JPH0410709B2 - - Google Patents

Info

Publication number
JPH0410709B2
JPH0410709B2 JP57045412A JP4541282A JPH0410709B2 JP H0410709 B2 JPH0410709 B2 JP H0410709B2 JP 57045412 A JP57045412 A JP 57045412A JP 4541282 A JP4541282 A JP 4541282A JP H0410709 B2 JPH0410709 B2 JP H0410709B2
Authority
JP
Japan
Prior art keywords
zinc
electrode
oxide
tin
storage batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57045412A
Other languages
Japanese (ja)
Other versions
JPS58163158A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57045412A priority Critical patent/JPS58163158A/en
Publication of JPS58163158A publication Critical patent/JPS58163158A/en
Publication of JPH0410709B2 publication Critical patent/JPH0410709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/244Zinc electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ニツケル−亜鉛蓄電池、銀−亜鉛蓄
電池などのように負極活物質として亜鉛を用いる
アルカリ亜鉛蓄電池に関するものである。 負極活物質としての亜鉛は単位重量当りのエネ
ルギー密度が大きく且安価である利点を有する反
面、放電時に亜鉛がアルカリ電解液に溶出して亜
鉛酸イオンとなり、充電時にその亜鉛酸イオンが
亜鉛極表面に樹枝状或いは海綿状に電析するた
め、充放電を繰返すと、電析亜鉛がセパレータを
貫通して対極に接して内部短絡を惹起するためサ
イクル寿命が短い欠点がある。 このサイクル寿命を改善するため、各種の金属
あるいは酸化物を活性物中あるいは電解液中に添
加することが提案されている。その1つに錫があ
る。錫は水素過電圧が高く、且亜鉛の酸化還元電
位より貴であるため、亜鉛の樹枝状結晶の発生を
抑制するだけでなく、導電材として働き、さらに
公害の虞れがないため、添加剤として有望であ
る。 しかしながら長期にわたる充放電サイクルの結
果、亜鉛活物質だけでなく、錫も充放電反応に関
与し、高密度化して電析されるようになる。その
結果亜鉛極の多孔度が減少し、次第に亜鉛極の有
効面積が減少すると共に電極内部への電解液の拡
散が困難になり、アルカリ亜鉛蓄電池の放電容量
を大巾に低下させていた。 本発明はかかる点に鑑み発明されたものにし
て、亜鉛及び酸化亜鉛を主成分とし、酸化錫と、
錫の電析による高密度化を阻止するインジウムの
酸化物若しくは水酸化物とを含有する亜鉛極を備
えたものである。本発明はかかる構成にすること
により、添加剤としての錫の欠点を少なくし、よ
り長期にわたる充放電反応に耐えるように改良せ
んとするものである。 以下本発明を実施例に基ずき説明する。 実施例 1 酸化亜鉛粉末80重量%、亜鉛粉末10重量%、添
加剤として酸化錫4.5重量%及び酸化インジウム
0.5重量%、結着剤としてフツ素樹脂粉末5重量
%よりなる混合粉末に水を加え、混練した後、ロ
ーラによりシート状にしたものを、銅等よりなる
集電体の両面に付着し、加圧成型し乾燥して亜鉛
極を作成する。 このように作成した亜鉛極と公知の焼結式ニツ
ケル極とを組合せてニツケル−亜鉛蓄電池Aを組
立てた。この蓄電池の断面図を第1図に示す。こ
の図面において、1は亜鉛極、2はニツケル極、
3はセパレータ、4は保液層、5は電槽、6は電
槽蓋、78は正負極端子である。 実施例 2乃至5 実施例1における酸化錫と酸化インジウムの割
合を第1表に示す如く変化させて亜鉛極を形成
し、その他の点は実施例1と同一条件でニツケル
−亜鉛蓄電池B乃至Eを作成した。
The present invention relates to alkaline zinc storage batteries that use zinc as a negative electrode active material, such as nickel-zinc storage batteries and silver-zinc storage batteries. Zinc as a negative electrode active material has the advantage of having a high energy density per unit weight and being inexpensive, but on the other hand, zinc dissolves into the alkaline electrolyte during discharge and becomes zincate ions, and during charging, the zincate ions form on the surface of the zinc electrode. Since zinc is deposited in a dendritic or cavernous shape, repeated charging and discharging causes the deposited zinc to penetrate the separator and come into contact with the counter electrode, causing an internal short circuit, resulting in a short cycle life. In order to improve this cycle life, it has been proposed to add various metals or oxides to the active substance or electrolyte. One of them is tin. Since tin has a high hydrogen overvoltage and is nobler than the redox potential of zinc, it not only suppresses the formation of zinc dendrites, but also acts as a conductive material, and there is no risk of pollution, so it is used as an additive. It's promising. However, as a result of long-term charge-discharge cycles, not only the zinc active material but also tin participates in the charge-discharge reaction, becoming densified and electrodeposited. As a result, the porosity of the zinc electrode decreases, and the effective area of the zinc electrode gradually decreases, and it becomes difficult for the electrolyte to diffuse into the electrode, resulting in a significant decrease in the discharge capacity of the alkaline zinc storage battery. The present invention was invented in view of these points, and contains zinc and zinc oxide as main components, tin oxide,
It is equipped with a zinc electrode containing indium oxide or hydroxide that prevents densification due to tin electrodeposition. The present invention aims to reduce the drawbacks of tin as an additive and improve the ability to withstand charge/discharge reactions over a longer period of time by adopting such a structure. The present invention will be explained below based on examples. Example 1 80% by weight of zinc oxide powder, 10% by weight of zinc powder, 4.5% by weight of tin oxide and indium oxide as additives
Water is added to a mixed powder consisting of 0.5% by weight and 5% by weight of fluororesin powder as a binder, kneaded, and then formed into a sheet by a roller, which is attached to both sides of a current collector made of copper or the like. Pressure mold and dry to create zinc electrodes. A nickel-zinc storage battery A was assembled by combining the zinc electrode thus prepared and a known sintered nickel electrode. A cross-sectional view of this storage battery is shown in FIG. In this drawing, 1 is a zinc electrode, 2 is a nickel electrode,
3 is a separator, 4 is a liquid retaining layer, 5 is a battery case, 6 is a battery cover, and 78 is a positive and negative electrode terminal. Examples 2 to 5 Nickel-zinc storage batteries B to E were produced under the same conditions as Example 1 except that zinc electrodes were formed by changing the proportions of tin oxide and indium oxide in Example 1 as shown in Table 1. It was created.

【表】 比較のため、酸化錫を5重量%とし、酸化イン
ジウムを含まない亜鉛極を作成し、その他の点は
実施例1と同一の比較電池Xを作成した。 第2図はこれらの蓄電池のサイクル特性図であ
る。その充放電条件は、150mAで6時間充電し
た後、150mAで放電し電池電圧が1.0Vに達する
とき、放電を停止するものである。この特性図か
ら明らかなように、本発明による蓄電池A乃至E
は比較電池Xに対しサイクル特性が飛躍的に改善
される。即ち比較電池Xが約50サイクルで初期容
量の約50%に低下するに対し、本発明による蓄電
池A乃至Eは100サイクルを越えても維持する放
電容量が初期容量の90%以上と高い。また酸化イ
ンジウムの重量%に対する酸化錫の重量%の割合
比についてサイクル特性を見ると、その割合比が
小さい程即ち酸化錫に対し酸化インジウムの割合
を多くする程、サイクル特性が向上していること
がわかる。 次に実施例1乃至5は亜鉛極の添加剤としての
酸化錫及び酸化インジウムの合計重量%が一定の
場合であるが、亜鉛極におけるこの添加剤の合計
重量%を変えた実施例について説明する。 実施例 6乃至8 亜鉛極の構成剤である酸化亜鉛粉末、亜鉛粉
末、酸化錫及び酸化インジウムの添加剤、フツ素
樹脂粉末を夫々第2表に示す重量%に配分して、
実施例1と同様に亜鉛極を作成し、他の点は実施
例1と同一のニツケル−亜鉛蓄電池F乃至Hを作
成した。ここで、酸化錫と酸化インジウムの混合
比率は、重量比で1:1と一定にしている。
For comparison, a comparative battery FIG. 2 is a cycle characteristic diagram of these storage batteries. The charging and discharging conditions were to charge at 150 mA for 6 hours, then discharge at 150 mA, and stop discharging when the battery voltage reached 1.0V. As is clear from this characteristic diagram, storage batteries A to E according to the present invention
The cycle characteristics of Comparative Battery X are dramatically improved. That is, while comparative battery X decreases to about 50% of its initial capacity after about 50 cycles, storage batteries A to E according to the present invention maintain a high discharge capacity of 90% or more of their initial capacity even after 100 cycles. Also, when looking at the cycle characteristics with respect to the ratio of the weight percent of tin oxide to the weight percent of indium oxide, it is found that the smaller the ratio, that is, the larger the ratio of indium oxide to tin oxide, the better the cycle characteristics. I understand. Next, Examples 1 to 5 are cases in which the total weight percent of tin oxide and indium oxide as additives in the zinc electrode are constant, but examples will be described in which the total weight percent of these additives in the zinc electrode is changed. . Examples 6 to 8 Zinc oxide powder, zinc powder, tin oxide and indium oxide additives, and fluororesin powder, which are constituent agents of the zinc electrode, were distributed in the weight percentages shown in Table 2, respectively.
A zinc electrode was prepared in the same manner as in Example 1, and nickel-zinc storage batteries F to H, which were otherwise the same as in Example 1, were prepared. Here, the mixing ratio of tin oxide and indium oxide is kept constant at 1:1 by weight.

【表】 第3図はこれら蓄電池F乃至H及び比較電池X
のサイクル特性図である。この特性図から明らか
な如く亜鉛極における酸化錫及び酸化インジウム
の添加剤の割合を変えた場合にも、本発明による
蓄電池F乃至Hは比較電池Xに比し、サイクル特
性が飛躍的に向上する。 このように本発明による蓄電池A乃至Hが比較
電池Xに対し、サイクル特性が向上する理由につ
いて考察すると、インジウムは亜鉛より水素過電
圧が高く、亜鉛の樹枝結晶を防止する働きがあ
り、酸化インジウムは電解液に対する濡れが良い
ため、電解液を亜鉛極中により均一に保持するこ
とになり、亜鉛の再電着を均一化すると共に亜鉛
の有効表面積を増大させる。また添加剤としての
錫の電析時における高密度化を抑制して、添加効
果をより長期にわたり持続させると考えられる。 尚、インジウムの添加効果は、酸化物だけでな
く、水酸化物を用いても同じである。 以上の如く本発明は、亜鉛及び酸化亜鉛を主成
分とし、酸化錫と、インジウムの酸化物若しくは
水酸化物とを含有する亜鉛極を備えるものである
から、アルカリ亜鉛蓄電池のサイクル特性を従来
の比較電池に比し向上することができ、その工業
的価値大なるものである。
[Table] Figure 3 shows these storage batteries F to H and comparative battery X.
FIG. As is clear from this characteristic diagram, even when the ratio of tin oxide and indium oxide additives in the zinc electrode is changed, the cycle characteristics of storage batteries F to H according to the present invention are dramatically improved compared to comparative battery X. . Considering the reason why storage batteries A to H according to the present invention have improved cycle characteristics compared to comparative battery X, indium has a higher hydrogen overvoltage than zinc and has a function of preventing zinc dendrites, Because of the good wetting with the electrolyte, the electrolyte is more uniformly retained in the zinc electrode, making the redeposition of zinc uniform and increasing the effective surface area of the zinc. It is also thought that the addition effect can be sustained for a longer period of time by suppressing the increase in density during electrodeposition of tin as an additive. Note that the effect of adding indium is the same even when using not only an oxide but also a hydroxide. As described above, the present invention has a zinc electrode mainly composed of zinc and zinc oxide, and contains tin oxide and indium oxide or hydroxide. It can be improved compared to comparative batteries, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるアルカリ亜鉛蓄電池の一
実施例の断面図、第2図及び第3図は夫々本発明
の異なる実施例によるアルカリ亜鉛蓄電池と比較
電池のサイクル特性図である。 1……亜鉛極。
FIG. 1 is a sectional view of one embodiment of an alkaline zinc storage battery according to the present invention, and FIGS. 2 and 3 are cycle characteristic diagrams of an alkaline zinc storage battery according to different embodiments of the present invention and a comparative battery, respectively. 1...Zinc electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛及び酸化亜鉛を主成分とし、酸化錫と、
インジウムの酸化物若しくは水酸化物とを含有す
る亜鉛極を備えたアルカリ亜鉛蓄電池。
1 The main ingredients are zinc and zinc oxide, and tin oxide,
An alkaline zinc storage battery with a zinc electrode containing indium oxide or hydroxide.
JP57045412A 1982-03-19 1982-03-19 Alkaline zinc storage battery Granted JPS58163158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57045412A JPS58163158A (en) 1982-03-19 1982-03-19 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57045412A JPS58163158A (en) 1982-03-19 1982-03-19 Alkaline zinc storage battery

Publications (2)

Publication Number Publication Date
JPS58163158A JPS58163158A (en) 1983-09-27
JPH0410709B2 true JPH0410709B2 (en) 1992-02-26

Family

ID=12718539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57045412A Granted JPS58163158A (en) 1982-03-19 1982-03-19 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPS58163158A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096849A (en) * 1973-12-27 1975-08-01
JPS5136450A (en) * 1974-09-20 1976-03-27 Chugai Pharmaceutical Co Ltd Asukofuranonjudotai no seiho
JPS53145034A (en) * 1977-05-24 1978-12-16 Suwa Seikosha Kk Alkaline battery
JPS5432134A (en) * 1977-08-17 1979-03-09 Hitachi Ltd Holding device equipped with molding board removing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096849A (en) * 1973-12-27 1975-08-01
JPS5136450A (en) * 1974-09-20 1976-03-27 Chugai Pharmaceutical Co Ltd Asukofuranonjudotai no seiho
JPS53145034A (en) * 1977-05-24 1978-12-16 Suwa Seikosha Kk Alkaline battery
JPS5432134A (en) * 1977-08-17 1979-03-09 Hitachi Ltd Holding device equipped with molding board removing apparatus

Also Published As

Publication number Publication date
JPS58163158A (en) 1983-09-27

Similar Documents

Publication Publication Date Title
JPS6196666A (en) Alkaline zinc storage battery
JPH0410709B2 (en)
JPS58163162A (en) Alkaline zinc storage battery
JPH06101331B2 (en) Alkaline zinc storage battery
JPS5966060A (en) Zinc electrode for alkaline zinc storage battery
JPH06260166A (en) Nickel electrode for alkaline storage battery
JPS58163172A (en) Alkaline zinc storage battery
JPH0576743B2 (en)
JPH0544142B2 (en)
JPH0687417B2 (en) Alkaline zinc storage battery
JPS62108467A (en) Alkaline zinc storage battery
JPS60185372A (en) Nickel-zinc storage battery
JPS59189563A (en) Alkaline zinc storage battery
JPH073793B2 (en) Alkaline zinc storage battery
JPH0560220B2 (en)
JPS61104564A (en) Alkaline zinc storage battery
JPH0584027B2 (en)
JPH0527226B2 (en)
JPH079804B2 (en) Zinc pole
JPS59167970A (en) Nickel-zinc battery
JPH0252386B2 (en)
JPS59151757A (en) Alkaline zinc storage battery
JPS5832361A (en) Alkaline zinc secondary battery
JPH0685322B2 (en) Alkaline zinc storage battery
JPS60216450A (en) Alkaline zinc storage battery