JPH0410688B2 - - Google Patents

Info

Publication number
JPH0410688B2
JPH0410688B2 JP58019436A JP1943683A JPH0410688B2 JP H0410688 B2 JPH0410688 B2 JP H0410688B2 JP 58019436 A JP58019436 A JP 58019436A JP 1943683 A JP1943683 A JP 1943683A JP H0410688 B2 JPH0410688 B2 JP H0410688B2
Authority
JP
Japan
Prior art keywords
manufacturing
resin composition
electrodeposition paint
curable resin
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58019436A
Other languages
Japanese (ja)
Other versions
JPS59146108A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1943683A priority Critical patent/JPS59146108A/en
Publication of JPS59146108A publication Critical patent/JPS59146108A/en
Publication of JPH0410688B2 publication Critical patent/JPH0410688B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な自己融着電線の製造法に関す
る。さらに詳しくは熱硬化形の水分散形電着塗料
を電着し、該電着析出層を有機溶剤で処理し、焼
付け硬化したのち紫外線照射と加熱の双方により
硬化反応の進むレジン組成物を塗布し、紫外線を
照射してなる自己融着電線の製造法に関する。 電気機器用コイル、通信器用コイルなどの製作
にあたつて自己融着電線を巻線後、加熱処理をす
ることによつて線間を融着一体化させる方法は従
来の巻線後、ワニス処理をし、加熱硬化させる方
法にくらべて含浸ワニスが不要であること、工程
が簡略化されることなど多くの利点があり、とく
に小形の電気機器用コイルなどに使用されてい
る。 従来この種の自己融着電線は通常のエナメル電
線を製造したのち、その表面にビニルプチラール
樹脂、フエノキシ樹脂、ナイロンなどを塗布し、
焼付けて製造されているのが現状である。しかし
ながらこの種の自己融着電線は製造工程が複雑な
こと、使用時の線間の接着力が小さいこと、溶剤
を多量に使用することなど種々の欠点がある。 本発明者らは前記のごとき欠点を改良すべく鋭
意研究の重ねた結果、水分散形電着塗料を用いて
電着塗装法により電着析出層を形成させ、該析出
層を有機溶剤蒸気で処理し、焼付けたのち紫外線
硬化形レジン組成物を塗布し、紫外線を照射する
ことにより、前記諸欠点を解決させうることを見
出した。すなわち本発明では形成させた電着析出
層を有機溶剤蒸気で処理し、焼付けたのち紫外線
硬化形レジン組成物を塗布し、紫外線を照射する
ことにより、自己融着電線間の接着力が良好であ
り、製造時に有機溶剤はほとんど使用せず、かつ
電着−紫外線照射という簡単な工程で広汎に使用
できる自己融着電線を製造でき、生産姓を著しく
向上させうるという効果がえられた。 本発明に使用される水分散形電着塗料として
は、たとえばアクリル系、ポリエステル系、ポリ
エステルイミド系、エポキシアクリル系などの水
分散形電着塗料が好適に使用される。 本発明に使用される電着析出層を処理する有機
溶剤としては前記水分散形電着塗料の粒子を溶解
または膨潤するものならば特別の制限はなく、好
適なものとしてはジメチルホルムアミド、ジメチ
ルアセトアミド、N−メチルピロリドンなどがあ
けられる。 本発明に使用される融着層となる紫外線硬化形
レジン組成物は紫外線硬化用触媒および加熱硬化
用触媒の双方を含む組成物である。 レジンとしては紫外線硬化と加熱硬化の双方の
硬化が進むレジンであり、紫外線照射後、巻線に
耐える機械強度を有するものであり、かつ巻線
後、加熱により融着するものでなければならず、
エポキシ系樹脂などが好ましい。 前記双方の触媒はそれぞれの硬化反応の障害と
ならないものを選択する必要があり、紫外線硬化
用触媒としてはルイス酸ジアゾニウム塩、BF4
PF6またはSbF6のオニウム塩、またはアルミニウ
ム錯体とシラノール触媒との混合物など、加熱硬
化用触媒としては三フツ化ホウ素アミンコンプレ
ツクスなどが好ましい。紫外線硬化用触媒/加熱
硬化用触媒の重量比0.3〜1.2の範囲が好適に使用
される。 紫外線硬化形レジン組成物は塗布されたのち、
まず紫外線照射によりBステージ化した状態とな
り、自己融着が可能となる。ついで未硬化部分を
加熱により硬化させる。融着層の膜厚は用途によ
り異なるが巻線後の接着力などから3〜10μmが
好ましい。 水分散形電着塗料および紫外線硬化形レジン組
成物を用いた自己融着電線を製造装置の一概略説
明図を第1図に示し、該図にもとづいて製造工程
を説明する。 第1図において1は裸銅線であり、巻取り装置
により矢印方向に移動する。裸銅線1は水分散形
電着塗料を入れた電着槽2で電着され、ついで溶
剤処理槽3中のジメチルホルムアミド蒸気で処理
され、焼付炉4a,4bで焼付けたのち樹脂槽5
で紫外線硬化形レジン組成物が塗布され、ダイス
6を通過したのち紫外線照射炉7で紫外線を照射
し、自己融着電線がえられる。なお線引速度、電
着の諸条件、電着皮膜と融着層の膜厚の比、焼付
条件、紫外線の照射条件などは電線の使用目的、
要求特性などにより自由に変化させうる。 つぎに本発明の方法を実施例および比較例をあ
げて説明する。 製造例 1 100反応釜にラウリル硫酸エステルソーダ
0.10Kg、イオン交換水75Kgを仕込み、撹拌しなが
らチツ素ガスを約30分間通じた。そののちアクリ
ロニトリル10Kg、スチレン5Kg、アクリル酸エチ
ル3Kg、グリシジルメチクリレート1Kg、メタク
リル酸1Kgの混合駅を加え、さらに重合開始剤と
して過流酸アンモニウム0.08Kgおよび亜硫酸水素
ナトリウム0.03Kgを水5Kgに溶解させた液を加え
70〜75℃で4時間反応させて不揮発分19.4%の水
分散形電着塗料(以下、A−1という)をえた。 製造例 2 100反応釜にラウリル硫酸エステルソーダ
0.12Kg、イオン交換水75Kgを仕込み、撹拌しなが
らチツ素ガスを約30分間通じた。そののちアクリ
ロニトリル9Kg、α−メチルスチレン7Kg、アク
リル酸エチル2Kg、グリシジルメタクリレート1
Kg、メタクリル酸1Kgの混合液を加え、さらに重
合開始剤として過硫酸アンモニウム0.10Kg、亜流
酸水素ナトリウム0.03Kgを水5Kgに溶解させた液
を加え、75〜80℃で4時間反応させて不揮発分
19.0%の水分散形電着塗料(以下、A−2とい
う)をえた。 製造例 3 100の容器にDER431(ダウケミカル社製、ノ
ボラツク型エポキシ樹脂)60KgとY−179チバガ
イギー社製、脂環式エポキシ樹脂)40Kgとを仕込
み、室温中で撹拌しながら紫外線硬化触媒として
オニウム塩である4,4〜ジメチルジフエニルヨ
ウドニウムヘキサフルオロフオスフエイト0.75
Kg、加熱硬化用触媒として三フツ化ホウ素モノエ
タノールアミンコンプレツクス0.75Kgおよび増感
剤としてアントラキノン0.25Kgを添加し、充分に
溶解させ、紫外線硬化形レジン組成物(以下、B
−1という)をえた。 製造例 4 100の容器にエピコート815(シエル化学社製、
ビスフエノール型エポキシ樹脂)70Kg、エピコー
ト10C1(シエル化学社製、ビスフエノール型エポ
キシ樹脂)10KgおよびDER431 20Kgを仕込み、
室温で撹拌しながら紫外線硬化用触媒としてトリ
フエニルスルホニウムフツ化アンチモン0.5Kg、
加熱硬化用触媒として三フツ化ホウ素のモノエチ
ルアミンコンプレツクス0.5Kgおよび増感剤とし
てアントラキノン0.25Kgを添加し、充分に溶解さ
せ、紫外線硬化形レジン組成物(以下、B−2と
いう)をえた。 実施例 1〜4 第1図に示すごとき装置を用いて、第1表に記
載した水分散形電着塗料を用いて直径0.8mmの裸
銅線を線速15m/分で走行させ、電着槽2中で直
流電圧約10Vを印加し、電着し、150〜200℃の処
理槽3でジメチルホルムアミド蒸気処理を行な
い、200〜300℃の焼付炉4aを15秒で通過させ、
続いて300〜400℃の焼付炉4bを15秒で通過させ
た。そののち樹脂槽5で第1表に示す紫外線硬化
形レジン組成物をダイスを用いて塗布し、紫外線
照射炉6で10KW出力の水銀ランプを用いて20
m/分の線引速度で紫外線を照射し第1表に示す
自己融着電線をえた。 えられた自己融着電線を直径6mmのマンドレル
に長さ50mm密巻きし、160℃×15分間、180℃×15
分間、200℃×15分間の各条件で加熱硬化させ、
試料(密巻きしたコイル)を作製した。 前記各条件において作製した試料の一端に室温
で荷重をかけて試料の解体する重量、すなわち室
温における接着力を測定し、その結果を第1表に
記載した。また160℃×15分間の条件で作製した
前記試料について100gの接着力を保持する温度、
ヒートシヨツク、劣化巻付、破壊電圧を測定し、
第1表に示した。 比較例 ポリエステル系水分散形電着塗料を用いて直径
0.8mmの裸銅線に電着層を形成させ、実施例1と
同条件で焼付炉を通過させた。そののち従来法に
したがつて浸漬塗布法によりビニルホルマール樹
脂を塗布し、第1表に示す自己融着電線をえた。 えられた自己融着電線を実施例1と同様にして
マンドレルに密巻きし、160℃×15分巻加熱硬化
させ、試料を作製した。 作製した試料を用いて実施例1と同様に室温に
おける接着力、100gの接着力を保持する温度、
ヒートシヨツク、劣化巻付、破壊電圧を測定し、
第1表に示した。 第1表の結果から本発明による自己融着電線は
従来の浸漬塗布法によりえられた電線と比較し
て、室温における接着性および100gの接着力を
保持する温度においてすぐれていることがわか
る。
The present invention relates to a novel method for manufacturing a self-welding wire. More specifically, a thermosetting water-dispersed electrodeposition paint is electrodeposited, the electrodeposited layer is treated with an organic solvent, and after hardening by baking, a resin composition that undergoes a curing reaction by both ultraviolet irradiation and heating is applied. The present invention also relates to a method of manufacturing a self-bonding wire by irradiating ultraviolet rays. When manufacturing coils for electrical equipment, communication device coils, etc., the method of welding and integrating the wires by heat treatment after winding self-fusing wire is the conventional method of varnishing after winding. It has many advantages over the method of heating and curing, such as not requiring impregnated varnish and simplifying the process, and is particularly used for coils for small electrical devices. Conventionally, this type of self-fusing electric wire was produced by manufacturing a regular enamelled electric wire, then coating its surface with vinyl petitral resin, phenoxy resin, nylon, etc.
Currently, it is manufactured by baking. However, this type of self-fusing electric wire has various drawbacks, such as a complicated manufacturing process, a low adhesion between the wires during use, and the use of a large amount of solvent. As a result of extensive research in order to improve the above-mentioned drawbacks, the present inventors formed an electrodeposited layer by an electrodeposition coating method using a water-dispersed electrodeposition paint, and the deposited layer was coated with organic solvent vapor. It has been found that the above-mentioned drawbacks can be overcome by applying an ultraviolet curable resin composition after treatment and baking, and irradiating it with ultraviolet rays. That is, in the present invention, the formed electrodeposited layer is treated with organic solvent vapor, baked, and then coated with an ultraviolet curable resin composition and irradiated with ultraviolet rays, thereby achieving good adhesion between the self-fusing wires. Therefore, a self-fusing electric wire that can be widely used can be manufactured using a simple process of electrodeposition and ultraviolet irradiation, with almost no organic solvent used during manufacturing, and the production efficiency can be significantly improved. As the water-dispersed electrodeposition paint used in the present invention, water-dispersed electrodeposition paints such as acrylic, polyester, polyesterimide, and epoxy acrylic paints are preferably used. The organic solvent for treating the electrodeposited layer used in the present invention is not particularly limited as long as it dissolves or swells the particles of the water-dispersed electrodeposition paint, and preferred examples include dimethylformamide and dimethylacetamide. , N-methylpyrrolidone, etc. The ultraviolet curable resin composition used as the adhesive layer used in the present invention is a composition containing both an ultraviolet curing catalyst and a heat curing catalyst. The resin must be one that hardens both by UV rays and heat, has mechanical strength that can withstand winding after being irradiated with UV rays, and must be fused by heating after winding. ,
Epoxy resins are preferred. It is necessary to select catalysts for both of the above that do not interfere with the respective curing reactions, and examples of catalysts for ultraviolet curing include Lewis acid diazonium salts, BF 4 ,
As the heat curing catalyst, a boron trifluoride amine complex, such as an onium salt of PF 6 or SbF 6 , or a mixture of an aluminum complex and a silanol catalyst, is preferable. A weight ratio of ultraviolet curing catalyst/heat curing catalyst is preferably used in a range of 0.3 to 1.2. After the ultraviolet curable resin composition is applied,
First, it is brought into a B-stage state by irradiation with ultraviolet rays, and self-fusion becomes possible. Then, the uncured portion is cured by heating. The thickness of the fusion layer varies depending on the application, but it is preferably 3 to 10 μm from the viewpoint of adhesive strength after winding. A schematic explanatory diagram of an apparatus for manufacturing a self-fusing electric wire using a water-dispersed electrodeposition paint and an ultraviolet curable resin composition is shown in FIG. 1, and the manufacturing process will be explained based on the diagram. In FIG. 1, 1 is a bare copper wire, which is moved in the direction of the arrow by a winding device. The bare copper wire 1 is electrodeposited in an electrodeposition tank 2 containing water-dispersed electrodeposition paint, then treated with dimethylformamide vapor in a solvent treatment tank 3, baked in baking ovens 4a and 4b, and then transferred to a resin tank 5.
An ultraviolet curable resin composition is applied thereon, passed through a die 6, and then irradiated with ultraviolet rays in an ultraviolet irradiation furnace 7 to obtain a self-fused wire. Note that the drawing speed, electrodeposition conditions, ratio of electrodeposited film to fusion layer thickness, baking conditions, ultraviolet irradiation conditions, etc. will depend on the purpose of use of the wire,
It can be freely changed depending on the required characteristics. Next, the method of the present invention will be explained with reference to Examples and Comparative Examples. Production example 1 Lauryl sulfate ester soda in 100 reaction pot
0.10 kg and 75 kg of ion-exchanged water were charged, and nitrogen gas was passed through the tank for about 30 minutes while stirring. After that, a mixture of 10Kg of acrylonitrile, 5Kg of styrene, 3Kg of ethyl acrylate, 1Kg of glycidyl methacrylate, and 1Kg of methacrylic acid was added, and 0.08Kg of ammonium persulfate and 0.03Kg of sodium bisulfite were dissolved in 5Kg of water as polymerization initiators. Add the solution
The reaction was carried out at 70 to 75°C for 4 hours to obtain a water-dispersed electrodeposition paint (hereinafter referred to as A-1) with a non-volatile content of 19.4%. Production example 2 Lauryl sulfate ester soda in 100 reaction pot
0.12 kg and 75 kg of ion-exchanged water were charged, and nitrogen gas was passed through the tank for about 30 minutes while stirring. After that, 9 kg of acrylonitrile, 7 kg of α-methylstyrene, 2 kg of ethyl acrylate, 1 kg of glycidyl methacrylate.
A mixture of 1 kg of methacrylic acid and 0.10 kg of ammonium persulfate and 0.03 kg of sodium hydrogen sulfite dissolved in 5 kg of water as polymerization initiators was added, and the mixture was reacted at 75 to 80°C for 4 hours to remove non-volatile matter.
A 19.0% water-dispersed electrodeposition paint (hereinafter referred to as A-2) was obtained. Production Example 3 60 kg of DER431 (manufactured by Dow Chemical Company, novolak type epoxy resin) and 40 kg of Y-179 (manufactured by Ciba Geigy, Inc., alicyclic epoxy resin) are placed in a 100-sized container, and onium is added as an ultraviolet curing catalyst while stirring at room temperature. Salt 4,4-dimethyldiphenyliodonium hexafluorophosphate 0.75
Kg, 0.75 Kg of boron trifluoride monoethanolamine complex as a heat curing catalyst and 0.25 Kg of anthraquinone as a sensitizer were added and sufficiently dissolved to form an ultraviolet curable resin composition (hereinafter referred to as B
-1) was obtained. Manufacturing example 4 Epicoat 815 (manufactured by Ciel Chemical Co., Ltd.,
Bisphenol type epoxy resin) 70Kg, Epicote 10C1 (manufactured by Ciel Chemical Co., Ltd., bisphenol type epoxy resin) 10Kg and DER431 20Kg,
0.5Kg of triphenylsulfonium antimony fluoride as a catalyst for UV curing while stirring at room temperature.
0.5 kg of boron trifluoride monoethylamine complex as a heat curing catalyst and 0.25 kg of anthraquinone as a sensitizer were added and sufficiently dissolved to obtain an ultraviolet curable resin composition (hereinafter referred to as B-2). Examples 1 to 4 Using the apparatus shown in Figure 1, a bare copper wire with a diameter of 0.8 mm was run at a linear speed of 15 m/min using the water-dispersed electrodeposition paint listed in Table 1, and the water-dispersed electrodeposition paint was applied. Approximately 10 V of DC voltage was applied in tank 2 for electrodeposition, dimethylformamide vapor treatment was performed in treatment tank 3 at 150 to 200°C, and passing through baking furnace 4a at 200 to 300°C for 15 seconds.
Subsequently, it was passed through a baking furnace 4b at 300 to 400°C for 15 seconds. Thereafter, the ultraviolet curable resin composition shown in Table 1 was applied using a die in the resin tank 5, and the ultraviolet curable resin composition shown in Table 1 was applied using a mercury lamp with an output of 10 KW in the ultraviolet irradiation furnace 6 for 20 minutes.
The self-fused wires shown in Table 1 were obtained by irradiating ultraviolet rays at a drawing speed of m/min. The resulting self-fused wire was wound tightly around a mandrel with a diameter of 6 mm to a length of 50 mm, and heated at 160°C for 15 minutes and at 180°C for 15 minutes.
Cured by heating at 200°C for 15 minutes.
A sample (closely wound coil) was prepared. A load was applied to one end of the sample prepared under each of the above conditions at room temperature, and the weight of the sample to be disassembled, that is, the adhesive strength at room temperature, was measured, and the results are shown in Table 1. In addition, the temperature at which the adhesive force of 100g is maintained for the sample prepared under the conditions of 160°C x 15 minutes,
Measure heat shock, deteriorated winding, and breakdown voltage,
It is shown in Table 1. Comparative example: Using polyester water-dispersed electrodeposition paint,
An electrodeposited layer was formed on a 0.8 mm bare copper wire, and the wire was passed through a baking furnace under the same conditions as in Example 1. Thereafter, a vinyl formal resin was applied by dip coating according to a conventional method to obtain the self-fused wire shown in Table 1. The obtained self-fused electric wire was tightly wound around a mandrel in the same manner as in Example 1, and heated and cured at 160° C. for 15 minutes to prepare a sample. Using the prepared sample, as in Example 1, the adhesive strength at room temperature, the temperature at which the adhesive strength of 100 g is maintained,
Measure heat shock, deteriorated winding, and breakdown voltage,
It is shown in Table 1. From the results in Table 1, it can be seen that the self-fusing electric wire according to the present invention has superior adhesion at room temperature and at the temperature at which it maintains an adhesive force of 100 g, compared to electric wire obtained by the conventional dip coating method.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は自己融着電線の製造装置の一概略説明
図である。
FIG. 1 is a schematic explanatory diagram of a self-welding wire manufacturing apparatus.

Claims (1)

【特許請求の範囲】 1 水分散形電着塗料を用いて電着塗装法により
電着析出層を形成させ、該析出層を有機溶剤蒸気
で処理し、焼付けたのち、紫外線硬化用触媒およ
び加熱硬化用触媒を含む紫外線硬化形レジン組成
物を塗布し、紫外線を照射してなる自己融着電線
の製造法。 2 水分散形電着塗料としてエポキシアクリル系
電着塗料を用いた特許請求の範囲第1項記載の製
造法。 3 水分散形電着塗料としてポリエステル系電着
塗料を用いた特許請求の範囲第1項記載の製造
法。 4 有機溶剤の蒸気としてジメチルホルムアミド
を用いた特許請求の範囲第1項記載の製造法。 5 紫外線硬化形レジン組成物としてエポキシ系
レジン組成物を用いた特許請求の範囲第1項記載
の製造法。 6 紫外線硬化形レジン組成物に含有される紫外
線硬化用触媒としてルイス酸のジアゾニウム塩、
BF4,PF6またはSbF6のオニウム塩、またはアル
ミニウム錯体とシラノール触媒との混合物を用い
た特許請求の範囲第1項記載の製造法。 7 紫外線硬化形レジン組成物に含有される熱硬
化用触媒として三フツ化ホウ素アミンコンプレツ
クスを用いた特許請求の範囲第1項記載の製造
法。
[Claims] 1. An electrodeposited layer is formed by an electrodeposition coating method using a water-dispersed electrodeposition paint, and the deposited layer is treated with organic solvent vapor and baked, followed by ultraviolet curing catalyst and heating. A method of manufacturing a self-fusing electric wire by applying an ultraviolet curable resin composition containing a curing catalyst and irradiating it with ultraviolet rays. 2. The manufacturing method according to claim 1, which uses an epoxy acrylic electrodeposition paint as the water-dispersed electrodeposition paint. 3. The manufacturing method according to claim 1, which uses a polyester electrodeposition paint as the water-dispersed electrodeposition paint. 4. The manufacturing method according to claim 1, using dimethylformamide as the organic solvent vapor. 5. The manufacturing method according to claim 1, using an epoxy resin composition as the ultraviolet curable resin composition. 6 Lewis acid diazonium salt as an ultraviolet curing catalyst contained in the ultraviolet curable resin composition,
2. The production method according to claim 1, using an onium salt of BF 4 , PF 6 or SbF 6 or a mixture of an aluminum complex and a silanol catalyst. 7. The manufacturing method according to claim 1, wherein a boron trifluoride amine complex is used as a thermosetting catalyst contained in the ultraviolet curable resin composition.
JP1943683A 1983-02-08 1983-02-08 Method of producing self-adhesive wire Granted JPS59146108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943683A JPS59146108A (en) 1983-02-08 1983-02-08 Method of producing self-adhesive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943683A JPS59146108A (en) 1983-02-08 1983-02-08 Method of producing self-adhesive wire

Publications (2)

Publication Number Publication Date
JPS59146108A JPS59146108A (en) 1984-08-21
JPH0410688B2 true JPH0410688B2 (en) 1992-02-26

Family

ID=11999232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943683A Granted JPS59146108A (en) 1983-02-08 1983-02-08 Method of producing self-adhesive wire

Country Status (1)

Country Link
JP (1) JPS59146108A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5377535B2 (en) * 2011-01-31 2013-12-25 三菱電線工業株式会社 Insulated wire manufacturing method and manufacturing apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158911A (en) * 1981-03-26 1982-09-30 Mitsubishi Electric Corp Method of producing electrically insulating conductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57158911A (en) * 1981-03-26 1982-09-30 Mitsubishi Electric Corp Method of producing electrically insulating conductor

Also Published As

Publication number Publication date
JPS59146108A (en) 1984-08-21

Similar Documents

Publication Publication Date Title
US4724345A (en) Electrodepositing mica on coil connections
US4447797A (en) Insulated conductor having adhesive overcoat
US4622116A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4615778A (en) Process for electrodepositing mica on coil or bar connections and resulting products
US4723083A (en) Electrodeposited mica on coil bar connections and resulting products
JPH0410688B2 (en)
JPH03241609A (en) Flat-type superthin film insulated wire
US4576694A (en) Method for producing electrically insulated conductor
JPS6036047B2 (en) Manufacturing method of self-fused electric wire
US4272310A (en) Method of making a bonded structure of magnet wire
WO2004100184A1 (en) Method of coating a square wire and an insulated wire of a square wire
EP3663334A1 (en) Fiber-reinforced resin and method for manufacturing same
JPS62189709A (en) Manufacture of coil
JPS58186108A (en) Lead wire for electric device
JP2914654B2 (en) Conductive adhesive for enamel-coated wires
JPS58198803A (en) Method of producing insulated wire
JPS5851419A (en) Method of producing electrically insulating conductor
JP2006523776A (en) Electrodeposition coating method, electrodeposition coating, and electrodeposition product
CA1288726C (en) Process for electrodepositing mica on coil or bar connections and resulting products
JPS5931802B2 (en) Manufacturing method of insulated conductor
US3598705A (en) Method of treating the surface of aluminum and aluminum alloys,and insulation coated conductors obtained thereby
JPS6328249A (en) Manufacture of stator
JPS62237610A (en) Self-bonding insulated wire
JPS5934692A (en) Method of producing flexible printed circuit board
JPH0197306A (en) Insulated electric wire