JPH0410669B2 - - Google Patents

Info

Publication number
JPH0410669B2
JPH0410669B2 JP59207243A JP20724384A JPH0410669B2 JP H0410669 B2 JPH0410669 B2 JP H0410669B2 JP 59207243 A JP59207243 A JP 59207243A JP 20724384 A JP20724384 A JP 20724384A JP H0410669 B2 JPH0410669 B2 JP H0410669B2
Authority
JP
Japan
Prior art keywords
histogram
items
storage
overflow
locations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59207243A
Other languages
English (en)
Other versions
JPS6190277A (ja
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59207243A priority Critical patent/JPS6190277A/ja
Priority to EP85112606A priority patent/EP0177058A3/en
Publication of JPS6190277A publication Critical patent/JPS6190277A/ja
Publication of JPH0410669B2 publication Critical patent/JPH0410669B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Image Analysis (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】
〔産業上の利用分野〕 この発明は転送されてくるデータを監視してそ
のデータの項目ごとの頻度を計算するヒストグラ
ム生成手法に関する。 〔従来技術〕 ヒストグラムは画像処理たとえば画像の量子
化、分類処理、パターン認識を行ううえで基本に
なる統計情報である。このことを理解するために
一例としてカラー画像の量子化を考えよう。量子
化とは標本値の範囲を区分けして同一の区分け内
の標本値を1つの値とするものでる。赤、緑、青
の3次元について各々8ビツトでカラー画像を走
査した場合、その標本値の数は28×3(=16777216)
であり、このようにして得た画像データをエント
リ数256のルツクアツプテーブルを有する表示装
置で表示するには28×3種類の標本値を256種類の
可変表示色に割り当てなければならない。この
際、色の量子化すなわち表示色の選定および表示
色と標本値との間のマツピングを、表示すべき画
像の特性に応じて適切に実行しないと、いわゆる
偽輪郭が顕在化してしまう。そこで一般には頻度
の高い標本値の範囲で区分けの目を細かくし、他
方頻度の低い標本値の範囲で区分けの目を粗くす
ること(漸減的な量子化)が行われている。そし
てこのような量子化を行ううえでヒストグラムを
基準として用いるのである。 ところで現在市場に出まわつている画像処理用
のワークステーシヨンの多くはその内部にヒスト
グラム計算用の機能すなわちヒストグラマを具備
している。これはワークステーシヨンのインテリ
ジエンス化に応えるものである。しかし、現在用
いられているヒストグラマは現実の画像処理に十
分対処できるものではなかつた。 すなわち処理すべきカラー画像の次元は通常3
であり、各次元は8ビツトで表示されるのが普通
である。写真をデジタイザで走査した際に得られ
る画像データは典型的には3次元(赤、緑、青)、
8ビツトである。またリモートセンシング用のセ
ンザでは通常5〜8次元であり、パターン認識用
のセンサが開発されると次元が3を越える画像を
処理することが予想される。 このような画像データを一度に処理してヒスト
グラムを処理すると仮定すると、語ロケーシヨン
の数が膨大であり、かつ語長も長いストレージを
ヒストグラマ用に設けなければならない。たとえ
ば3次元、8ビツトの画像を考えると色種は2563
(=16777216)となり、これに応じて語ロケーシ
ヨンが2563個あるストレージを用意しなければな
らない。4次元、6ビツトの場合にも2563個必要
となる。しかも語ロケーシヨンの各々はオーバー
フローしないように十分な語長を有しなれければ
ならない。なぜならば、オーバーフローすると特
長が本来のものと全く異なつたヒストグラムとな
つてしまうからである。たとえばオーバーフロー
値に近い数だけ赤の画素を有する画像とオーバー
フロー値をわずかに超えた数だけ赤の画素を有す
る画像とは本来似ているはずであるけれども、ヒ
ストグラムは全く性質が違うものとして両者を表
わすこととなる。任意の語ロケーシヨンに累積す
る頻度の最高値は画像の画数に一致するので(こ
のことは単一色の画像を考えれば明らかである)、
1024×1024の画素からなる画像に対しては20を超
える語長が必要とされ、2048×2048に対しては22
を超える語長が必要とされ、また4096×4096に対
しては24を超える語長が必要とされる。このよう
な語ロケーシヨン数および語長上の要請を満たす
ようにヒストグラマ用ストレージを用意すること
はコストの点から非現実的である。 もちろん従前の画像処理用のワークステーシヨ
ンはそのような高コストのメモリを具備していな
い。したがつて色種が膨大な画像たとえば3次
元、8ビツトの画像から一度の処理だけでヒスト
グラムを生成するのは不可能であつた。このよう
な画像のストグラムを得るには膨大な色種を複数
のセグメントに分け、セグメント単位でヒストグ
ラム計算を実行し、その結果を総合して1つの画
像に対する完結したヒストグラムを得るようにし
ていた。この場合セグメントの色種数がヒストグ
ラマの語ロケーシヨン数以下であることは明らか
である。たとえばIBMシステム7350表示装置は
32ビツトのレジスタを4096個だけヒストグラマ用
に用意している。これで3次元8ビツトの画像を
処理するには、4096(=2563÷4096)回ヒストグ
ラム計算を行う必要がある。このような繰返しは
極めて不都合である。 〔発明が解決しようとする問題点〕 この発明は以上の事情を考慮してなされたもの
であり、語ロケーシヨン数が膨大でしかも語長が
大のメモリを用意することなく、処理の繰返しを
極力抑えた態様でヒストグラム計算を行える手法
を提供することを目的としている。 〔問題点を解決するための手段〕 この発明では以上の目的を達成するために、語
長が小さいけれども語ロケーシヨン数が膨大なヒ
ストグラム用ストレージを用意する。このヒスト
グラム用ストレージを利用して1回または複数回
の処理で1つの画像のヒストグラムを得る。この
ヒストグラム用ストレージでは語長が短いので、
その語ロケーシヨン数を従前のものに比して極め
て大とすることが可能であり、このためヒストグ
ラム計算の繰返しを極力抑えることができる。 またこの発明ではオーバーフローを起こすこと
がない程度に語長が大であるけれども語ロケーシ
ヨン数が比較的少ない補助ストレージも用意す
る。そしてヒストグラムを計算すべき項目を複数
のクラスにクラス分けし(たとえば画素の標本値
が項目であるときには、標本値を表すR、G、B
の3要素のうちの1つの要素に着目してクラス分
けする。青の要素Bに基づくときはBの値が同一
であればR、Gが異なつていても同一のクラスと
する)、これらクラスの各々を補助ストレージの
語ロケーシヨンの各々に対応付けておく。このの
ち項目の生起ごとに対応するロケーシヨンで補助
ストレージの内容を増分していく。そして補助ス
トレージの語ロケーシヨンの各々の内容が最終的
にヒストグラム用ストレージのオーバーフロー値
以上かどうかを判別し、この判別結果に基づい
て、ヒストグラム用ストレージでオーバーフロー
する可能性のある項目を絞り込む。こののち絞り
込んだ項目について補助ストレージを利用してヒ
ストグラム計算を行い、この結果でヒストグラム
用ストレージで得たヒストグラムの値を修正す
る。 〔実施例〕 以下この発明を詳細に説明する。 第1図は色の量子化を行つて画像表示を実行す
る表示システムたとえばIBM7350画像処理シス
テムにこの発明を適用した一実施例を概略的に示
す。この第1図において、ホスト1が画像処理シ
ステム2のシステムバス3に入出力コントローラ
4を介して接続されている。システムバス3には
ヒストグラムユニツト5、リフレツシユバツフア
6、カラールツクアツプテーブル7および他の図
示しないシステム資源が接続されている。このシ
ステム2で、画像を表示するにはリフレツシユバ
ツフア6に表示データをストアし、リフレツシユ
バツフア6をCRT8の垂直走査および水平走査
に同期してアクセスする。そしてリフレツシユバ
ツフア6の出力をカラールツクアツプテーブル7
で変換し、こののちたとえば赤、緑および青の原
色信号に対応するA/Dコンバータ9,10,1
1に供給し、これらA/Dコンバータ9,10,
11の出力でCRT8を駆動するのである。 第2図は第1図のシステムで量子化を行つて画
像表示を行う動作を示す。この図に示されるよう
に、まずヒストグラム計算が実行される(ステツ
プ12)。すなわちデジタイザ(図示略)等で得ら
れた入力画像データがホスト1からヒストグラム
ユニツト5に供給され、ヒストグラムが生成され
る。ヒストグラムユニツト5の詳細はのちに第3
図以降の図面を参照して詳述する。こののちヒス
トグラムはホスト1に転送され、ホスト1はこの
ヒストグラムを参照して所定の量子化アルゴリズ
ムを実行して色の量子化のためのマツピングテー
ブルを作成する(ステツプ13)。すなわち想定さ
れる色空間を、CRT8上に同時表示可能な色種
の数と同数の小色空間に分割し、かつこれら小色
空間を代表するのに最適な色をそれぞれ選定す
る。そして各小色空間内の標本値すなわち元の色
種を対応する選定色にマツピングするのである。
便宜上3次元6ビツトまたは8ビツトの画像を可
変表示色が4069色のCRT8で表示することを考
えれば、26144(=26×3)色または16777216(=
28×3)色を4096色にマツピングするのである。 このような量子化アルゴリズムで選定された選
定色はカラールツクアツプテーブル7のエントリ
0〜4095に選定される(ステツプ14)。他方画像
データは上述マゾピングテーブルに基づいて色番
号0〜4095(エントリ0〜4095に対応する)に変
換されてリフレツシユバツフア6に転送され、こ
こにストアされる(ステツプ15)。こののちリフ
レツシユバツフア6にストアされたデータに基づ
いてCRT8で表示が行われる(ステツプ16)。 第3図は第1図のヒストグラムユニツト5の構
成例を示している。この構成例は赤、緑および青
の3次元の画像データを処理するものとして示さ
れている。もちろん3次元以上の画像データを扱
うように変形できる。 第3図において、システムバス3には赤、緑お
よび青の各バンドに対応したオーバーフロー検出
修正テーブル21,22,23が接続されてい
る。テーブル21,22,23の各出力は加算器
24に供給され、ここで加算が行われるようにな
つている。この加算器24の出力は長語長ヒスト
グラマ25に供給され、この長語長ヒストグラマ
25の出力がシステムバス3および入出力コント
ローラ4を介してホスト1に供給される。長語長
ヒストグラマ25は語長の長いレジスタを比較的
少数具備してなるものである。この発明を
IBM7350画像処理システムに適用する場合には
32ビツトのレジスタ4096個からなるヒストグラマ
をこの長語長ヒストグラマ25として利用でき
る。1024×1024画素の画像は20ビツトの語で処理
でき、また2048×2048画素の画像および4096×
4096画素の画像はそれぞれ22ビツトおよび24ビツ
トの語で処理できることを考えれば、通常の画像
のヒストグラム計算に対して長語長ヒストグラマ
25は十分すぎるほどの余裕があることは明らか
である。 なお、第5図に示されるように長語長ヒストグ
ラマ25は所要のコントローラ26、ストレージ
27およびALU28から構成される。ヒストグ
ラマ25にデータが転送されてくると、ストレー
ジ27の対応するロケーシヨンの内容がアクセス
されてALU28で1だけ増分されて元のロケー
シヨンに戻されるようになつている。 第3図において、システムバス3にはさらに短
語長ヒストグラマ29および選択テーブル30が
接続されている。短語長ヒストグラマ29は全標
本値にわたつてヒストグラムを暫定的に生成する
ためのものであり、語長が短かい反面、語ロケー
シヨンが比較的多数あるストレージを有してい
る。このストレージの語長はたとえば10ビツトで
あり、通常のヒストグラム計算時にはいくつかの
ロケーシヨンでオーバーフローが起こることが予
想される。のちに理解されるようにこの実施例で
は少なくとも次元数より1多い回数だけホスト1
からシステム2(第1図)に画像データを転送す
る必要がある。資源の最適な利用を考えた場合、
全標本値のヒストグラムの生成をこの回数に分け
て行うことが好ましい。このようにすることによ
り3次元6ビツトの画像の場合26×3/(3+1)
=65536ロケーシヨン、3次元8ビツトの場合
28×3/(3+1)=4194304ロケーシヨンで全標本
値をカバーすることができる。 なおヒストグラマ29としてリフレツシユバツ
フア6(第1図)を用いるようにできる。
IBM7350画像処理システムを例に挙げれば、リ
フレツシユバツフア6は1048576(=220)のロケ
ーシヨンを有するのでリフレツシユバツフア6の
1/16の領域を流用して3次元6ビツトの画像を4
回の画像データ転送で済ませることができる。た
だ3次元8ビツトの画像についてはさらに12回す
なわち全部で16回の画像データ転送が必要であ
る。画素データでリフレツシユバツフア6のロケ
ーシヨンをアクセスするには第6図に示すアドレ
ス変換器6aを設ける必要がある。IBM7350画
像処理システムではX−Yランダムアクセスプロ
セツサを用いる。従前ではたとえばヒストグラマ
のロケーシヨンは4096個であり、これを用いて3
次元8ビツトの画像のデータを処理するには4096
(=28×3÷4096)回の繰返しが必要であることに
留意されたい。 選択テーブル30についてはのちに理解され
る。 つぎに第4図をも参照しながら第3図の構成例
の動作について説明する。なお以下の説明の理解
を助けるため〔表〕を参照されたい。この表はホ
スト1から画像データが転送されるつどどのよう
な処理が長語長ヒストグラマ25および短語長ヒ
ストグラマ29で行なわれているかを示すもので
ある。この転送を時間の前後を基準にして第1段
階、第2段階、第3段階、および第4段階の画像
データの転送と呼ぶことにする。 なお表「表」において、短語長ヒストグラマは
画素データ(標本値)の実際のヒストグラムを計
算している。4回に分けているのは、画素データ
の項目数が膨大なため(短語長ヒストグラマの語
ロケーシヨン数の4倍程度)、一回の転送で全部
の項目のヒストグラムを計算できないためであ
る。ただしこのヒストグラム計算では、語長が短
いのでオーバーフローしている可能性があり、正
確性に欠ける。 またこの「表」において長語長ヒストグラマは
1回から3回の転送でオーバーフローした可能性
のある画素データのR、G、B軸上へのプロジエ
クシヨンを決定する。たとえばR軸についていえ
ば、まずR要素に基づいた画素データのクラス分
けを行つて各々のクラスに属する画素データのヒ
ストグラムの値を計算する。そして所定のクラス
についてヒストグラムの値が短語長ヒストグラマ
のオーバーフロー値を超えたときにはそのクラス
に属する画素データのいづれか1つまたは複数が
オーバーフローする可能性がある(もちろんオー
バーフローしないこともある)。このようなオー
バーフローの可能性のあるクラスは画素データの
R要素の値、すなわちR軸上へのプロジエクシヨ
ン(投影)で表すことができる。同様に、G、B
軸上へのプロジエクシヨンは、それぞれG、Bに
基づくクラスのヒストグラムによつて、オーバー
フロー候補の画素データを判別する際に、これを
表示するものである。
〔発明の効果〕
以上説明したようにこの発明によれば語長が短
かい反面語ロケーシヨンが多いストレージを用い
て主ヒストグラマを構成しているので、項目数が
膨大な画像データのヒストグラムを現実的な設定
の範囲でしかも繰返のを極力抑えて計算すること
が可能である。また、語ロケーシヨンが少ない反
面語長の長い補助ヒストグラマを用いて主ヒスト
グラマのロケーシヨンのうちオーバーフローした
項目を絞り込み、さらにこの絞り込んだ項目に関
して補助ヒストグラマで正規のヒストグラムを得
て主ヒストグラマによるヒストグラムを修正する
ようにしているので、正確なヒストグラムを期待
できる。
【図面の簡単な説明】
第1図はこの発明の一実施例を概略的に示すブ
ロツク図、第2図は第1図例の動作の概略を説明
するためのフローチヤート、第3図は第1図例の
ヒストグラムユニツト5の構成例を示すブロツク
図、第4図は第3図構成例の動作を説明するため
のフローチヤート、第5図は第4図の長語長ヒス
トグラマ25の詳細を示すブロツク図、第6図は
第5図の短語長ヒストグラマ29の一例を示すブ
ロツク図、第7図は短語長ヒストグラマ29によ
るヒストグラム計算を説明するための図、第8図
および第9図は長語長ヒストグラマ25によるオ
ーバーフロー標本値の候補のプロジエクシヨンの
決定を説明するための図、第10図、第11図、
第12図、第13図および第14図は標本値と長
語長ヒストグラマ25のストレージのロケーシヨ
ンとのマツピングを説明するための図である。 1……ホスト、2……表示システム、25……
長語長ヒストグラマ、29……短語長ヒストグラ
マ。

Claims (1)

  1. 【特許請求の範囲】 1 ヒストグラム用ストレージのロケーシヨンを
    ヒストグラムを計算すべき項目に関係付け、上記
    項目の生起のつど関連するロケーシヨンの内容を
    増分して上記項目の頻度を計算するヒストグラム
    計算方法において、 ヒストグラムを計算すべき項目を表示するデー
    タのストリームを繰り返しN回(Nは2以上の整
    数)転送するステツプと、 上記項目のうち上記ヒストグラム用ストレージ
    でオーバーフローする可能性のあるものを絞り込
    むステツプであつて、つぎのサブステツプ(a)〜(d)
    を含むものと、 (a) 上記項目を複数のクラスに(N−1)個の異
    なる態様で(N−1)回クラス分けし、これら
    クラス分けの各々において、クラスの各々を、
    上記ヒストグラム用レジスタより十分に語長が
    長くてオーバーフローを起こすことがなく、か
    つ上記ヒストグラム用レジスタよりロケーシヨ
    ンの数が少ない補助ストレージのロケーシヨン
    の各々に割り当てるサブステツプ、 (b) 第1回から第(N−1)回の上記項目を表示
    するデータのストリームの転送の各々におい
    て、上記項目を表すデータを受け取るたびに、
    上記補助ストレージの対応するロケーシヨンの
    内容を初期値から増分していくサブステツプ、 (c) 第1回から第(N−1)回の上記項目を表示
    するデータのストリームの転送の各々におい
    て、上記補助ストレージのロケーシヨンであつ
    てその内容が上記ヒストグラム用ストレージの
    オーバーフロー値以上のものを特定するサブス
    テツプ、 (d) 第1回から第(N−1)回の上記項目を表示
    するデータのストリームの転送の各々において
    オーバーフロー値以上のものとして特定された
    ロケーシヨンに基づいて、上記項目のうち上記
    ヒストグラム用ストレージでオーバーフローす
    る可能性のあるものを絞り込むサブステツプ、 上記絞り込んだ項目を上記補助ストレージのロ
    ケーシヨンに対応付けるステツプと、 第N回目の上記項目を表示するデータのストリ
    ームの転送において、上記絞り込まれた項目を表
    すデータを受け取るたびに、上記補助ストレージ
    の対応するロケーシヨンの内容を初期値から増分
    していきそれらの項目についての正規の頻度を得
    るステツプとを有するヒストグラム計算方法。
JP59207243A 1984-10-04 1984-10-04 ヒストグラム計算方法 Granted JPS6190277A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59207243A JPS6190277A (ja) 1984-10-04 1984-10-04 ヒストグラム計算方法
EP85112606A EP0177058A3 (en) 1984-10-04 1985-10-04 A method and a device for calculating a histogram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59207243A JPS6190277A (ja) 1984-10-04 1984-10-04 ヒストグラム計算方法

Publications (2)

Publication Number Publication Date
JPS6190277A JPS6190277A (ja) 1986-05-08
JPH0410669B2 true JPH0410669B2 (ja) 1992-02-26

Family

ID=16536580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59207243A Granted JPS6190277A (ja) 1984-10-04 1984-10-04 ヒストグラム計算方法

Country Status (2)

Country Link
EP (1) EP0177058A3 (ja)
JP (1) JPS6190277A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4213717A1 (de) * 1992-04-25 1993-10-28 Asea Brown Boveri Verfahren zur Ermittlung eines Häufigkeits-Zeitprofils von Ereignissen sowie Vorrichtung zur Durchführung des Verfahrens
CN110443743A (zh) * 2019-07-31 2019-11-12 中山市奥珀金属制品有限公司 一种图像矩阵内存防止溢出处理方法及***

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3760377A (en) * 1970-07-17 1973-09-18 Ibm Histogram data processor
US4445138A (en) * 1981-12-21 1984-04-24 Hughes Aircraft Company Real time dynamic range compression for image enhancement
CA1248218A (en) * 1983-07-29 1989-01-03 William R. Wray Method and apparatus for image processing with field portions

Also Published As

Publication number Publication date
EP0177058A2 (en) 1986-04-09
JPS6190277A (ja) 1986-05-08
EP0177058A3 (en) 1990-01-31

Similar Documents

Publication Publication Date Title
JP2582999B2 (ja) カラーパレット発生方法、装置及びデータ処理システム並びにルックアップテーブル入力発生方法
JPH10503307A (ja) 画像識別装置
JPS61203785A (ja) 2値画像デ−タの平滑化処理方法及びその装置
US11875486B2 (en) Image brightness statistical method and imaging device
US4607340A (en) Line smoothing circuit for graphic display units
JP2003216948A (ja) 代表色抽出装置及び代表色抽出プログラム
JPH0410669B2 (ja)
US5367616A (en) Isopleth generator for applying isopleths to digital picture data and method therefor
KR900002631B1 (ko) 화상데이터의 처리방법 및 장치
JP2000287081A5 (ja)
JP3015227B2 (ja) 画像処理装置
CN111597375B (zh) 基于相似图片组代表特征向量的图片检索方法及相关设备
KR100695159B1 (ko) 피부색 모델을 위한 알지비 맵 생성장치 및 방법과 이를이용한 피부색 검출장치 및 방법
US20240104908A1 (en) Evaluation method
JPH04329483A (ja) 画像処理装置
JP3260848B2 (ja) 輝度変換回路
JPH0697393B2 (ja) ビットマップ処理装置
JPS63208899A (ja) 文字処理装置
JP2636273B2 (ja) 画像処理装置
JPS627289A (ja) 画像の入力および記憶方法
JPS61260370A (ja) デイジタル画像処理方法及び装置
JPH113425A (ja) 画像処理装置
JPH096962A (ja) 鮮鋭度の評価方法
JPH05333835A (ja) 画像表示方法
JPS62296279A (ja) 画像処理装置