JPH0410874A - Movement vector detecting device - Google Patents

Movement vector detecting device

Info

Publication number
JPH0410874A
JPH0410874A JP2113955A JP11395590A JPH0410874A JP H0410874 A JPH0410874 A JP H0410874A JP 2113955 A JP2113955 A JP 2113955A JP 11395590 A JP11395590 A JP 11395590A JP H0410874 A JPH0410874 A JP H0410874A
Authority
JP
Japan
Prior art keywords
output
subtracter
classification
averaging
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2113955A
Other languages
Japanese (ja)
Inventor
Toshiaki Kondo
俊明 近藤
Masayoshi Sekine
正慶 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2113955A priority Critical patent/JPH0410874A/en
Priority to EP91303792A priority patent/EP0454481B1/en
Priority to DE69121627T priority patent/DE69121627T2/en
Publication of JPH0410874A publication Critical patent/JPH0410874A/en
Priority to US07/967,569 priority patent/US5296925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Studio Circuits (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Color Television Systems (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

PURPOSE:To detect a movement vector at high speed with high accuracy by averaging the movement vectors of repective blocks by a first operating means under a weight corresponding to the classification of a classifying means. CONSTITUTION:A register 12 and a subtracter 14 calculate a density difference between time successive two field screens, that is, a time gradient (d) from a picture signal (g) inputted to an input terminal 10, a register 16 and a subtracter 18 calculate a space grandient gx' of a direction (x) within the pre-field screen and a register 20 and a subtracter 22 calculate a space gradient gy' of a direction (y) within the pre-field screen. Thus, the evaluation of an estimated result having an error owing to an approximate estimation expression can be made low by classifying respective blocks with considering an inclined directional space gradient component quantity by a second operating means and a classifying means and executing averaging with a weight corresponding to classification 62 by an averaging means 64. Thus, a movement vector can be found with high reliability as a whole.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は動きベクトル検出装置に関し、より具体的には
、TVカメラ、電子カメラ、ビデオ・カメラ及び工業用
画像計測機器などの撮像光学装置、特に防振や追尾など
の機能を有する撮像光学装置における動きベクトル検出
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a motion vector detection device, and more specifically, to an imaging optical device such as a TV camera, an electronic camera, a video camera, and an industrial image measuring device; In particular, the present invention relates to a motion vector detection device in an imaging optical device having functions such as image stabilization and tracking.

[従来の技術] 画像信号処理による動きベクトル検出法としては、米国
特許第3890462号明細書、昭和60年特許出願公
告第46878号やJ、O,LLmb and J、A
、MurphyMeasuring the 5pee
d of Moving 0bjects from 
TeLevision Signals”、IEEE 
Trans、 Com、、Com−23,4pp474
−478(April 1975)等に記載される時空
間勾配法がある。この時空間勾配法では、X方向の画像
変位量をα、X方向の画像変位量をβとすると、α=Σ
@ d−sign<gy’)/Σwigx’β=ΣBd
−sign(gy’)/Σs l gy’ 1で与えら
れる。但し、dは時間的に連続する画像間の同じ位置に
おける濃度(レベル)差、即ち時間勾配を示し、g−’
9gy°はそれぞれ画像をgで表わしたときのX方向、
X方向の空間勾配を示す。
[Prior Art] As a motion vector detection method using image signal processing, there are disclosed US Pat.
,MurphyMeasuring the 5pee
d of Moving 0 objects from
TeLevision Signals”, IEEE
Trans, Com,, Com-23,4pp474
-478 (April 1975), etc., is a spatiotemporal gradient method. In this spatio-temporal gradient method, if the amount of image displacement in the X direction is α and the amount of image displacement in the X direction is β, then α=Σ
@d-sign<gy')/Σwigx'β=ΣBd
−sign(gy')/Σs l gy'1. However, d indicates the density (level) difference at the same position between temporally consecutive images, that is, the temporal gradient, and g-'
9gy° is the X direction when the image is expressed in g,
The spatial gradient in the X direction is shown.

また、Σ、は、複数個の画素からなる単位演算領域であ
るブロック毎の総和演算を意味し、sign0はg8°
* gy’の符号を出力する関数である。
In addition, Σ means a summation calculation for each block, which is a unit calculation area consisting of a plurality of pixels, and sign0 is g8°
* This is a function that outputs the sign of gy'.

[発明が解決しようとする課題] しかし、上記従来例では、X方向の空間勾配と濃度差か
らX方向の動き量を求め、X方向の空間勾配と濃度差か
らX方向の動き量を求めており、x、  y相互の方向
の空間勾配の影響を考慮していないので、画像の二次元
的な動きに対応できないという欠点がある。
[Problems to be Solved by the Invention] However, in the above conventional example, the amount of movement in the X direction is determined from the spatial gradient in the X direction and the density difference, and the amount of movement in the X direction is determined from the spatial gradient in the X direction and the density difference. However, since it does not take into account the influence of spatial gradients in the x and y directions, it has the disadvantage that it cannot cope with two-dimensional movement of the image.

第2図を参照して、より具体的に説明する。第2図は、
斜め(右下)方向の勾配を持つ画像を16個のブロック
に分割し、第2図上部に示した右上方向の動きを与えた
場合の、従来例による検出結果をブロック毎の動きベク
トルで表示したものである。第2図の円弧は等濃度線で
ある。
This will be explained in more detail with reference to FIG. Figure 2 shows
When an image with a gradient in the diagonal (lower right) direction is divided into 16 blocks and motion is applied in the upper right direction as shown in the upper part of Figure 2, the detection results using the conventional example are displayed as motion vectors for each block. This is what I did. The arcs in FIG. 2 are isodensity lines.

ブロック#6.#11.#16では、ブロック内に斜め
方向の空間勾配成分が強い。ところが、時空間勾配法で
は、「ブロック内には斜め方向の大きな空間勾配が無い
」ことを大前提としており、これに反するので、x、7
両方向ともに正しい推定が得られていない。
Block #6. #11. In #16, there is a strong spatial gradient component in the diagonal direction within the block. However, the spatio-temporal gradient method assumes that there is no large spatial gradient in the diagonal direction within the block, which is contrary to the assumption that x, 7
Correct estimates are not obtained in both directions.

また、ブロック#2.#3.#4では、X方向の動きは
正しく推定しているものの、X方向の動きは正しく推定
していない。ブロック#5.#9゜#13では、ブロッ
ク#2.#3.#4と逆に、X方向の動きは正しく推定
しているものの、X方向の動きは正しく推定していない
。これは、時空間勾配法では、「空間勾配が無い方向の
動きは推定できない」からである。また、ブロック#7
゜#8.#10.#14では、時空間勾配法の同様の原
理により、空間勾配の小さい方向で大きなエラーが発生
している。
Also, block #2. #3. In #4, although the motion in the X direction is estimated correctly, the motion in the X direction is not estimated correctly. Block #5. In #9° #13, block #2. #3. Contrary to #4, although the motion in the X direction is estimated correctly, the motion in the X direction is not. This is because the spatio-temporal gradient method "cannot estimate movement in a direction where there is no spatial gradient." Also, block #7
゜#8. #10. In #14, a large error occurs in a direction with a small spatial gradient due to the same principle of the spatiotemporal gradient method.

そこで本発明は、これらの問題点を解決し、実時間処理
に対応できる高速で高精度な動きベクトル検出装置を提
示することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems and provide a high-speed, high-precision motion vector detection device that can handle real-time processing.

[課題を解決するための手段] 本発明に係る動きベクトル検出装置は、画面間の濃度差
及び画面内の空間勾配から画像の動き量を求める動きベ
クトル検出装置であって、斜め方向空間勾配成分の影響
を近似した推定式に従いブロック毎の動きベクトルを演
算する第1の演算手段と、入力画像信号の斜め方向空間
勾配成分量を表わす信号を求める第2の演算手段と、第
2の演算手段の演算結果に応じたパターンに各ブロック
を分類する分類手段と、当該分類手段の分類に応じた重
みもとで当該第1の演算手段による各ブロックの動きベ
クトルを平均化する平均化手段とからなることを特徴と
する。
[Means for Solving the Problems] A motion vector detection device according to the present invention is a motion vector detection device that calculates the amount of movement of an image from the density difference between screens and the spatial gradient within the screen, and which calculates the amount of movement of an image from the density difference between screens and the spatial gradient within the screen. a first calculation means for calculating a motion vector for each block according to an estimation formula that approximates the influence of the input image signal; a second calculation means for calculating a signal representing the amount of the diagonal spatial gradient component of the input image signal; a classification means for classifying each block into a pattern according to the calculation result of the first calculation means; and an averaging means for averaging the motion vectors of each block by the first calculation means under a weight according to the classification of the classification means. It is characterized by becoming.

[作用コ 上記第1の演算手段により、基本的には近似推定式によ
り動きベクトルを求めているので、高速である。また、
上記第2の演算手段及び分類手段により斜め方向空間勾
配成分量を考慮して各ブロックを分類し、平均化手段か
その分類に応じた重みで平均化を行なうので、近似推定
式に起因する誤差を有する推定結果の評価を低くでき、
従って、全体として、高い信頼性で動きベクトルを求め
ることができる。
[Operations] The first calculation means basically calculates the motion vector using an approximate estimation formula, so it is fast. Also,
Since each block is classified by the above-mentioned second calculation means and classification means in consideration of the amount of diagonal spatial gradient components, and the averaging means performs averaging using weights according to the classification, errors caused by the approximate estimation formula It is possible to lower the evaluation of estimation results with
Therefore, overall, motion vectors can be determined with high reliability.

[実施例コ 以下、図面を参照して本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、テレビジョン・カメラやビデオ・カメラなど
の画面揺れ防止装置に適用した本発明の一実施例の構成
ブロック図を示す。10は画像信号の入力端子、12は
1フイールド(又はフレーム)期間、入力信号を記憶(
即ち、時間遅延)するレジスタ、14は入力端子10の
画像信号からレジスタ12の出力を減算する減算器、1
6は画像濃度分布のX方向空間勾配を演算するのに必要
な数画素分の走査時間だけ、入力信号を記憶(即ち、時
間遅延)するレジスタ、18は入力端子10の画像信号
からレジスタ16の出力を減算する減算器、20はX方
向の空間勾配を求めるために、所定走査期間だけ入力端
子10の画像信号を記憶(即ち、時間遅延)するレジス
タ、22は入力端子10の画像信号からレジスタ20の
出力を減算する減算器である。減算器14の出力は濃度
勾配dであり、減算器18の出力はX方向の空間勾配g
、°、減算器22の出力はX方向の空間勾配gy’であ
る。
FIG. 1 shows a block diagram of an embodiment of the present invention applied to a screen shake prevention device for a television camera, a video camera, or the like. 10 is an input terminal for image signals; 12 is a terminal for storing input signals for one field (or frame) period;
14 is a subtracter for subtracting the output of the register 12 from the image signal at the input terminal 10;
Reference numeral 6 indicates a register for storing (i.e., time delay) the input signal for the scanning time of several pixels necessary to calculate the X-direction spatial gradient of the image density distribution. A subtractor 20 subtracts the output, a register 20 stores the image signal of the input terminal 10 for a predetermined scanning period (i.e., time delay) in order to obtain the spatial gradient in the X direction, and a register 22 stores the image signal of the input terminal 10. This is a subtracter that subtracts the output of 20. The output of the subtractor 14 is the concentration gradient d, and the output of the subtractor 18 is the spatial gradient g in the X direction.
,°, the output of the subtractor 22 is the spatial gradient gy' in the X direction.

24.26はそれぞれ減算器1s;  22の出力の符
号(正、負又はゼロ)を示す信号を出力する符号出力回
路、28.30はそれぞれ、符号出力回路24.26の
出力に減算器14の出力(濃度勾配d)を乗算する乗算
器、32.34はそれぞれ、減算器18.22の出力の
絶対値を出力する絶対値回路、36は減算器18の出力
gx′に減算器22の出力gy°を乗算する乗算器、3
8,4042.44.46,48.50は指定ブロック
内で、それぞれ乗算器28、絶対値回路32、乗算器3
0、絶対値回路34、乗算器36、減算器18及び減算
器22の出力データを累積加算する総和回路、52は総
和回路38の出力を総和回路40の出力で除算する除算
器、54は総和回路42の出力を総和回路44の出力で
除算する除算器、56は総和回路48の出力を総和回路
50の出力で除算する除算器である。除算器52の出力
はX方向の動き量を示し、除算器54の出力はX方向の
動き量を示す。58は除算器56の出力の絶対値を出力
する絶対値回路である。
24 and 26 are each a subtracter 1s; a sign output circuit that outputs a signal indicating the sign (positive, negative, or zero) of the output of 22; 28 and 30 are each a subtracter 1s that outputs a signal indicating the sign (positive, negative, or zero) of the output of the sign output circuit 24 and 26; A multiplier that multiplies the output (concentration gradient d), 32 and 34 are absolute value circuits that output the absolute values of the outputs of the subtracters 18 and 22, respectively, and 36 is the output gx' of the subtracter 18 and the output of the subtracter 22. Multiplier that multiplies gy°, 3
8,4042.44.46 and 48.50 are the multiplier 28, absolute value circuit 32, and multiplier 3 within the designated block, respectively.
0, a summation circuit that cumulatively adds the output data of the absolute value circuit 34, the multiplier 36, the subtracter 18, and the subtracter 22; 52, a divider that divides the output of the summation circuit 38 by the output of the summation circuit 40; 54, a summation circuit; A divider 56 divides the output of the circuit 42 by the output of the summation circuit 44, and a divider 56 divides the output of the summation circuit 48 by the output of the summation circuit 50. The output of the divider 52 indicates the amount of motion in the X direction, and the output of the divider 54 indicates the amount of motion in the X direction. 58 is an absolute value circuit that outputs the absolute value of the output of the divider 56.

60は除算器52.54から出力される動き量、並びに
、総和回路46及び絶対値回路58から出力される空間
勾配情報を記憶するメモリ、62は、詳細は後述するが
、メモリ60に記憶される当該空間勾配情報に従い、所
定の複数の空間勾配パターンに各ブロックを分類するパ
ターン分類回路、64は分類回路62により分類された
ブロックに最適な重みを付けて平均化する平均化回路、
66は検出結果の動きベクトルを出力する出力端子であ
る。
A memory 60 stores the amount of motion output from the dividers 52 and 54 and spatial gradient information output from the summation circuit 46 and the absolute value circuit 58; a pattern classification circuit that classifies each block into a plurality of predetermined spatial gradient patterns according to the spatial gradient information; 64 is an averaging circuit that applies optimal weights to the blocks classified by the classification circuit 62 and averages them;
66 is an output terminal that outputs the motion vector of the detection result.

次に、第1図の動作を説明する。レジスタ12及び減算
器14は、入力端子10に入力した画像信号gから、時
間的に連続する2つのフィールド(又はフレーム)画面
間での濃度差、即ち時間勾配dを算出し、レジスタ16
及び減算器18は、前フィールド(又はフレーム)画面
内のX方向の空間勾配g8°を算出し、レジスタ20及
び減算器22は、前フィールド(又はフレーム)画面内
のX方向の空間勾配gy’を算出する。
Next, the operation shown in FIG. 1 will be explained. The register 12 and the subtracter 14 calculate the density difference between two temporally consecutive field (or frame) screens, that is, the temporal gradient d, from the image signal g input to the input terminal 10.
and the subtractor 18 calculates the spatial gradient g8° in the X direction in the previous field (or frame) screen, and the register 20 and the subtractor 22 calculate the spatial gradient gy' in the X direction in the previous field (or frame) screen. Calculate.

符号出力回路24は減算器18の出力g、′が正のとき
には、+1、セロのときには01負のときには−1を出
力し、絶対値回路30は空間勾配g0゛の絶対値を出力
し、乗算器28は減算器14の出力dに符号出力回路2
4の出力を乗算する。同様に、符号出力回路26は減算
器22の出力g。
The sign output circuit 24 outputs +1 when the output g,' of the subtracter 18 is positive, 0 when it is zero, and -1 when it is negative, and the absolute value circuit 30 outputs the absolute value of the spatial gradient g0'', and multiplies it. The subtracter 28 outputs the sign output circuit 2 to the output d of the subtracter 14.
Multiply the output of 4. Similarly, the sign output circuit 26 receives the output g of the subtracter 22.

の符号を示す信号を出力し、絶対値回路34は空間勾配
gy’の絶対値を出力し、乗算器30は減算器14の出
力dに符号出力回路26の出力を乗算する。そして、総
和回路38,40,42.44はそれぞれ、所定数の画
素からなるブロック内で、乗算器28の出力、絶対値回
路32の出力、乗算器30の出力、及び絶対値回路34
の出力の総和を求める。即ち、総和回路38はΣ、 d
−sign(go’)を、総和回路40はΣ、1訃°1
を、総和回路42はΣ、 d−sign(gy’)を、
総和回路44はΣa l gyを計算する。除算器52
は総和回路38の出力を総和回Il!f!I40の出力
で除算し、除算器54は総和回路42の出力を総和回路
44の出力で除算する。除算器52.54の出力はそれ
ぞれ、上式のα、βに相当する。除算器52.54の出
力はメモリ60に一時格納される。
The absolute value circuit 34 outputs the absolute value of the spatial gradient gy', and the multiplier 30 multiplies the output d of the subtracter 14 by the output of the sign output circuit 26. The summation circuits 38, 40, 42, and 44 each output the output of the multiplier 28, the output of the absolute value circuit 32, the output of the multiplier 30, and the absolute value circuit 34 within a block consisting of a predetermined number of pixels.
Find the sum of the outputs. That is, the summation circuit 38 has Σ, d
-sign(go'), the summation circuit 40 is Σ, 1 °1
, the summation circuit 42 calculates Σ, d-sign(gy'),
A summation circuit 44 calculates Σa l gy. Divider 52
is the output of the summation circuit 38 as the summation circuit Il! f! The divider 54 divides the output of the summation circuit 42 by the output of the summation circuit 44. The outputs of the dividers 52 and 54 correspond to α and β in the above equation, respectively. The outputs of dividers 52 and 54 are temporarily stored in memory 60.

また、乗算器36は減算器18の出力g8°に減算器2
2の出力gy’を乗算し、総和回路46は所定ブロック
内で、乗算器36の出力の総和を計算する。総和回路4
8.50はそれぞれ、所定ブロック内で減算器18.2
2の出力g、’、 g、’の総和を計算し、除算器56
は総和回路48の出力を総和回路50の出力で除算し、
絶対値回路58は除算器56の出力の絶対値を出力する
。即ち、絶対値回路58は、1ΣBg−’/Σigy’
lを出力する。
Furthermore, the multiplier 36 outputs the subtracter 2 to the output g8° of the subtracter 18.
The summation circuit 46 calculates the sum of the outputs of the multipliers 36 within a predetermined block. Summation circuit 4
8.50 each subtractor 18.2 within a given block.
The sum of the outputs g,', g,' of 2 is calculated, and the divider 56
divides the output of the summation circuit 48 by the output of the summation circuit 50,
Absolute value circuit 58 outputs the absolute value of the output of divider 56. That is, the absolute value circuit 58 calculates 1ΣBg-'/Σigy'
Output l.

総和回路46の出力Σl1g。°・gy’と、絶対値回
路58の出力はメモリ60に供給される。
Output Σl1g of summation circuit 46. °·gy' and the output of the absolute value circuit 58 are supplied to a memory 60.

パターン分類回路62はメモリ60に記憶される1Σa
g、’/Σagy’lとΣ9g8゛・gy′の情報から
、各ブロックを複数の単純なパターンに分類する。
The pattern classification circuit 62 stores 1Σa in the memory 60.
From the information of g,'/Σagy'l and Σ9g8'·gy', each block is classified into a plurality of simple patterns.

その分類動作のフローチャートを第3図に図示した。即
ち、ΣBgx°・g、“か所定の閾値Thより大きい場
合には(Sl)、それは斜め方向の空間勾配成分が大き
いと判断して、このブロックの出力結果を除外する(S
2)。単純に除外せずに、Σ6g、°・gy′に応じた
重ろを付けるようにしてもよい。次に、1Σsg−’/
Σmgy’lから、IΣおg8°1がIΣagy’lよ
り充分に大きい場合(S3)、X方向の推定結果αをよ
り重く、X方向の推定結果βをより軽く評価しくS4)
、1Σmgy°1が1Σmgy’lと同程度の場合には
x、y両方の推定結果α、βを共に信頼性か高いとして
重く評価しくS5)、lΣBg−’ lが1ΣBgyよ
り充分に小さい場合には、X方向の推定結果βをより重
く、X方向の推定結果αをより軽く評価する(S6)。
A flowchart of the classification operation is shown in FIG. That is, if ΣBgx°·g is larger than a predetermined threshold Th (Sl), it is determined that the spatial gradient component in the diagonal direction is large, and the output result of this block is excluded (S
2). Instead of simply excluding them, weights may be given according to Σ6g and °·gy'. Next, 1Σsg−'/
From Σmgy'l, if IΣog8°1 is sufficiently larger than IΣagy'l (S3), evaluate the estimation result α in the X direction more heavily and the estimation result β in the X direction lighter S4)
, 1Σmgy°1 is comparable to 1Σmgy'l, the estimation results α and β of both x and y are highly evaluated as reliable or highS5), and when lΣBg-'l is sufficiently smaller than 1ΣBgy' evaluates the estimation result β in the X direction more heavily and the estimation result α in the X direction less heavily (S6).

このように各プロ・レフを分類し、平均化回路64はそ
の一分類に従った重みを付けて各ブロックの推定結果を
平均化し、出力端子66から出力する。
In this way, each pro-ref is classified, and the averaging circuit 64 averages the estimation results of each block by weighting them according to the classification, and outputs the result from the output terminal 66.

[発明の効果] 以上の説明から容易に理解できるように、本発明によれ
ば、空間勾配の無い方向の動きに対する検出エラーを抑
制でき、また、ブロック内に大きな斜め方向の空間勾配
かあることによる検出誤差も抑制できる。従って、動き
ベクトルを高速且つ高精度に検出できる。
[Effects of the Invention] As can be easily understood from the above explanation, according to the present invention, detection errors for movements in directions with no spatial gradient can be suppressed, and detection errors can be suppressed even when there is a large spatial gradient in a diagonal direction within a block. Detection errors caused by this can also be suppressed. Therefore, motion vectors can be detected at high speed and with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成ブロック図、第2図は
従来例ではシミュレーション結果、第3図は本実施例に
よるパターン分類のフローチャートである。 10:入力端子 12,16.20・レジスタ14.1
8,22:減算器 24,26:符号出力回路 28,
30,36:乗算器 32,3458:絶対値回路 3
8,40,42,44,46.48,50:総和回路 
52,54,56:除算器 60:メモリ 62:パタ
ーン分類回路64:平均化回路 66:出力端子 第2図 第1図 第3図
FIG. 1 is a configuration block diagram of an embodiment of the present invention, FIG. 2 is a simulation result of a conventional example, and FIG. 3 is a flowchart of pattern classification according to this embodiment. 10: Input terminal 12, 16.20・Register 14.1
8, 22: Subtractor 24, 26: Sign output circuit 28,
30, 36: Multiplier 32, 3458: Absolute value circuit 3
8, 40, 42, 44, 46. 48, 50: Summation circuit
52, 54, 56: Divider 60: Memory 62: Pattern classification circuit 64: Averaging circuit 66: Output terminal Figure 2 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 画面間の濃度差及び画面内の空間勾配から画像の動き量
を求める動きベクトル検出装置であって、斜め方向空間
勾配成分の影響を近似した推定式に従いブロック毎の動
きベクトルを演算する第1の演算手段と、入力画像信号
の斜め方向空間勾配成分量を表わす信号を求める第2の
演算手段と、第2の演算手段の演算結果に応じたパター
ンに各ブロックを分類する分類手段と、当該分類手段の
分類に応じた重みもとで当該第1の演算手段による各ブ
ロックの動きベクトルを平均化する平均化手段とからな
ることを特徴とする動きベクトル検出装置。
A motion vector detection device that calculates the amount of image movement from the density difference between screens and the spatial gradient within the screen, the first device calculating a motion vector for each block according to an estimation formula that approximates the influence of the diagonal spatial gradient component. a calculation means, a second calculation means for obtaining a signal representing the amount of the diagonal spatial gradient component of the input image signal, a classification means for classifying each block into a pattern according to the calculation result of the second calculation means, and said classification. 1. A motion vector detection device comprising: averaging means for averaging the motion vectors of each block produced by the first calculating means under a weight according to the classification of the means.
JP2113955A 1990-04-27 1990-04-27 Movement vector detecting device Pending JPH0410874A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2113955A JPH0410874A (en) 1990-04-27 1990-04-27 Movement vector detecting device
EP91303792A EP0454481B1 (en) 1990-04-27 1991-04-26 Movement vector detection device
DE69121627T DE69121627T2 (en) 1990-04-27 1991-04-26 Device for the detection of motion vector
US07/967,569 US5296925A (en) 1990-04-27 1992-10-27 Movement vector detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113955A JPH0410874A (en) 1990-04-27 1990-04-27 Movement vector detecting device

Publications (1)

Publication Number Publication Date
JPH0410874A true JPH0410874A (en) 1992-01-16

Family

ID=14625397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113955A Pending JPH0410874A (en) 1990-04-27 1990-04-27 Movement vector detecting device

Country Status (1)

Country Link
JP (1) JPH0410874A (en)

Similar Documents

Publication Publication Date Title
Odobez et al. Robust multiresolution estimation of parametric motion models
KR930002613B1 (en) Image motion vector detector
US8416993B2 (en) Object boundary accurate motion detection using hierarchical block splitting and motion segmentation
US7949205B2 (en) Image processing unit with fall-back
US20180144485A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable storage medium
US7499494B2 (en) Vector selection decision for pixel interpolation
CN106791279B (en) Motion compensation method and system based on occlusion detection
JP2000306108A (en) Optical flow estimation method
US5453800A (en) Apparatus for judging a hand movement of an image
US8817869B2 (en) Image processing device and method, and image display device and method
EP0586708B1 (en) Image processor and method therefor
JPH0787481A (en) Fault detector
EP0383245B1 (en) Apparatus for detecting moving and unmoving regions
JPH0220988A (en) Moving vector detection system for animation encoding device
JPH0410874A (en) Movement vector detecting device
Ben-Ezra et al. Motion segmentation using convergence properties
JP4289170B2 (en) Noise amount measuring apparatus and video receiver
JPH0410885A (en) Movement vector detecting device
JPH03140070A (en) Moving vector detector
JPH0562876B2 (en)
JPH0410872A (en) Movement vector detecting device
Giaccone et al. Motion-compensated multichannel noise reduction of color film sequences
JP2975146B2 (en) Motion vector detection device
JP3003044B2 (en) Apparatus and method for detecting motion vector
JPH08223540A (en) Motion interpolation method using motion vector, motion interpolation circuit, motion vector detection method and motion vector detection circuit