JPH04107561A - Resist composition - Google Patents

Resist composition

Info

Publication number
JPH04107561A
JPH04107561A JP22518490A JP22518490A JPH04107561A JP H04107561 A JPH04107561 A JP H04107561A JP 22518490 A JP22518490 A JP 22518490A JP 22518490 A JP22518490 A JP 22518490A JP H04107561 A JPH04107561 A JP H04107561A
Authority
JP
Japan
Prior art keywords
resist
acid
formula
layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22518490A
Other languages
Japanese (ja)
Inventor
Akira Oikawa
及川 朗
Keiji Watabe
慶二 渡部
Takahisa Namiki
崇久 並木
Manami Fukuda
麻奈美 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22518490A priority Critical patent/JPH04107561A/en
Publication of JPH04107561A publication Critical patent/JPH04107561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

PURPOSE:To simultaneously satisfy the three; oxygen plasma resistance, sensitivity and definition, which are indispensable as the upper layer resist of two- layered resists by using an org. silicon polymer having a high silicon content. CONSTITUTION:This compsn. contains the org. silicon polymer which has the repeating unit expressed by formula I as its basic structure and the terminal group expressed by formula II and has 1,000 to 5,000,000 weight average mol. wt., a cross-linking agent which is activated by an acid and makes a cross linking reaction with the org. silicon polymer, an acid generator which generates an acid when irradiated with high energy rays and imparts electrophilicity to the cross-linking agent so as to accelerate its cross-linking reaction and an org. solvent. In the formulas I, II, R<1> may be the same or different and denote -(CH2)l-COOH [l is 1 to 10 integer], etc.; R<2> may be the same or different and denotes an alkyl group or aryl group. The resist compsn. which has good oxygen plasma resistance and the good sensitivity and definition is obtd. in this way.

Description

【発明の詳細な説明】 〔概 要〕 レジストの成分として有用な有機ケイ素重合体を含むレ
ジスト組成物に関し、 2層構造レジストプロセスの上層レジストとし使用した
時に、十分な酸素プラズマ耐性を有しており、また、感
度および解像性に優れたネガ型レジストを提供すること
を目的とし、 (式中、R1は同一または異なっていてもよく、(CH
z)ICOOHC1は1〜10の整数〕、または−(C
Hz)sハ■−cOOH(mはO〜10の整数〕を表す
)で示される繰返し単位を基本構造し、かつ式 −5i
(Rす、           (2)(式中、RZは
同一または異なっていてもよく、アルキル基またはアリ
ール基を表す)で示される末端基を有し、重量平均分子
量が1.000〜s、 ooo、 oo。
[Detailed Description of the Invention] [Summary] A resist composition containing an organosilicon polymer useful as a component of a resist, which has sufficient oxygen plasma resistance when used as an upper layer resist in a two-layer resist process. In addition, the purpose is to provide a negative resist with excellent sensitivity and resolution, (wherein R1 may be the same or different, (CH
z) ICOOHC1 is an integer from 1 to 10], or -(C
The basic structure is a repeating unit represented by -cOOH (m is an integer from O to 10), and has the formula -5i
(RS, (2) (wherein RZ may be the same or different and represents an alkyl group or an aryl group), and has a weight average molecular weight of 1.000 to s, ooo, oo.

である有機ケイ素重合体と、 酸によって活性化され、前記有機ケイ素重合体と架橋反
応をする架橋剤と、 高エネルギー線の照射により酸を発生し、架橋剤を求電
子性として、架橋反応を促進する酸発生剤と、 有機溶剤とを含むようにレジスト組成物を構成する。
an organosilicon polymer which is activated by an acid and undergoes a crosslinking reaction with the organosilicon polymer; an acid is generated by irradiation with high energy rays, the crosslinking agent is made electrophilic, and the crosslinking reaction is carried out. A resist composition is configured to include an accelerating acid generator and an organic solvent.

〔産業上の利用分野〕[Industrial application field]

本発明は、レジスト組成物に関する。さらに詳しく述べ
ると、本発明は、半導体装置のパターン形成に有用な、
そして特に2層構造レジストプロセスにおいて上層レジ
ストとして有用なネガ型レジスト組成物に関する。本発
明のレジスト組成物は、LSI 、 VLSIなどの半
導体装置の製造に有利に利用することができる。本発明
によって、このようなレジスト組成物を使用したレジス
トパターンを形成することができる。
The present invention relates to a resist composition. More specifically, the present invention provides the following features:
In particular, the present invention relates to a negative resist composition useful as an upper layer resist in a two-layer resist process. The resist composition of the present invention can be advantageously used in manufacturing semiconductor devices such as LSI and VLSI. According to the present invention, a resist pattern using such a resist composition can be formed.

〔従来の技術〕[Conventional technology]

半導体集積回路の微細化に伴い、それらのパターンを形
成する際に不可欠なレジスト材料にも高解像性が要求さ
れている。従来のネガ型レジストとしては、たとえば、
電子線描画用としてポリクロロメチルスチレン系レジス
トが知られている。
With the miniaturization of semiconductor integrated circuits, high resolution is also required for resist materials essential for forming these patterns. For example, conventional negative resists include:
Polychloromethylstyrene resists are known for use in electron beam writing.

このレジストでは、素子の高密度化に伴う基板表面の段
差の影響などで、所望の微細パターンを形成することは
困難である。そこで、段差基板上でも微細パターンを形
成する方法として2層構造リソグラフィが提案されてい
る。この方法はまず段差を有する基板上に、その段差を
平坦化するために厚膜(1〜5#Il)の有機層(平坦
化層)を形成する。その上にパターン描画用のレジスト
層を薄<(0,1〜in)形成する。パターン露光を行
い、現像してパターン描画用上層レジスト層をパターニ
ングし、次にこれをマスクパターンとして平坦化層を酸
素プラズマにより異方性エツチングを行い、基板加工用
のパターンを形成するものである。
With this resist, it is difficult to form a desired fine pattern due to the influence of steps on the substrate surface due to higher density of elements. Therefore, two-layer structure lithography has been proposed as a method for forming fine patterns even on stepped substrates. In this method, first, a thick (1 to 5 #Il) organic layer (flattening layer) is formed on a substrate having a step to flatten the step. A resist layer for pattern drawing is formed thereon to a thickness of <(0,1 to 1 inch). The upper resist layer for pattern drawing is patterned by pattern exposure and development, and then, using this as a mask pattern, the flattening layer is anisotropically etched with oxygen plasma to form a pattern for substrate processing. .

この方法は、露光により直接パターン形成するレジスト
層の厚さを単層レジスト法に比べて格段に薄くできるた
め、高解像性が実現できる方法である。この方法に適用
しうるレジスト材料は、上記の説明から明らかなように
酸素プラズマに対する十分な耐性が要求され、シリコー
ン系の樹脂が検討されている0例示すれば、ポリーP−
クロロメチルフェニルフェニルシロキサン、ポリアリル
シルセスキオキサン、ポリビニルシルセスキオキサン等
である。
This method can achieve high resolution because the thickness of the resist layer that is directly patterned by exposure can be made much thinner than in the single-layer resist method. As is clear from the above explanation, resist materials that can be applied to this method are required to have sufficient resistance to oxygen plasma, and silicone-based resins are being considered.
These include chloromethylphenylphenylsiloxane, polyallylsilsesquioxane, polyvinylsilsesquioxane, and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このパターン形成方法に適用可能な上記
シリコーンレジストは電子線等による露光の潜像を有機
溶媒により現像せざるを得ないため、レジスト層が激し
く膨潤してしまい、2層構造リソグラフィの利点を十分
いかすことができず、解像性はさほど向上しない。その
ため、サブミクロンパターンが要求される超LSIの製
造に必要なレジストパターンを安定して形成することは
できないという欠点を有している。そのため、現像時に
膨潤による解像性の低下を生じないネガ型のパターン形
成材料が望まれていた。
However, the silicone resist applicable to this pattern forming method has no choice but to develop the latent image exposed with an electron beam or the like using an organic solvent, resulting in severe swelling of the resist layer, which eliminates the advantages of two-layer structure lithography. It cannot be fully utilized, and the resolution does not improve much. Therefore, it has the disadvantage that it is not possible to stably form a resist pattern necessary for manufacturing VLSIs that require submicron patterns. Therefore, there has been a desire for a negative pattern forming material that does not cause a decrease in resolution due to swelling during development.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、 (式中4RI は同一または異なっていてもよく、(C
Hz)ICOOH[fは1〜10の整数]、または(C
Hz)s+cOOH(mはO〜10の整数〕を表す)で
示される繰返し単位を基本構造し、かつ式−5i(R”
)+     (2) (式中、R2は同一または異なっていてもよく、アルキ
ル基またはアリール基を表す)で示される末端基を有し
、重量平均分子量が1 、000〜5,000,000
である有機ケイ素重合体と、 酸によって活性化され、前記有機ケイ素重合体と架橋反
応をする架橋剤と、 高エネルギー線の照射により酸を発生し、架橋剤を求電
子性として、架橋反応を促進する酸発生剤と、 有機溶剤とを含むレジスト組成物によって解決すること
ができる。
The above problem is solved by
Hz) ICOOH [f is an integer from 1 to 10], or (C
The basic structure is a repeating unit represented by
) + (2) (wherein R2 may be the same or different and represents an alkyl group or an aryl group), and has a weight average molecular weight of 1,000 to 5,000,000
an organosilicon polymer which is activated by an acid and undergoes a crosslinking reaction with the organosilicon polymer; an acid is generated by irradiation with high energy rays, the crosslinking agent is made electrophilic, and the crosslinking reaction is carried out. This problem can be solved by using a resist composition containing an accelerating acid generator and an organic solvent.

〔作 用〕[For production]

本発明の有機ケイ素重合体は、式(1)のRIにおいて
、lおよびmが10を超えると、重合体のSi含量が低
下して、酸素プラズマ耐性が劣化するので、上限は5で
あることが好ましく、3がさらに好ましい。また末端の
シリル基式(2)に含まれるR2はCL 、 CzHs
またはph基が便宜である。
In the organosilicon polymer of the present invention, in the RI of formula (1), if l and m exceed 10, the Si content of the polymer decreases and the oxygen plasma resistance deteriorates, so the upper limit is 5. is preferable, and 3 is more preferable. Furthermore, R2 included in the terminal silyl group formula (2) is CL, CzHs
Or a ph group is convenient.

この重合体の重量平均分子量が1.000未満ではレジ
ストとしての被膜特性が低下するとともに耐熱性も低下
し、5,000,000を超えると溶剤に溶解。
When the weight average molecular weight of this polymer is less than 1.000, the film properties as a resist and heat resistance are also lowered, and when it exceeds 5,000,000, it dissolves in a solvent.

することが困難になり、レジストの粘度も上昇して、均
一な被膜の形成が困難となる。
The viscosity of the resist also increases, making it difficult to form a uniform film.

本発明の有機ケイ素重合体をレジスト組成物として用い
る際は、重合体を必要に応じて精製し、分子量分別を施
して用いることが好ましい。
When using the organosilicon polymer of the present invention as a resist composition, it is preferable to refine the polymer as necessary and subject it to molecular weight fractionation before use.

この有機ケイ素重合体はそのままではアルカリ水溶液に
可溶であるが、適当な架橋剤との反応によって、架橋反
応生成物を生じ水溶液に溶けにくくなる。本研究の目的
にあった架橋剤は、酸発生剤の存在下で高エネルギー線
を照射した際に活性となり、有機ケイ素重合体と反応し
て架橋生成物を生じるものであればいずれであってもか
まわない。このような架橋剤としてはメラミン誘導体が
好ましく、特に窒素原子上の6個の水素原子が全て0R
(Rはアルキル基またはアリール基)で置き変わったも
の、もしくは−(CHz)kOR(Rは前記定義に同じ
であり、また、kは1−10の整数を表す)で置き変わ
ったものが好ましい。また、このような架橋剤としては
、2.6−シヒドロキシメチルーP−クレゾール等のフ
ェノール誘導体もまた好ましく、特に置換基としてアル
コキシ基、フェノキシ基を有するものが適している。
This organosilicon polymer is soluble in an aqueous alkaline solution as it is, but when reacted with an appropriate crosslinking agent, a crosslinking reaction product is produced, making it difficult to dissolve in an aqueous solution. The crosslinking agent suitable for the purpose of this study is any one that becomes active when irradiated with high-energy radiation in the presence of an acid generator and reacts with the organosilicon polymer to produce a crosslinked product. I don't mind. As such a crosslinking agent, a melamine derivative is preferable, and in particular, all six hydrogen atoms on the nitrogen atom are 0R.
(R is an alkyl group or an aryl group), or -(CHz)kOR (R is the same as the above definition, and k represents an integer from 1 to 10) is preferable. . As such a crosslinking agent, phenol derivatives such as 2,6-cyhydroxymethyl-P-cresol are also preferred, and those having an alkoxy group or phenoxy group as a substituent are particularly suitable.

酸発生剤として有効な化合物は、例示すると、PhzI
”5bFi−、PhzS”5bF6−等のヘキサフルオ
ロアンチモンイオンを含むオニウム塩、(Ph 、 I
つ!GO!”−+(Ph35つ、co、”−等の炭酸イ
オンを含むオニウム塩、Ph5S″HCOj−、Ph5
S″HCO,−等の炭酸水素イオンを含むオニウム塩、
クロロメチル基を有するトリアジン化合物、オルトニト
ロベンジルアルコールスルホン酸エステル等のトシレー
ト系の化合物があげられる。高エネルギー線を照射する
ことにより、これらの酸発生剤が酸を発生して架橋剤が
求電子性となり、前記有機ケイ素重合体と架橋反応生成
物を生じ、アルカリ水溶液に不溶となるため、本組成物
はネガ型のレジストとなる。
Examples of compounds effective as acid generators include PhzI
Onium salts containing hexafluoroantimony ions such as “5bFi-, PhzS”5bF6-, (Ph, I
One! GO! Onium salt containing carbonate ions such as ``-+ (Ph35, co, ``-, Ph5S''HCOj-, Ph5
Onium salts containing hydrogen carbonate ions such as S″HCO,-,
Examples include tosylate compounds such as triazine compounds having a chloromethyl group and orthonitrobenzyl alcohol sulfonic acid esters. When irradiated with high-energy rays, these acid generators generate acids and the crosslinking agent becomes electrophilic, producing a crosslinking reaction product with the organosilicon polymer and becoming insoluble in aqueous alkaline solutions. The composition becomes a negative resist.

前記高エネルギー線は可視光、紫外光、X1a等の電磁
波、電子線、イオン線等の粒子線を意味する。
The high-energy rays include visible light, ultraviolet light, electromagnetic waves such as X1a, and particle beams such as electron beams and ion beams.

また、本発明のレジスト組成物を可視光、紫外光で露光
する際には、必要に応して増感剤を添加してもよい。
Furthermore, when exposing the resist composition of the present invention to visible light or ultraviolet light, a sensitizer may be added as necessary.

有機ケイ素重合体、架橋剤、酸発生剤、有機溶剤の混合
比は各々の組合せによって異なり、またレジストとして
使用する際に必要な膜厚値によって異なってくるが、有
機溶剤100重量部に対して、有機ケイ素重合体が4〜
20fi’f部、架橋剤が0.5〜20重量部、酸発生
剤0.1〜10重量部程度であることが好ましい。
The mixing ratio of organosilicon polymer, crosslinking agent, acid generator, and organic solvent varies depending on each combination, and also varies depending on the film thickness required when used as a resist. , organosilicon polymer is 4~
It is preferable that the amount of the crosslinking agent is about 20 fi'f parts, about 0.5 to 20 parts by weight of the crosslinking agent, and about 0.1 to 10 parts by weight of the acid generator.

を機溶剤100重量部に対して、有機ケイ素重合体が、
4重量部より少ないと、2層構造の上層レジストに成膜
するとき薄くなってピンホールが発生しやすい、また2
0重量部より多いと、厚くなりすぎて解像性が低下する
。架橋剤が0.5重量部より少ないと、現像時に膜減り
を生じ、10重量部より多いと、レジスト中のSi含量
が減少して酸素プラズマ耐性が低下する。酸発生剤が0
.1重量部より少ないと、架橋反応を促進させる効果が
少なく、10重量部より多い′と、レジスト中のSi含
量を低下させるばかりでなく、揮発成分の気化にょる空
孔やクラックがレジスト膜に発生する。
For 100 parts by weight of the organic solvent, the organosilicon polymer is
If it is less than 4 parts by weight, the film becomes thin and pinholes are likely to occur when depositing on the upper layer resist of a two-layer structure;
When the amount is more than 0 parts by weight, the thickness becomes too thick and the resolution decreases. If the amount of the crosslinking agent is less than 0.5 parts by weight, film thinning occurs during development, and if it is more than 10 parts by weight, the Si content in the resist decreases and oxygen plasma resistance decreases. Acid generator is 0
.. If it is less than 1 part by weight, the effect of promoting the crosslinking reaction will be small, and if it is more than 10 parts by weight, it will not only reduce the Si content in the resist, but also cause pores and cracks to form in the resist film due to the vaporization of volatile components. Occur.

本発明のレジスト組成物は、被加工基板上に基板段差を
平坦化するための有機高分子層を形成し、その上にこの
レジスト組成物を上層レジストとして塗布し、該上層レ
ジストを高エネルギー線によって所望のパターンに露光
し、アルカリ現像液で現像し、形成された上層レジスト
パターンを酸素プラズマ等のドライエツチングで下層の
有機高分子層に転写するパターン形成方法も提供する。
In the resist composition of the present invention, an organic polymer layer is formed on a substrate to be processed to flatten substrate steps, this resist composition is applied thereon as an upper layer resist, and the upper layer resist is exposed to high-energy rays. The present invention also provides a pattern forming method in which the resist pattern is exposed to a desired pattern, developed with an alkaline developer, and the formed upper resist pattern is transferred to the lower organic polymer layer by dry etching using oxygen plasma or the like.

なお、ここで有機高分子層としては、東京応化製の0F
PR等、市販のフォトレジストが使用できる。
Note that the organic polymer layer used here is 0F manufactured by Tokyo Ohka Co., Ltd.
Commercially available photoresists such as PR can be used.

〔実施例〕〔Example〕

立爪■1 (工程1) メチルイソブチルケトン500cc 、ピリジン40c
cの混合系を撹拌しながら−70”Cに冷却し、クロロ
メチルトリクロロシラン100gを徐々に滴下する。
Tachizume ■1 (Step 1) Methyl isobutyl ketone 500cc, pyridine 40c
The mixed system of c was cooled to -70''C while stirring, and 100 g of chloromethyltrichlorosilane was gradually added dropwise.

その後純水100gを徐々に滴下する。滴下後毎分0.
5°Cの速度で昇温し、85℃で10時間撹拌した。
Then, 100 g of pure water was gradually added dropwise. 0 per minute after dropping.
The temperature was raised at a rate of 5°C, and the mixture was stirred at 85°C for 10 hours.

冷却後静置して水層を除き、さらに十分な水洗いを施す
。ロータリーエバポレータで溶液を濃縮した後、多量の
沈澱剤アセトニトリルを加え、重合体を析出させた。
After cooling, let stand to remove the water layer, and then rinse thoroughly with water. After concentrating the solution using a rotary evaporator, a large amount of a precipitant, acetonitrile, was added to precipitate the polymer.

その後シリル化するために、この重合体をメチルイソブ
チルケトン500 gに溶解し、ピリジン100ccを
加え、0℃に冷却し、撹拌しながらトリメチルクロロシ
ラン100ccを徐々に滴下した。滴下後、系を80℃
に昇温し、約4時間撹拌した。冷却後、系に水を加え、
析出した塩を溶解させた。水層を除き、さらに3回水洗
した。反応液に多量の水を加え、シリル化した重合体を
析出させた。
Thereafter, for silylation, this polymer was dissolved in 500 g of methyl isobutyl ketone, 100 cc of pyridine was added, the mixture was cooled to 0° C., and 100 cc of trimethylchlorosilane was gradually added dropwise with stirring. After dropping, the system was heated to 80℃
and stirred for about 4 hours. After cooling, add water to the system,
The precipitated salt was dissolved. The aqueous layer was removed and washed with water three more times. A large amount of water was added to the reaction solution to precipitate a silylated polymer.

精製乾燥後、30gを乾燥エチルエーテルに溶解し、金
属マグネシウム24gの砕片に注いだ。次に、この溶液
を細かく砕いたドライアイス200 g上に注ぎ、5規
定塩酸100I11を加え、カルボン酸基が付加したア
ルカリ水溶液に可溶な有機ケーイ素重合体(A)31g
が得られた。この重合体はポリスチレン換算により測定
した重量平均分子量が2.0×104であった。
After purification and drying, 30 g was dissolved in dry ethyl ether and poured onto crushed pieces of 24 g of metallic magnesium. Next, this solution was poured onto 200 g of finely crushed dry ice, 5N hydrochloric acid (100I11) was added, and 31 g of organosilicon polymer (A) soluble in an alkaline aqueous solution to which a carboxylic acid group was added was added.
was gotten. This polymer had a weight average molecular weight of 2.0 x 104 as measured in terms of polystyrene.

丘底1 合成例1の工程1において、クロロメチルトリクロロシ
ランの代りに、クロロエチルトリクロロシラン100g
を滴下したことの他は、合成例1と同様な操作を行って
、繰返し単位式(1)のR1が−(Hz)z  C00
tlである有機ケイ素重合体(B)30gを合成した。
Hill Bottom 1 In Step 1 of Synthesis Example 1, 100 g of chloroethyltrichlorosilane was used instead of chloromethyltrichlorosilane.
The same operation as in Synthesis Example 1 was performed except that R1 of the repeating unit formula (1) was -(Hz)z C00
30 g of tl organosilicon polymer (B) was synthesized.

この重合体はポリスチレン換算により測定した重量平均
分子量が2.lX10’であった。
This polymer has a weight average molecular weight of 2. It was 1×10'.

金底■ユ 合成例1の工程1において、クロロメチルトリクロロシ
ランの代りに、p−クロロフェニルトリクロロシラン1
50gを滴下したことの他は、合成例1と同様な操作を
行って、繰返し単位式(1)のR1が−o−cooHで
ある有機ケイ素重合体(C)30gを合成した。この重
合体はポリスチレン換算により測定した重量平均分子量
が1.7 XIO’であった。
In step 1 of Synthesis Example 1, p-chlorophenyltrichlorosilane 1 was used instead of chloromethyltrichlorosilane.
The same operation as in Synthesis Example 1 was performed except that 50 g was added dropwise, to synthesize 30 g of an organosilicon polymer (C) in which R1 of the repeating unit formula (1) is -o-cooH. This polymer had a weight average molecular weight of 1.7 XIO' as measured in terms of polystyrene.

1施■土 合成例1により得られた重合体(A)Igと、架橋剤の
へキサエトキシメチルメラミン0、3 g ト、酸発生
剤のジフェニルヨードニウムヘキサフルオロアンチモネ
ート0.02gとをメチルイソブチルケトン151dに
溶解し、孔径が0.1 tanのメンブランフィルタで
濾過してレジスト溶液とした。
1. Polymer (A) Ig obtained in Soil Synthesis Example 1, 0.3 g of hexaethoxymethylmelamine as a crosslinking agent, and 0.02 g of diphenyliodonium hexafluoroantimonate as an acid generator were mixed with methyl isobutyl. It was dissolved in Ketone 151d and filtered through a membrane filter with a pore size of 0.1 tan to obtain a resist solution.

次にSi基板上に2.0taaの厚さになるようにノボ
ラック系レジスト商品名MP−1300(シプレー社)
を塗布し、ハードベークして平坦化層とし、この上に上
記レジスト溶液を0.2 Bの厚さになるように塗布し
、80°Cで20分ベーキングした。こうして得られた
2層レジスト膜に加速電圧20KVで電子線を露光し、
テトラメチルアンモニウムヒドロキシド水溶液(2,5
%)で現像を行った。次に試料を平行平板型のドライエ
ツチング装置に入れ、酸素プラズマ(2Pa 、 0.
22W/d)で15分間ドライエツチングを行い、上層
パターンを下層に転写した。
Next, apply a novolac resist product name MP-1300 (Shipley Co., Ltd.) to a thickness of 2.0 taa on the Si substrate.
was coated and hard baked to form a flattening layer, and the above resist solution was coated on this to a thickness of 0.2 B, and baked at 80° C. for 20 minutes. The two-layer resist film thus obtained was exposed to an electron beam at an accelerating voltage of 20 KV,
Tetramethylammonium hydroxide aqueous solution (2,5
%). Next, the sample was placed in a parallel plate type dry etching device and exposed to oxygen plasma (2 Pa, 0.2 Pa).
Dry etching was performed at 22 W/d for 15 minutes to transfer the upper layer pattern to the lower layer.

この結果、0.6趨の抜きパターンを解像することがで
きた。また、パターニングの際の電子線露光量は30u
C/C4であった。
As a result, a 0.6-line punching pattern could be resolved. In addition, the electron beam exposure amount during patterning was 30u.
It was C/C4.

裏厳拠1 合成例2により得られた重合体(B)Igと、ヘキサエ
トキシメチルメラミン0.3 gと、ジフェニルヨード
ニウムヘキサフルオロアンチモネート0.02gとをメ
チルイソブチルケトン15M1に溶解し、孔径が0.1
 tanのメンブランフィルタで濾過してレジスト溶液
とした。次にSi基板上に2. Otnaの厚さになる
ようにノボラック系レジストMP−1300(シプレー
社)を塗布し、ハードベークして平坦化層とし、この上
に上記レジスト溶液を0.2 nの厚さになるように塗
布し、80゛Cで20分ベーキングした。こうして得ら
れた2層レジスト膜に、KrFエキシマレーザ装置(波
長248nm)を用いて170sJ/cjの露光量で露
光し、テトラメチルアンモニウムヒドロキシド水溶液(
2,5%)で現像を行った。
Ura-Ganju 1 Polymer (B) Ig obtained in Synthesis Example 2, 0.3 g of hexaethoxymethylmelamine, and 0.02 g of diphenyliodonium hexafluoroantimonate were dissolved in 15M1 of methyl isobutyl ketone, and the pore size was 0.1
It was filtered through a tan membrane filter to obtain a resist solution. Next, 2. A novolac resist MP-1300 (Shipley Co., Ltd.) was applied to a thickness of 0.2 nm, hard-baked to form a flattened layer, and the above resist solution was applied on top of this to a thickness of 0.2 nm. Then, it was baked at 80°C for 20 minutes. The two-layer resist film thus obtained was exposed to light using a KrF excimer laser device (wavelength 248 nm) at an exposure dose of 170 sJ/cj, and a tetramethylammonium hydroxide aqueous solution (
2.5%).

次に試料を平行平板型のドライエツチング装置に入れ、
酸素プラズマ(2Pa 、 0.22W/csi)で1
5分間ドライエツチングを行い、上層パターンを下層に
転写した。この結果、0.8 nのスペースパターンを
解像することができた。
Next, the sample was placed in a parallel plate type dry etching device.
1 with oxygen plasma (2Pa, 0.22W/csi)
Dry etching was performed for 5 minutes to transfer the upper layer pattern to the lower layer. As a result, a 0.8 n space pattern could be resolved.

裏施炭主 合成例3により得られた重合体(C)Igと、架橋剤の
2.6−ビスヒドロキシメチル−P−り0.3gと、ジ
フェニルヨードニウムヘキサフルオロアンチモネー) 
0.02 gとをメチルイソブチルケトン15+dに溶
解し、孔径が06l−のメンブランフィルタで濾過して
レジスト溶液とした0次にSi基板上に2.0−の厚さ
になるようにノボラック系レジストMP−1300(シ
ブレー社)を塗布し、ハードベークして平坦化層とし、
この上に上記レジスト溶液を0.2 tnaの厚さにな
るように塗布し、80°Cで20分ベーキングした。こ
うして得られた2層レジスト膜に加速電圧20KVで電
子線を露光し、テトラメチルアンモニウムヒドロキシド
水溶液(2,5%)で現像を行った。次に試料を平行平
板型のドライエツチング装置に入れ、酸素プラズマ(2
Pa。
Polymer (C) Ig obtained in back-coating main synthesis example 3, 0.3 g of 2,6-bishydroxymethyl-P-2 as a crosslinking agent, and diphenyliodonium hexafluoroantimone)
0.02 g was dissolved in methyl isobutyl ketone 15+d and filtered through a membrane filter with a pore size of 0.6 l to prepare a resist solution. A novolak resist was placed on a 0-order Si substrate to a thickness of 2.0. Apply MP-1300 (Sibley) and hard bake to make a flattening layer.
The above resist solution was applied onto this to a thickness of 0.2 tna, and baked at 80°C for 20 minutes. The two-layer resist film thus obtained was exposed to an electron beam at an accelerating voltage of 20 KV, and developed with a tetramethylammonium hydroxide aqueous solution (2.5%). Next, the sample was placed in a parallel plate type dry etching device, and oxygen plasma (2
Pa.

0.22W/cd)で15分間ドライエツチングを行い
、上層パターンを下層に転写した。この結果、0.5μ
の抜きパターンを解像することができた。また、パター
ニングの際の電子線露光量は40uC/cdであった。
Dry etching was performed for 15 minutes at 0.22 W/cd) to transfer the upper layer pattern to the lower layer. As a result, 0.5μ
We were able to resolve the cutout pattern. Further, the electron beam exposure amount during patterning was 40 uC/cd.

裏l拠土 合成例3により得られた重合体(C)Igと、2.6−
ビスヒドロキシメチル−p−クレゾール0.3gと、炭
酸水素化ジフェニルヨードニウム(PhzI“HCOs
−)0.02 gとをメチルイソブチルケトン15MN
に溶解し、孔径が0.14のメンブランフィルタで濾過
してレジスト溶液とした。次にSi基板上に2.0μm
の厚さになるようにノボラック系レジストMP−130
0(シプレー社)を塗布し、ハードベークして平坦化層
とし、この上に上記レジスト溶液を0.2μの厚さにな
るように塗布し、80°Cで20分ベーキングした。こ
うして得られた2層レジスト膜に加速電圧20KVで電
子線を露光し、テトラメチルアンモニウムヒドロキシド
水溶液(2,5%)で現像を行った。次に試料を平行平
板型のドライエツチング装置に入れ、酸素プラズマ(2
Pa。
Polymer (C) Ig obtained from backing synthesis example 3 and 2.6-
0.3 g of bishydroxymethyl-p-cresol and diphenyliodonium hydrogencarbonate (PhzI"HCOs
-)0.02 g and 15MN of methyl isobutyl ketone
The resist solution was dissolved in water and filtered through a membrane filter with a pore size of 0.14 to obtain a resist solution. Next, a 2.0 μm thick film was placed on the Si substrate.
Apply novolac resist MP-130 to a thickness of
0 (Shipley Co., Ltd.) and hard baked to form a flattening layer, the above resist solution was applied thereon to a thickness of 0.2 μm and baked at 80° C. for 20 minutes. The two-layer resist film thus obtained was exposed to an electron beam at an accelerating voltage of 20 KV, and developed with a tetramethylammonium hydroxide aqueous solution (2.5%). Next, the sample was placed in a parallel plate type dry etching device, and oxygen plasma (2
Pa.

0.22W/cd)で15分間ドライエツチングを行い
、上層パターンを下層に転写した。この結果、0.6μ
の抜きパターンを解像することができた。また、パター
ニングの際の電子線露光量は50μC/dであった。
Dry etching was performed for 15 minutes at 0.22 W/cd) to transfer the upper layer pattern to the lower layer. As a result, 0.6μ
We were able to resolve the cutout pattern. Further, the electron beam exposure amount during patterning was 50 μC/d.

1旌1 合成例3により得られた重合体(C)Igと、2.6−
ビスヒドロキシメチル−p−クレゾール0.3gと、オ
ルトニトロベンジルアルコールスルホン酸エステル0.
02 gとをメチルイソブチルケトン15mに溶解し、
孔径が0.1nのメンブランフィルタで濾過してレジス
ト溶液とした。次にSi基板上に2.0−の厚さになる
ようにノボラック系レジスト(MP−1300シプレ一
社)を塗布し、ハードベークして平坦化層とし、この上
に上記レジスト溶液を0.2 mの厚さになるように塗
布し、80℃で20分ベーキングした。こうして得られ
た2層レジスト膜に加速電圧20KVで電子線を露光し
、テトラメチルアンモニウムヒドロキシド水溶液(2,
5%)で現像を行った。次に試料を平行平板型のドライ
エツチング装置に入れ、酸素プラズマ(2Pa。
1/1 Polymer (C) Ig obtained in Synthesis Example 3 and 2.6-
0.3 g of bishydroxymethyl-p-cresol and 0.3 g of orthonitrobenzyl alcohol sulfonic acid ester.
02 g and dissolved in 15 m of methyl isobutyl ketone,
It was filtered through a membrane filter with a pore size of 0.1 nm to obtain a resist solution. Next, a novolac resist (MP-1300, manufactured by Shipley Co., Ltd.) is applied to a thickness of 2.0 mm on the Si substrate, hard baked to form a flattened layer, and the above resist solution is applied on top of this to a thickness of 2.0 mm. It was coated to a thickness of 2 m and baked at 80°C for 20 minutes. The two-layer resist film thus obtained was exposed to an electron beam at an accelerating voltage of 20 KV, and a tetramethylammonium hydroxide aqueous solution (2,
5%). Next, the sample was placed in a parallel plate type dry etching device, and oxygen plasma (2 Pa) was applied.

0.22W/d)で15分間ドライエツチングを行い、
上層パターンを下層に転写した。この結果、0.6μの
抜きパターンを解像することができた。また、バターニ
ングの際の電子線露光量は45μC/ctjであった。
Dry etching was performed for 15 minutes at 0.22 W/d).
The upper layer pattern was transferred to the lower layer. As a result, a punched pattern of 0.6μ could be resolved. Further, the electron beam exposure amount during patterning was 45 μC/ctj.

〔発明の効果〕〔Effect of the invention〕

本発明のレジスト組成物において、ケイ素含有量の高い
有機ケイ素重合体を用いているため酸素プラズマ耐性に
優れ、酸発生剤より生しる酸が架橋反応の触媒として進
行するために感度が高く、また、現像液としてアルカリ
水溶液を用いていることと、有機ケイ素重合体の耐熱性
が高いことのために解像性が優れている。したがって、
本発明により、2層レジスト上層用レジストとして不可
欠な酸素プラズマ耐性、感度、解像性の3つを同時に満
足することができる。
The resist composition of the present invention uses an organosilicon polymer with a high silicon content, so it has excellent oxygen plasma resistance, and the acid generated from the acid generator acts as a catalyst for the crosslinking reaction, so it has high sensitivity. Furthermore, the resolution is excellent because an alkaline aqueous solution is used as the developer and the organosilicon polymer has high heat resistance. therefore,
According to the present invention, it is possible to simultaneously satisfy the three requirements of oxygen plasma resistance, sensitivity, and resolution, which are essential for a resist for the upper layer of a two-layer resist.

Claims (1)

【特許請求の範囲】 1、式 ▲数式、化学式、表等があります▼(1) (式中、R^1は同一または異なっていてもよく、−(
CH_2)_l−COOH〔lは1〜10の整数〕、ま
たは▲数式、化学式、表等があります▼〔mは0〜10
の整数〕を表す)で示される繰返し単位を基本構造とし
、かつ式−Si(R^2)_3(2) (式中、R^2は同一または異なっていてもよく、アル
キル基またはアリール基を表す)で示される末端基を有
し、重量平均分子量が1,000〜5,000,00で
ある有機ケイ素重合体と、酸によって活性化され、前記
有機ケイ素重合体と架橋反応をする架橋剤と、高エネル
ギー線の照射により酸を発生し、架橋剤を求電子性とし
て、架橋反応を促進する酸発生剤と、有機溶剤を含むレ
ジスト組成物。 2、前記有機ケイ素重合体4〜20重量部と、架橋剤0
.5〜20重量部と、酸発生剤0.1〜10重量部と、
有機溶剤100重量部とを含む、請求項1記載のレジス
ト組成物。
[Claims] 1. Formula ▲ Numerical formula, chemical formula, table, etc. ▼ (1) (In the formula, R^1 may be the same or different, -(
CH_2)_l-COOH [l is an integer from 1 to 10], or ▲Mathematical formula, chemical formula, table, etc.▼[m is 0 to 10
The basic structure is a repeating unit represented by ) and a weight average molecular weight of 1,000 to 5,000,00, and a crosslinking agent that is activated by an acid and undergoes a crosslinking reaction with the organosilicon polymer. A resist composition comprising an organic solvent, an acid generator that generates an acid upon irradiation with high-energy rays, makes the crosslinking agent electrophilic, and promotes a crosslinking reaction. 2. 4 to 20 parts by weight of the organosilicon polymer and 0 crosslinking agent
.. 5 to 20 parts by weight, and 0.1 to 10 parts by weight of an acid generator.
2. The resist composition according to claim 1, further comprising 100 parts by weight of an organic solvent.
JP22518490A 1990-08-29 1990-08-29 Resist composition Pending JPH04107561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22518490A JPH04107561A (en) 1990-08-29 1990-08-29 Resist composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22518490A JPH04107561A (en) 1990-08-29 1990-08-29 Resist composition

Publications (1)

Publication Number Publication Date
JPH04107561A true JPH04107561A (en) 1992-04-09

Family

ID=16825282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22518490A Pending JPH04107561A (en) 1990-08-29 1990-08-29 Resist composition

Country Status (1)

Country Link
JP (1) JPH04107561A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036270A1 (en) * 2003-10-07 2005-04-21 Hitachi Chemical Co., Ltd. Radiation-curing composition, method for storing same, method for forming cured film, method for forming pattern, method for using pattern, electronic component, and optical waveguide
WO2005036269A1 (en) * 2003-10-07 2005-04-21 Hitachi Chemical Co., Ltd. Radiation-curing composition, method for storing same, method for forming cured film, method for forming pattern, method for using pattern, electronic component, and optical waveguide
JP2005154715A (en) * 2003-11-25 2005-06-16 Rohm & Haas Electronic Materials Llc Waveguide composition and waveguide made of the same
JP2006091828A (en) * 2003-10-07 2006-04-06 Hitachi Chem Co Ltd Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2006091817A (en) * 2003-10-07 2006-04-06 Hitachi Chem Co Ltd Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297464B2 (en) 2003-10-07 2007-11-20 Hitachi Chemical Co., Ltd. Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
WO2005036269A1 (en) * 2003-10-07 2005-04-21 Hitachi Chemical Co., Ltd. Radiation-curing composition, method for storing same, method for forming cured film, method for forming pattern, method for using pattern, electronic component, and optical waveguide
JP2006091828A (en) * 2003-10-07 2006-04-06 Hitachi Chem Co Ltd Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2006091817A (en) * 2003-10-07 2006-04-06 Hitachi Chem Co Ltd Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
KR100698391B1 (en) * 2003-10-07 2007-03-23 히다치 가세고교 가부시끼가이샤 Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
WO2005036270A1 (en) * 2003-10-07 2005-04-21 Hitachi Chemical Co., Ltd. Radiation-curing composition, method for storing same, method for forming cured film, method for forming pattern, method for using pattern, electronic component, and optical waveguide
KR100853054B1 (en) * 2003-10-07 2008-08-19 히다치 가세고교 가부시끼가이샤 Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
KR100869882B1 (en) * 2003-10-07 2008-11-24 히다치 가세고교 가부시끼가이샤 Radiation curable composition, forming method of cured film and patterning method
KR100924621B1 (en) * 2003-10-07 2009-11-02 히다치 가세고교 가부시끼가이샤 Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
JP4600090B2 (en) * 2003-10-07 2010-12-15 日立化成工業株式会社 Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP4604710B2 (en) * 2003-10-07 2011-01-05 日立化成工業株式会社 Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
US8034545B2 (en) 2003-10-07 2011-10-11 Hitachi Chemical Co., Ltd. Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
JP2005154715A (en) * 2003-11-25 2005-06-16 Rohm & Haas Electronic Materials Llc Waveguide composition and waveguide made of the same

Similar Documents

Publication Publication Date Title
TW200304582A (en) Negative deep ultraviolet photoresist
JP3425243B2 (en) Electronic component pattern formation method
JPH04107561A (en) Resist composition
JP2935306B2 (en) Acid-decomposable compound and positive-type radiation-sensitive resist composition containing the same
JPH0643650A (en) Positive type photo-resist composition photosensitized by short wave-length ultraviolet ray
JPS63292128A (en) Silyl poly (vinyl) phenol photoresist
CN112650025B (en) Positive photoresist composition and preparation method thereof
JP2897786B2 (en) Organosilicon polymer and resist composition
JPH04107460A (en) Resist composition
JPH06332196A (en) Formation of resist pattern
JP3517144B2 (en) Photosensitive composition
JP3781940B2 (en) Negative resist composition and resist pattern forming method
JP2004279694A (en) Resist composition and its hardening method
JPH04155344A (en) Photo sensitive resin composition
JPH04347857A (en) Pattern forming method
JPH04104252A (en) Organosilicon polymer and resist composition containing same
JP2985305B2 (en) Resist composition and method of forming resist pattern
JPH04233544A (en) Resist composition and method for pattern forming
JP3236102B2 (en) Positive resist material
TW200416491A (en) Overcoating composition for photoresist and method for forming photoresist pattern using the same
JP2786502B2 (en) Resist material
JP2002179795A (en) Photosensitive resin, resist composition and method for patterning
JP2023076998A (en) resist composition
DW et al. Improving the process capability of SU-8, part III
JP3099528B2 (en) Radiation-sensitive resin composition for dry development