JPH04108678A - Production of porous ceramics - Google Patents

Production of porous ceramics

Info

Publication number
JPH04108678A
JPH04108678A JP22759590A JP22759590A JPH04108678A JP H04108678 A JPH04108678 A JP H04108678A JP 22759590 A JP22759590 A JP 22759590A JP 22759590 A JP22759590 A JP 22759590A JP H04108678 A JPH04108678 A JP H04108678A
Authority
JP
Japan
Prior art keywords
combustible
porous ceramics
cao
particles
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22759590A
Other languages
Japanese (ja)
Inventor
Yasuhito Nakajima
泰仁 中島
Ritsuko Bando
坂東 律子
Yukito Muraguchi
村口 幸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP22759590A priority Critical patent/JPH04108678A/en
Publication of JPH04108678A publication Critical patent/JPH04108678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a porous ceramics increased in pore diameter and having high porosity by adding a combustible and volatile material to a blended material of SiO2, CaO, and Al2O3 in specific propertions and then burning the resulting mixture. CONSTITUTION:A mixture is prepared so that SiO2, CaO, and Al2O3 are contained by 70-88wt.%, 5-23wt.%, and 5-15wt.%, respectively. Subsequently, a combustible and volatile material, such as sawdust, is added to the above mixture, and the resulting mixture is burned at the prescribed temp., by which the desired porous ceramics can be obtained. It is desirable that, as the combustible and volatile material, the one having 10-1700mu grain diameter used, because the pores of desirable size become hard to obtain when the grain diameter is below 10mu, and further, desirable strength becomes hard to obtain when grain diameter exceeds 1700mu. On the other hand, although the additive quantity of the above material depends on the grain size of the combustible material, desirable range of the additive quantity is 10-40wt.%.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は多孔質セラミックスの製造方法に関し、特に
細孔径の大きな高気孔率の多孔質セラミックスを製造す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing porous ceramics, and particularly to a method for producing porous ceramics with large pore diameters and high porosity.

(従来の技術) 多孔質セラミックスは各種分野において種々の目的で広
く使用されている。かかる多孔質セラミックスの製造方
法には各種のものがあり、これを大別すると次のように
なる。
(Prior Art) Porous ceramics are widely used in various fields for various purposes. There are various methods for manufacturing such porous ceramics, and these can be roughly classified as follows.

■ 焼成前空隙の利用 ■ 焼成過程の空隙の利用 ■ ガラスの分相利用(多孔質ガラス)■ ゾル−ゲル
法(シリカゲル等) ■ 結晶内空隙の利用(ゼオライト等)これらの方法に
より得られる多孔質セラミックスの細孔径のおよその範
囲が第1図に示しである。
■ Utilization of voids before firing ■ Utilization of voids during the firing process ■ Utilization of phase separation of glass (porous glass) ■ Sol-gel method (silica gel, etc.) ■ Utilization of intracrystal voids (zeolite, etc.) The porosity obtained by these methods The approximate range of pore diameters of quality ceramics is shown in FIG.

図から明らかなように(I)の焼成前空隙の利用、(■
)の焼成過程の空隙の利用による方法では細孔径の大き
なものが得られる。そこで各種担体用セラミックス、例
えば水処理分野における硝化、脱窒菌の担体用セラミッ
クス等大気孔且つ高気孔率が要求されるものにおいては
、通常(I)の方法又は(n)の方法が用いられる。
As is clear from the figure, the use of voids before firing in (I), (■
), which utilizes the voids in the firing process, yields products with large pore diameters. Therefore, method (I) or method (n) is usually used for ceramics for various carriers, such as ceramics for carriers for nitrification and denitrification bacteria in the water treatment field, which require large pores and high porosity.

(I)の焼成前空隙を利用する方法としては、■ポリウ
レタンフォームにセラミックス原料を混合し、フt−ム
化した後焼成して樹脂分を除去する方法、■ポリウレタ
ンフォームにセラミックススラリーをコーティングして
焼成する方法、■粒状樹脂をバックしておき、生じた空
間にセラミックススラリーを流し込んで焼成する方法等
があり、また(■)の焼成過程の空隙を利用する方法と
しては、骨材となる粒子(アルミナ、チタニア、炭化珪
素等)に燃焼争揮発する物質を添加して焼成する方法が
主に用いられている。
Methods to utilize the voids before firing in (I) include: ■ Mixing ceramic raw materials with polyurethane foam, forming a foam, and then firing to remove the resin component; ■ Coating polyurethane foam with ceramic slurry. There are two methods: (1) a method in which granular resin is placed in a bag and ceramic slurry is poured into the resulting space and fired; The main method used is to add a substance that volatizes during combustion to particles (alumina, titania, silicon carbide, etc.) and then sinter them.

(発明が解決しようとする課ll) しかしながら(I)の方法の場合、燃焼用樹脂の形状に
よって細孔径の形状、大きさが左右されるために、得ら
れる気孔が不均一になり易く、複雑形状品を量産すると
なると対応が困難である。
(Issue to be solved by the invention) However, in the case of method (I), the shape and size of the pore diameter are affected by the shape of the combustion resin, so the resulting pores tend to be non-uniform and complex. It is difficult to mass produce shaped products.

加えてこの方法の場合、通常のセラミックス製造工程(
成形−焼成)以外の複雑な工程を必要とするため、製造
コストが高くなる等の筆点がある。
In addition, this method requires the normal ceramic manufacturing process (
Since it requires complicated steps other than molding and firing, the manufacturing cost is high.

他方(If)の方法の場合には、可燃・揮発物質の添加
によって粒子−粒子の接点数が減少して粒子同士の接合
強度が弱くなり、セラミックスが脆いものとなるといっ
た欠点がある。
In the case of the other method (If), the addition of combustible and volatile substances reduces the number of particle-to-particle contacts, weakening the bonding strength between the particles and making the ceramic brittle.

一般に(II)の方法にあっては、骨材粒子間に空隙を
生ぜしめる必要があることから、所望の気孔率、所望孔
径の細孔を得るためには骨材粒子として粒径の大きなも
のを用いる必要がある(例えば200〜3004m以上
)が、このような粒径の大きな骨材粒子の集合体中に可
燃物質を添加すると、第2図にモデル的に示しているよ
うに粒子100と粒子100との接触が、添加したおが
屑等可燃物質102によって妨げられることとなる。従
ってこれを焼成したとき、粒子100と粒子10Oとの
結合が妨げられてセラミックス多孔体の強度が脆くなる
のであり、またこのような制約から可燃物質の添加量も
せいぜい20%止まりと限定されてしまい、気孔率を高
くしたり細孔径を大きくしたりする上で大きな制限があ
る。
In general, in method (II), it is necessary to create voids between aggregate particles, so in order to obtain pores with the desired porosity and desired pore size, aggregate particles with a large particle size are used. (for example, 200 to 3004 m or more), but if combustible substances are added to an aggregate of such large aggregate particles, as shown in the model in Fig. Contact with the particles 100 will be hindered by the added combustible material 102, such as sawdust. Therefore, when this is fired, the bond between particles 100 and 10O is hindered, and the strength of the porous ceramic body becomes brittle. Also, due to these restrictions, the amount of combustible material added is limited to 20% at most. Therefore, there are major restrictions on increasing the porosity or increasing the pore size.

更にこの方法の場合、焼成過程での収縮が大きく、この
ため製品の寸法が大きくばらつき易いといった欠点もあ
る。
Furthermore, this method has the disadvantage that the shrinkage during the firing process is large, and therefore the dimensions of the product tend to vary widely.

(課題を解決するための手段) 本発明はこのようなMMを解決するためになさレタもノ
テあり、その要旨は、5i02 、 CaO,轟120
3をそれぞれ5jOz: 70〜88重量%、CaO:
5〜23重量%、ム1203:5〜15重量%の範囲で
含有するように調合物を調製した上、おが屑等可燃・揮
発物質を添加し、これを所定温度で焼成することにある
(Means for Solving the Problems) The present invention was made to solve such MM, and the gist is as follows: 5i02, CaO, Todoroki 120
3 and 5jOz each: 70-88% by weight, CaO:
The method involves preparing a formulation containing 5 to 23% by weight of Mu 1203 and 5 to 15% by weight of Mu 1203, adding combustible and volatile substances such as sawdust, and firing the mixture at a predetermined temperature.

(作用及び発明の効果) 本発明において、5iOt 、 にao、 Al21h
を上記特定ail!とする理由は次の通りである。
(Action and Effect of the Invention) In the present invention, 5iOt, niao, Al21h
The above specific ail! The reason for this is as follows.

本出願人は先の特許願(特願昭61−253434、特
公平2−12899)において、5i02ニア0〜88
重量%、CaO: 5〜2331量%。
In the earlier patent application (Japanese Patent Application No. 61-253434, Japanese Patent Publication No. 2-12899), the present applicant has proposed 5i02 near 0 to 88
Weight%, CaO: 5-2331% by weight.

Al2O3,5〜1511%となるように調合物を調製
し、これを焼成することにより多孔質セラミックスを製
造する方法を提案している。
They have proposed a method for manufacturing porous ceramics by preparing a mixture with an Al2O3 content of 5 to 1511% and firing the mixture.

このようにすると、原料粒子として微細なものを用いつ
つ(望ましい範囲は1〜507zm)細孔径が大きく且
つ均一な高気孔率の多孔質セラミックスを得ることがで
きる。その詳細な理由については上の公報において明ら
かにされているのでここでは詳しい説明は省略するが、
その骨子は次のようなものである。
In this way, it is possible to obtain a porous ceramic having a large pore diameter and a uniform high porosity while using fine raw material particles (desirable range is 1 to 507 zm). The detailed reason for this is clarified in the above publication, so a detailed explanation will be omitted here.
Its outline is as follows.

5i02 、 Cab、 Al2O3から成る調合物を
焼成したとき、焼成中に次の反応が起こることが知られ
ている。
It is known that when a formulation consisting of 5i02, Cab, and Al2O3 is fired, the following reaction occurs during firing.

CaO→ゲーレナイト(2CaO*  AI 203 
* 5i02)→アノルサイトCCaO@A12Chs
 2SiO2)+ワラストナイト (CaOIISiO
2)・・−(1)SiOz→クリストバライト(Si0
2)  会ψ・(2)そしてこの反応において、ゲーレ
ナイト。
CaO → Gehlenite (2CaO* AI 203
*5i02) → Anorsite CCaO@A12Chs
2SiO2) + wollastonite (CaOIISiO
2)...-(1) SiOz → cristobalite (Si0
2) Society ψ・(2) And in this reaction, Gehlenite.

アノルサイト、ワラストナイトが生成して消失する過程
で一時膨張が生じることが知られている。
It is known that temporary expansion occurs during the production and disappearance process of anorsite and wollastonite.

この−時膨張は5i(h 、CaO、Al2O3を上記
特定組成としたとき特異的に大きくなり、これによって
素地中に多くの気孔が形成され、高気孔率のセラミック
ス多孔体が得られる。
This -time expansion becomes particularly large when the above-mentioned specific compositions of 5i(h, CaO, and Al2O3 are used), and as a result, many pores are formed in the matrix, and a porous ceramic body with a high porosity is obtained.

またこの反応においてゲーレナイト、アノルサイト、ワ
ラストナイトの共存下で共融反応が生じて部分的に低融
点の液相が生じ、これが粒子を結合する作用を果たし、
孔径の均−且つ大きな多孔体が得られる。
In addition, in this reaction, a eutectic reaction occurs in the coexistence of gehlenite, anorthite, and wollastonite, and a liquid phase with a low melting point is partially formed, which acts to bind the particles.
A porous body with uniform and large pore diameters can be obtained.

本発明はこのような組成の原料調合物に対しておが屑等
可燃―揮発物質を含有させてこれを焼成するものであり
、而してかかる本発明に従って多孔質セラミックスを製
造した場合、強度的に優れた多孔質セラミックスを得る
ことができる。
The present invention involves adding flammable/volatile substances such as sawdust to a raw material mixture having such a composition and firing the mixture, and when porous ceramics are produced according to the present invention, the strength is improved. Excellent porous ceramics can be obtained.

本発明の場合1粒子径の大きな骨材粒子をそれらの接点
で接合させて、それら粒子間に生じる空隙に基いて素地
中に気孔を形成する従来方法と異なり、焼成反応中の溶
化過程で生じる一時膨張を利用して気孔を形成するもの
であるため、骨材粒子として粒径の小さなものを用いる
ことが可能である。而して粒径の小さな骨材粒子を用い
た場合、可燃物質を添加しても、骨材粒子は可燃物質を
取り囲んだ状態で相互に十分に接触することが可能であ
り、かかる可燃物質の添加によって粒子同士の接合が特
に阻害されるといったことがない。
In the case of the present invention, unlike the conventional method in which pores are formed in the base material based on the voids created between the particles by joining large aggregate particles at their contact points, the pores are formed during the dissolution process during the firing reaction. Since pores are formed using temporary expansion, it is possible to use aggregate particles with small particle sizes. Therefore, when aggregate particles with a small particle size are used, even if combustible substances are added, the aggregate particles can surround the combustible substances and come into sufficient contact with each other, and the combustible substances The addition does not particularly inhibit the bonding between particles.

加えて本発明の場合、焼成過程で液相が生じてこれが粒
子同士の接合面積を増し、各粒子を相互に強固に接合す
る働きをするため、上記従来方法のように可燃物質の添
加によって強度が著しく低下するといったことがなく、
良好な強度を保有することができるのである。
In addition, in the case of the present invention, a liquid phase is generated during the firing process, which increases the bonding area between particles and serves to firmly bond each particle to each other. There is no significant decrease in
This allows it to maintain good strength.

また本発明においては、上記−時膨張に基づいて素地中
に細孔径の大きな気孔が多数形成されることに加え、可
燃物質の存在していたあとが気孔となって残り5更に加
えて可燃物質の添加による素地の強度低下の程度が小さ
いために従来に増して多くの可燃物質を添加できるよう
になることから、従来可燃物質の添加によるだけでは得
られなかったような大きな細孔径の且つ高気孔率の多孔
質セラミックスを得ることが可能となる9例えば本発明
によれば、細孔径が150JLm程度ないしそれ以上の
、また気孔率が70%程度ないしそれ以上の且つ実用的
強度を保有する多孔質セラミックスを得ることができる
In addition, in the present invention, in addition to the formation of many pores with large pore diameters in the base material based on the above-mentioned time expansion, the remaining 5 pores become pores where the combustible material was present, and in addition, the combustible material Because the strength of the base material decreases only slightly due to the addition of For example, according to the present invention, it is possible to obtain porous ceramics with a porosity of about 150 JLm or more, a porosity of about 70% or more, and a porous ceramic having a practical strength. You can get quality ceramics.

かかる多孔質セラミックスは、水処理分野における硝化
、脱窒菌等の保持担体等、大孔径、高気孔率の要求され
る各種担体その他の用途に好適に供することができる。
Such porous ceramics can be suitably used in various carriers requiring large pore diameters and high porosity, such as holding carriers for nitrifying and denitrifying bacteria in the water treatment field, and other uses.

本発明によって得られる多孔質セラミックスは、骨材粒
子間に当初より存在している空隙を利用して多孔質セラ
ミックスを得る従来の方法と異なり、焼成反応中の一時
膨張を利用して気孔形成するものであるため、焼成によ
る収縮が殆ど無く、従って寸法精度に優れた製品を容易
に得ることができる特長を有する。
The porous ceramics obtained by the present invention differs from the conventional method of obtaining porous ceramics by utilizing the voids that originally exist between aggregate particles, in that the pores are formed by utilizing temporary expansion during the firing reaction. Since it is made of aluminum, it has the advantage that there is almost no shrinkage due to firing, and therefore products with excellent dimensional accuracy can be easily obtained.

またセラミックス製造に際し、前述の(I)の方法のよ
うに複雑な工程をとらなくても良く、加えて原料として
安価に入手可能な天然原料、珪買蝋石(主成分5iOz
) +石灰石(主成分(:aO) 、粘土等を用いるこ
とが可能であるため、製造コストが安価である利点も有
する。
In addition, when manufacturing ceramics, there is no need to take complicated steps as in the method (I) described above, and in addition, it is possible to use a natural raw material, silica waxite (main component: 5 iOz), which is available at low cost as a raw material.
)+limestone (main component (:aO)), clay, etc. can be used, so it also has the advantage of low manufacturing cost.

本発明においては、可燃・揮発物質として、種々の粒度
のものを用いることが可能であるが、10〜1700a
mの範囲の粒度のものを用いることが望ましい0粒径が
1101Lより小さいと望ましい大きさの細孔を得難く
、また1700ILmより大きいと望ましい強度を得難
くなるからである。
In the present invention, it is possible to use various particle sizes as the combustible/volatile substance, but particle sizes ranging from 10 to 1700 a
It is preferable to use particles with a particle size in the range of m, because if the zero particle size is smaller than 1101Lm, it will be difficult to obtain pores of a desired size, and if it is larger than 1700ILm, it will be difficult to obtain a desired strength.

一方その添加量については、可燃物質の粒度によっても
左右されるが、望ましい範囲は外側で10〜40重量%
の範囲である。
On the other hand, the amount added depends on the particle size of the combustible material, but the desirable range is 10 to 40% by weight on the outside.
is within the range of

添加量が10重量%より少ないと*発明の望ましい効果
が得られ難く、また40重量%より多いと望ましい強度
が得難くなる。
If the amount added is less than 10% by weight, it will be difficult to obtain the desired effects of the invention, and if it is more than 40% by weight, it will be difficult to obtain the desired strength.

更に本発明においては、5i02粒子、 Can粒子と
して種々粒度のものを用い得るが、 CaO粒子の大き
さを5i02粒子のそれよりも大きくするのが望ましく
、更に望ましいのはCaO粒子の粒径を5i02粒子の
粒径の10倍以上とするのが良い。
Furthermore, in the present invention, although various particle sizes can be used as the 5i02 particles and Can particles, it is desirable that the size of the CaO particles be larger than that of the 5i02 particles, and it is more desirable that the particle size of the CaO particles be 5i02. It is preferable that the particle size is 10 times or more the particle size of the particles.

本発明者等はCaO粒子と5i02粒子との粒径をCa
O粒子径>5i02粒子径の関係とすることにより、ゲ
ーレナイト、アノルサイト、ワラヌトナイト共存下での
共融反応をより効果的に惹起せしめ、また大きな一時膨
張を引き起させ得る知見を得、以て細孔径のより大きな
且つ一段と高気孔率の多孔質セラミックスを得る発明を
完成し、別途に出願を行っているが、この系においては
液相の発生Φ流動に基づく骨材粒子相互の接触壷結合作
用が増大するためにより多くの可燃物質を添加できるよ
うになり、或いは可燃物質添加による強度低下を更に低
く抑えることができるようになる。
The present inventors have determined that the particle diameters of CaO particles and 5i02 particles are Ca
By setting the relationship of O particle size > 5i02 particle size, we have found that the eutectic reaction can be more effectively induced in the coexistence of gehlenite, anorthite, and wollanutonite, and that large temporary expansion can be caused. We have completed an invention to obtain porous ceramics with larger pore diameters and even higher porosity, and have filed a separate application for this system. Because of this increase, it becomes possible to add more combustible substances, or it becomes possible to further suppress the decrease in strength due to the addition of combustible substances.

即ち焼成反応中の一時膨張及び共融反応による効果と可
燃物質の添加による効果とが相俟って、より望ましい多
孔質セラミックスが得られるようになる。
That is, the effect of the temporary expansion and eutectic reaction during the firing reaction and the effect of the addition of the combustible substance combine to produce a more desirable porous ceramic.

(実施例) 次に本発明の特徴を更に明確にすべく以下にその実施例
を詳述する。
(Example) Next, in order to further clarify the characteristics of the present invention, examples thereof will be described in detail below.

珪質蝋石(主成分5i07.平均粒子径1.5μm)9
石灰石(主成分CaO,平均粒子径25μm)及び粘土
(平均粒子径0 、8 gm)をそれぞれ70.2重量
%、22.1重量%、7.7重量%の割合で配合し、こ
れに可燃物質として第1表に示すようなおが屑を外温で
20@菫%。
Siliceous Rouseki (Main component 5i07. Average particle size 1.5 μm) 9
Limestone (main component CaO, average particle size 25 μm) and clay (average particle size 0, 8 gm) were blended in proportions of 70.2% by weight, 22.1% by weight, and 7.7% by weight, respectively, and combustible As a substance, sawdust as shown in Table 1 is 20 @ violet% at external temperature.

30重量%添加してアイリッヒミキサーにて十分に混合
した。更にバインダー分としてメチルセルロース5重量
%を添加して水と共に土練機で充分に混III後、シー
ト状に押出成形した。成形物を電気炉にて7℃/分の速
度で昇温し、最高温度1250℃に1時間保持した後、
自然冷却して多孔質セラミックスを得た。
30% by weight was added and thoroughly mixed using an Eirich mixer. Further, 5% by weight of methylcellulose was added as a binder, and the mixture was thoroughly mixed with water in a clay kneader, and then extruded into a sheet. The molded product was heated at a rate of 7°C/min in an electric furnace and held at a maximum temperature of 1250°C for 1 hour,
Porous ceramics were obtained by natural cooling.

第1表:おが屑の粒度 この多孔質セラミックスの細孔径分布及び量を調査した
ところ143図の如くであった(C−1゜C−2,C−
3)、尚図中Bは比較例として示したものであって、第
4図中■で示す粒度分布の珪質蝋石と、第5図中■で示
す粒度分布の石灰石及び第6図に示す粒度分布の粘土と
を用い、且つおが屑を添加しないものついて焼成した結
果得られた多孔質セラミックスの細孔径分布及び量を示
している。更にAは第4図の■、第5図の■及び第6図
に示す粒度分布の粘土を組合せた場合(おが情無添加)
に得られる多孔質セラミックスの細孔径分布及び量を示
している。
Table 1: Particle size of sawdust When the pore size distribution and amount of this porous ceramic were investigated, it was as shown in Figure 143 (C-1゜C-2,C-
3), B in the figure is shown as a comparative example, and siliceous rouseite with the particle size distribution shown in ■ in Fig. 4, limestone with the particle size distribution shown in Fig. 5 and shown in Fig. 6. This figure shows the pore size distribution and amount of porous ceramics obtained as a result of firing using clay with a particle size distribution and without adding sawdust. Furthermore, A is a case where clays with the particle size distribution shown in Figure 4 ■, Figure 5 ■, and Figure 6 are combined (Ogajomu addition).
The figure shows the pore size distribution and amount of the porous ceramics obtained.

第3図において、C−1とC−2とは共に細孔径約15
0am程度で曲げ強度も70 kg/cm2以上を有し
ているが、添加量の違いから気孔量に差を生じている。
In Figure 3, both C-1 and C-2 have pore diameters of approximately 15
Although it has a bending strength of 70 kg/cm2 or more at approximately 0 am, the amount of pores varies due to the difference in the amount added.

また粗粒おが屑を外側で30重量%添加した試料C−3
の場合 *孔径は200終mを越えている。
Sample C-3 in which 30% by weight of coarse sawdust was added on the outside.
*The pore diameter exceeds 200 m.

上記C−2の試料について諸特性を調査した結果が、従
来手法にて得られる多孔質セラミックスとの比較におい
て第2表に示しである。
Table 2 shows the results of investigating various properties of the sample C-2 in comparison with porous ceramics obtained by conventional methods.

(以下余白) 第3図中の試料Bは、5i02. CaO、A12fh
 (7)組成を特定組成とし、焼成反応中に大きな一時
膨張を起こさせ、且つ共融反応を効果的に惹起させてセ
ラミックスを多孔質化した場合に得られる細孔径分布を
示したものであり、このようにすることによって小さな
骨材粒子を使いつつ、同様の系において従来得られてい
た多孔体よりも細孔径が大で気孔率が高く且つ強度に優
れた多孔体が得られるが、これに更におが屑を添加する
と、第3図のC−1,C−2,C−3に示すように、細
孔径の非常に大きな且つ気孔率の著しく高い多孔体が得
られる。即ち従来のおが屑添加による効果からは予想で
きないような、大きな効果が得られる。
(The following is a margin) Sample B in Fig. 3 is 5i02. CaO, A12fh
(7) This shows the pore size distribution obtained when ceramics are made porous by setting the composition to a specific composition, causing large temporary expansion during the firing reaction, and effectively inducing a eutectic reaction. By doing this, it is possible to obtain a porous body with larger pore diameter, higher porosity, and superior strength than porous bodies conventionally obtained in similar systems while using small aggregate particles. When sawdust is further added to the porous material, a porous material having a very large pore diameter and a significantly high porosity can be obtained, as shown in C-1, C-2, and C-3 in FIG. That is, a large effect that cannot be expected from the effect of conventional addition of sawdust can be obtained.

また第2表の結果からは次のようなことが分かる。即ち
本発明例のものは、骨材粒子として粒子径の大きなもの
を用いる従来の手法のものに比べて細孔径が大きく且つ
気孔率が高いにも拘らず、強度の低下が少ない、これは
従来手法の場合には、粒子同士の接合が、おが屑添加に
よって妨げられるのに対して、本発明例のものは特にこ
のような不都合が無いからである。
Furthermore, the following can be seen from the results in Table 2. In other words, although the inventive example has a larger pore size and higher porosity than the conventional method using large aggregate particles, the strength decreases less than that of the conventional method. This is because, whereas in the case of this method, the bonding of particles to each other is hindered by the addition of sawdust, the example of the present invention does not have such a disadvantage.

尚骨材粒子として極めて微細なものを用いたFのものは
、強度の平均値の低下が比較的小さいが、信々の測定値
から明らかなように1強度値が大きくばらついており、
また細孔径が小さいものしか得られていない。
In addition, in case of F, which uses extremely fine aggregate particles, the decrease in the average value of strength is relatively small, but as is clear from the measured values of Shinshin, the single strength value varies widely.
Moreover, only those with small pore diameters have been obtained.

この試料Fにおいて強度の個々の測定値がばらついてい
るのは、得られた多孔体中に極めて脆いものが多く存在
しており、品質的に安定したものが得られないことによ
るものである。
The reason why the individual measured strength values of Sample F vary is that many of the obtained porous bodies are extremely brittle, and a stable quality cannot be obtained.

これに対して本発明例のものは、個々の測定値において
もばらつきが少ない、このことは本発明の効果が、単に
骨材粒子として粒径の小さなものを用い得たことからの
み生じるのではなく、焼成反応中に液相が生じることに
より、その液相により粒子同士が強固に接合されること
によって初めてもたらされるものであることを意味して
いる。
On the other hand, in the examples of the present invention, there is little variation even in the individual measured values, which suggests that the effect of the present invention is simply due to the fact that aggregate particles with small diameters can be used. Rather, it means that a liquid phase is generated during the calcination reaction, and the particles are firmly bonded together by the liquid phase.

以上本発明の実施例を詳述したが、これはあくまで−具
体例であり、本発明は可燃・揮発物質としてL記以外の
ものも用い得るなど、その主旨を逸脱しない範囲におい
て、当業者の知識に基づき様々な変更を加えた態様で実
施可能である。
Although the embodiments of the present invention have been described in detail above, these are only specific examples, and the present invention can also use substances other than L as the combustible/volatile substance. It can be implemented with various modifications based on knowledge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多孔質セラミックスの各種製造方法により得ら
れる細孔径の範囲を示す図、第2図は従来手法の不具合
の説明図、第3図は本発明の実施例において得られた多
孔質セラミックスの細孔径分布を示す図、第4図、第5
図及び第6図はそれぞれ第3図中の比較例、A、Bの原
料粒子の粒子径分布を示す図である。 特許出願人  株式会社 イ す ッ り ス萌 図 粒子直径 (羨m)
Figure 1 is a diagram showing the range of pore diameters obtained by various methods for producing porous ceramics, Figure 2 is an illustration of defects in conventional methods, and Figure 3 is a diagram showing porous ceramics obtained in an example of the present invention. Figures 4 and 5 showing the pore size distribution of
The figure and FIG. 6 are diagrams showing particle size distributions of raw material particles of Comparative Example, A, and B in FIG. 3, respectively. Patent applicant Isu Risu Co., Ltd. Moe diagram particle diameter (envy m)

Claims (4)

【特許請求の範囲】[Claims] (1)SiO_2、CaO、Al_2O_3をそれぞれ
SiO_2:70〜88重量%、CaO:5〜23重量
%、Al_2O_3:5〜15重量%の範囲で含有する
ように調合物を調製した上、おが屑等可燃・揮発物質を
添加し、これを所定温度で焼成することを特徴とする多
孔質セラミックスの製造方法。
(1) A formulation was prepared to contain SiO_2, CaO, and Al_2O_3 in a range of 70 to 88% by weight, respectively, SiO_2: 70 to 88% by weight, CaO: 5 to 23% by weight, and Al_2O_3: 5 to 15% by weight, and combustible materials such as sawdust were prepared. - A method for producing porous ceramics, which is characterized by adding a volatile substance and firing it at a predetermined temperature.
(2)前記可燃・揮発物質の粒度が平均粒径で10〜1
700μmの範囲であることを特徴とする請求項(1)
に記載の多孔質セラミックスの製造方法。
(2) The average particle size of the combustible/volatile substance is 10 to 1
Claim (1) characterized in that the range is 700 μm.
The method for producing porous ceramics described in .
(3)前記可燃・揮発物質の添加量が10〜40重量%
の範囲であることを特徴とする請求項(1)又は(2)
に記載の多孔質セラミックスの製造方法。
(3) The amount of the combustible/volatile substance added is 10 to 40% by weight.
Claim (1) or (2) characterized in that it is within the scope of
The method for producing porous ceramics described in .
(4)前記調合物におけるSiO_2粒子及びCaO粒
子の粒度がCaO粒子径>SiO_2粒子径の関係とさ
れていることを特徴とする請求項(1)、(2)又は(
3)に記載の多孔質セラミックスの製造方法。
(4) The particle sizes of the SiO_2 particles and CaO particles in the formulation have a relationship of CaO particle size>SiO_2 particle size.
3) The method for producing porous ceramics according to item 3).
JP22759590A 1990-08-28 1990-08-28 Production of porous ceramics Pending JPH04108678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22759590A JPH04108678A (en) 1990-08-28 1990-08-28 Production of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22759590A JPH04108678A (en) 1990-08-28 1990-08-28 Production of porous ceramics

Publications (1)

Publication Number Publication Date
JPH04108678A true JPH04108678A (en) 1992-04-09

Family

ID=16863390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22759590A Pending JPH04108678A (en) 1990-08-28 1990-08-28 Production of porous ceramics

Country Status (1)

Country Link
JP (1) JPH04108678A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016227A (en) * 2004-06-30 2006-01-19 Koyo Denki Kogyo Kk Method for producing porous sintered compact
CN109553394A (en) * 2019-01-09 2019-04-02 广东富大陶瓷文化发展股份有限公司 A kind of preparation process of composite antibacterial ceramics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016227A (en) * 2004-06-30 2006-01-19 Koyo Denki Kogyo Kk Method for producing porous sintered compact
CN109553394A (en) * 2019-01-09 2019-04-02 广东富大陶瓷文化发展股份有限公司 A kind of preparation process of composite antibacterial ceramics

Similar Documents

Publication Publication Date Title
JPH0228546B2 (en)
US4965230A (en) Alumina porous body and production of the same
JPH058148B2 (en)
JPH04108678A (en) Production of porous ceramics
CA1143755A (en) Refractory composition
JPS5844627B2 (en) Manufacturing method of fireproof insulation material
US2007052A (en) Porous article of ceramic bonded granular material
JPS63107876A (en) Gas permeable porous body and manufacture
JPS58500284A (en) Porous shaped body made of sintered glassy and/or crystalline material and method for producing such a porous shaped body
JP2800134B2 (en) Manufacturing method of porous ceramics
US2007053A (en) Method of making porous articles of ceramic bonded granular material
US4119470A (en) Ceramic composition for making stoneware products
JPH04114969A (en) Nitride-bonded sic refractory material
JPH06166579A (en) Production of lightweight cellular building material produced by using coal ash as main raw material
KR100646247B1 (en) Fabrication method of porous sialon
KR910002579B1 (en) Alumina porous body and production of the same
JPH03159970A (en) Ceramic sintered body of heat-resistant porous non-oxide base and production thereof
KR920008776B1 (en) Process for the preparation of alumina porous body
KR100472002B1 (en) Method of preparing porous sialon
JPH01317134A (en) Glass composition for bonding silicon carbide sintered form
JPH06171977A (en) Production of porous glass
JPS6385070A (en) Manufacture of porous ceramics
JP2855471B2 (en) Silicate-bonded silicon carbide carrier and method for producing the same
JPH0725683A (en) Pottery having microvoid and production thereof
JPS60166279A (en) Lightweight ceramic board and manufacture