を示す図である。 10、30・・・接地線、11.31・・・電流変流器
(CT)、12・・・全波整流部、13・・・平滑部、
14.32・・・増幅部、15.33・・・比較部、1
6・・・クロック、17.35・・・カウンタ、18・
・・リレ一部、19・・・連絡線、20・・・DC電源
、34・・・ノイズ除去回路。
Fig. 1 is a block diagram of a ground fault detection sensor according to an embodiment of the present invention and a diagram showing the characteristics of the a waveform of each part, and Fig. 2 is a circuit diagram equivalent to the current detection section in the embodiment of Fig. 1. , FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are explanatory diagrams of the current detection section shown in FIG. 2, and FIG. 7 is a block diagram showing the current detection section of a conventional ground fault detection sensor. and FIG. 6 is a diagram showing response waveforms of each part. 10, 30... Grounding wire, 11.31... Current transformer (CT), 12... Full wave rectifier section, 13... Smoothing section,
14.32...Amplification section, 15.33...Comparison section, 1
6...Clock, 17.35...Counter, 18.
...Relay part, 19...Connection line, 20...DC power supply, 34...Noise removal circuit.

Claims (1)

【特許請求の範囲】[Claims] 高圧配電線路の電柱単位に設置された地絡事故検出用電
流センサについて、接地線に流れる地絡電流を電流変流
器(CT)にて取り込み、発生電流の大きさと継続時間
により地絡発生を判定する機能において、前記CTから
の入力を直接全波整流し積分回路で平滑化を行った後、
電流の大きさと時間検定を行うことで、アーク放電等の
インパルス状で断続的に発生する地絡電流を含み、多様
な地絡事故時の電流検出を可能とした地絡検出用電流セ
ンサの検出方式。
Regarding current sensors for detecting ground faults installed on each pole of high-voltage distribution lines, the ground fault current flowing through the grounding wire is captured by a current transformer (CT), and the occurrence of a ground fault is detected based on the magnitude and duration of the generated current. In the determination function, after directly full-wave rectifying the input from the CT and smoothing it with an integrating circuit,
Detection of a current sensor for ground fault detection that makes it possible to detect current during various ground fault accidents, including ground fault currents that occur intermittently in the form of impulses such as arc discharge, by verifying the magnitude and time of the current. method.
JP2225412A 1990-08-29 1990-08-29 Detecting method for earth detecting current sensor Pending JPH04109178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225412A JPH04109178A (en) 1990-08-29 1990-08-29 Detecting method for earth detecting current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225412A JPH04109178A (en) 1990-08-29 1990-08-29 Detecting method for earth detecting current sensor

Publications (1)

Publication Number Publication Date
JPH04109178A true JPH04109178A (en) 1992-04-10

Family

ID=16828970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225412A Pending JPH04109178A (en) 1990-08-29 1990-08-29 Detecting method for earth detecting current sensor

Country Status (1)

Country Link
JP (1) JPH04109178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093897A (en) * 2008-10-06 2010-04-22 Tamagawa Seiki Co Ltd Method and apparatus for detecting open phase in power supply
WO2014155957A1 (en) * 2013-03-29 2014-10-02 パナソニック株式会社 Electrical leakage detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093897A (en) * 2008-10-06 2010-04-22 Tamagawa Seiki Co Ltd Method and apparatus for detecting open phase in power supply
WO2014155957A1 (en) * 2013-03-29 2014-10-02 パナソニック株式会社 Electrical leakage detector
JP2014199718A (en) * 2013-03-29 2014-10-23 パナソニック株式会社 Electric leakage detector

Similar Documents

Publication Publication Date Title
KR20040050871A (en) Arc detection apparatus and method
CN107957514B (en) Zero-crossing detection device and method and electric appliance
US20230226633A1 (en) Single phase input detection and power source protection
JP2005140532A (en) Device and method for calculating phase angle, device and method for detecting leakage current
JPH02133099A (en) Trouble detectgor for ac generator
JPS5826523A (en) Ground detector for ac generator
CN107942126B (en) Current detection circuit, method, readable storage medium and power electronic device
JPH04109178A (en) Detecting method for earth detecting current sensor
CN205374613U (en) Unbalanced three phase detection circuitry
JP2015521765A5 (en)
CN110161395A (en) The state of insulation on-line monitoring method and its monitoring system of inverter AC motor
JPS60232422A (en) Flame electric current detecting apparatus
JP2576003Y2 (en) Leakage detection device in three-phase three-wire circuit
JPH0252829B2 (en)
CN210273864U (en) Direct current test voltage rectifying device
JPH0412640Y2 (en)
CN117220246A (en) Tripping control system and method for leakage protection
JPH0549952B2 (en)
JP2733450B2 (en) Power failure detection device
JPS6319323Y2 (en)
JPH03158768A (en) Detecting circuit for voltage variation
JP3400141B2 (en) Voltage drop detection trigger generator
JP2575540Y2 (en) Leakage detection device in single-phase two-wire circuit
JPH0435020Y2 (en)
JPH03850Y2 (en)