JPH04106497A - Inspection device for fast breeder reactor - Google Patents

Inspection device for fast breeder reactor

Info

Publication number
JPH04106497A
JPH04106497A JP2225643A JP22564390A JPH04106497A JP H04106497 A JPH04106497 A JP H04106497A JP 2225643 A JP2225643 A JP 2225643A JP 22564390 A JP22564390 A JP 22564390A JP H04106497 A JPH04106497 A JP H04106497A
Authority
JP
Japan
Prior art keywords
vibration
reactor
equipment
core
inspection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225643A
Other languages
Japanese (ja)
Inventor
Yoichi Masuda
増田 陽一
Makoto Matsumura
誠 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2225643A priority Critical patent/JPH04106497A/en
Publication of JPH04106497A publication Critical patent/JPH04106497A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain periodical information on the integrity of in-vessel components by providing an ultrasonic leak detector to inspect leakage from the temperature fluctuation data at a coolant leak part and a vibration inspection device to compare the vibration of in-vessel components with the vibration characteristics during intact time. CONSTITUTION:To inspect portions A-C leakage inspection is necessary, in- sodium ultrasonic measuring devices 21, 22 are inserted detachably through an upper core mechanism 3 etc. An oscillator to emit ultrasonic signal and detectors 21a, 22a to receive reflection sound from in-vessel components are fixed at the tip of insertion part in the flexible structure of these devices 21, 22. In the mechanism 3, a vibration characteristic measuring device 31 is inserted detachably through a core 7, a core support structure 12 and a core support plate 13. On the side of it, another vibration characteristic measuring device 32 is inserted detachably through a roof slab 2. At the tip of insertion part in flexible structure for both of these devices 31, 32, detection parts 31a, 32a are fixed to receive the vibration of in-vessel components vibrated by a vibrator and they detect each vibration characteristic.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、高速増殖炉において、炉内機器の定期的な異
常有無の診断あるいは供用期間中検査等に使用される検
査機器に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is an inspection method used in a fast breeder reactor for periodic diagnosis of the presence or absence of abnormalities in reactor equipment or for inspection during service life. Regarding equipment.

(従来の技術) 高速増殖炉の原子炉構造は、冷却材が不透明な液体金属
ナトリウムであることや、このナトリウムが活性材料で
あることから、完全気密構造となっている。
(Prior Art) The nuclear reactor structure of a fast breeder reactor is completely airtight because the coolant is opaque liquid metal sodium and this sodium is an active material.

そのため、高速増殖炉の炉内機器の定期的な異常診断や
供用期間中検査は現状の技術では極めて難しく、高速炉
を開発中の各国においても、検査方法の法規制化は勿論
のこと、運転方法に関しても具体的な規制は少ない。
Therefore, periodic abnormality diagnosis and in-service inspection of the internal components of fast breeder reactors are extremely difficult with current technology, and even in countries where fast reactors are being developed, inspection methods are of course not subject to legal regulations. There are also few specific regulations regarding the method.

例えば、具体的な規制コードで有名なASMESECT
ION X Iにも、炉内機器に関しては具体的な規制
は記述されていない。これは、炉内機器の定期的な検査
が必要でないからではなく、具体的な機器の健全性に関
する情報が簡単には得られないからである。
For example, ASMESECT, which is famous for its specific regulatory code.
ION XI also does not contain any specific regulations regarding in-core equipment. This is not because periodic inspections of in-core equipment are not necessary, but because information regarding the health of specific equipment is not easily obtained.

むしろ、高速炉の場合は、不透明で気密構造となってい
るのであるから、原子炉容器の蓋を明けて燃料交換し、
必要があれば、比較的容易に炉内機器の検査ができる軽
水炉に比較し、定期的な診断情報を必要とする度合いは
高いと言えよう。
Rather, fast reactors have an opaque, airtight structure, so the lid of the reactor vessel must be opened to replace the fuel.
Compared to light water reactors, where internal equipment can be inspected relatively easily if necessary, it can be said that the need for periodic diagnostic information is higher.

(発明が解決しようとする課題) このため、超音波発信装置から炉内機器に向けて超音波
を送信し、炉内機器からの反射波を画像化するナトリウ
ム中透視装置の開発が、鋭意進められている。しかしな
から、ナトリウム中の機器は高速炉特有の激しい熱変化
条件から保護するために薄板で覆う構造となっており、
本体自体の状況を直接観察できないので、炉内機器の診
断方法としては、必ずしも満足できるものではない。
(Problem to be solved by the invention) For this reason, efforts are being made to develop a sodium fluoroscopy system that transmits ultrasonic waves from an ultrasonic transmitter to equipment inside the reactor and images the reflected waves from the equipment inside the reactor. It is being However, the equipment inside the sodium chamber is covered with thin plates to protect it from the severe heat change conditions unique to fast reactors.
Since the condition of the main body itself cannot be directly observed, it is not necessarily a satisfactory method for diagnosing the equipment inside the reactor.

本発明は、これらの状況を踏まえて成されたもので、炉
内機器の構造健全性に関する情報を定期的に得るのに好
適する検査装置を提供することを目的とする。
The present invention has been made in view of these circumstances, and an object of the present invention is to provide an inspection device suitable for regularly obtaining information regarding the structural health of in-core equipment.

[発明の構成コ (課題を解決するための手段) 本発明の高速増殖炉の検査装置は、高速増殖炉内に検出
部を着脱自在に装着され、炉内機器の検査を行う検査装
置において、冷却材漏洩部の温度ゆらぎによる超音波伝
搬の乱れを利用して冷却材の漏洩検査を行う超音波漏洩
検圧装置と、前記高速増殖炉の炉内機器に振動を印加し
、前記炉内機器の検出圧に押し当てられた検出部からの
信号により前記炉内機器の振動性状を検出し、健全時の
振動性状と比較して前記炉内機器またはそれらの部品の
検査を行う振動検査装置とを有することを特徴とするも
のである。
[Configuration of the Invention (Means for Solving the Problems) The inspection device for a fast breeder reactor of the present invention is an inspection device in which a detection section is detachably installed in a fast breeder reactor and inspects equipment in the reactor. An ultrasonic leakage pressure detection device that performs a coolant leakage test using disturbances in ultrasonic propagation due to temperature fluctuations in a coolant leakage part; A vibration inspection device that detects the vibration characteristics of the furnace equipment based on a signal from a detection unit pressed against the detection pressure of the furnace equipment, and compares the vibration characteristics with the vibration characteristics when healthy to inspect the furnace equipment or their parts. It is characterized by having the following.

(作用) 上述のように、本発明装置では、ナトリウムの漏れをナ
トリウム中の超音波伝搬特性を活用して検圧するととも
に、加振器を機器の適当箇所に当て、機器の振動性状や
反射波の情報を定期的に得、これを正常時のデータと比
較判定するすることにより、機器の構造健全性を確実に
診断することかできる。
(Function) As described above, in the device of the present invention, the leakage of sodium is detected by utilizing the ultrasonic propagation characteristics in sodium, and a vibrator is applied to an appropriate part of the equipment to detect vibration properties of the equipment and reflected waves. By regularly obtaining this information and comparing it with normal data, it is possible to reliably diagnose the structural health of the equipment.

(実施例) 次に、本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail.

第1図において、高速増殖炉の原子炉容器1の上端は、
回転プラグから成るルーフスラブ2によって気密に閉塞
されている。
In FIG. 1, the upper end of the reactor vessel 1 of the fast breeder reactor is
It is closed airtight by a roof slab 2 consisting of a rotating plug.

ルーフスラブ2には、炉心上部機構3と、ポンプ4と、
中間熱交換器5が貫通支持されている。
The roof slab 2 includes a core upper mechanism 3, a pump 4,
An intermediate heat exchanger 5 is supported through it.

原子炉容器1の下部炉心支持構造6上には、炉心7が載
置固定されている。
A reactor core 7 is placed and fixed on a lower core support structure 6 of the reactor vessel 1 .

このような構成の高速増殖炉において、ポンプ4によっ
て加圧された冷却材ナトリウムは、高圧流路8を通り、
流量調節室9を経て、炉心7に入り、ここで加熱されて
炉上部ブレナム10に流入する。
In the fast breeder reactor with such a configuration, the coolant sodium pressurized by the pump 4 passes through the high pressure flow path 8,
It enters the reactor core 7 through the flow rate control chamber 9, is heated there, and flows into the upper reactor blennum 10.

炉上部ブレナム10の冷却材ナトリウムは中間熱交換器
5を通して2次側冷却材(ナトリウム)と熱交換し、冷
却された後、下部ブレナム11に至り、再び流量調節室
9を経て、炉心7に入り、その発生熱を吸収して炉上部
ブレナム10に流入する。12は炉上部ブレナム10と
下部ブレナム11の間を仕切る隔壁を示す。
The coolant sodium in the upper reactor blennium 10 exchanges heat with the secondary coolant (sodium) through the intermediate heat exchanger 5, and after being cooled, it reaches the lower blennium 11, passes through the flow rate control chamber 9 again, and enters the reactor core 7. The generated heat is absorbed and flows into the upper furnace blenheim 10. Reference numeral 12 denotes a partition wall that partitions between the furnace upper blenheim 10 and the lower blenheim 11.

第1図における矢符は冷却材の流れをに示す。The arrows in FIG. 1 indicate the flow of coolant.

また、矢符の太さは圧力に比例している。Also, the thickness of the arrow is proportional to the pressure.

ところで、高速増殖炉の安全性を確保するためには、炉
心7へ供給される冷却材を一定量以上に維持することが
必要である。従って、第1図の高圧流路8からの冷却材
漏れを検出すればよい。
By the way, in order to ensure the safety of the fast breeder reactor, it is necessary to maintain the amount of coolant supplied to the reactor core 7 at a certain amount or more. Therefore, it is only necessary to detect coolant leakage from the high-pressure flow path 8 shown in FIG.

これらの漏れ点検必要部位は、第1図および第2図中に
、ハツチングA−Dにて示したように、高圧流路8の周
囲、流量調節室9の下部、隔壁12の上部、および流量
調節室9の側面の高圧流路取付点の近傍である。
These areas that require leakage inspection are, as indicated by hatching A-D in FIGS. This is near the high pressure flow path attachment point on the side surface of the control chamber 9.

本発明においては、これらの漏れ点検必要部位A−Dを
点検するため、第1図に示すように、ナトリウム中超音
波測定装置21.22が炉心上部機構3またはルーフス
ラブ2を通して挿脱自在に挿入され、また第2図に示す
ように、ポンプ4を引抜き、その後には、ポンプ出口付
近の炉心支持構造物12の欠陥を検出するための特別の
ナトリウム中超音波測定装置23がルーフスラブ2を通
して挿脱自在に挿入される。
In the present invention, in order to inspect these areas A to D that require leakage inspection, as shown in FIG. 2, after the pump 4 is withdrawn, a special ultrasonic measuring device 23 in sodium is inserted through the roof slab 2 to detect defects in the core support structure 12 near the pump outlet. It is inserted removably.

これらのナトリウム中超音波測定装置21.22.23
には、フレキシブル構造の挿入部の先端に、3 M H
z程度の超音波信号を発信する発信器と、炉内機器から
の反射波を受信する検出部21a、22as 23aか
取付けられている。
These ultrasonic measurement devices in sodium 21.22.23
3 MH at the tip of the flexible insertion tube.
A transmitter that transmits an ultrasonic signal of about z, and detection units 21a, 22as, and 23a that receive reflected waves from in-core equipment are installed.

これらの検出器21a、22a、23aへの信号発信部
と、検出信号の評価判定部(図示せず)は炉外に設置さ
れており、リード線により接続されている。
A signal transmitting section for these detectors 21a, 22a, and 23a and a detection signal evaluation/determination section (not shown) are installed outside the furnace and connected by lead wires.

ところで、冷却材ナトリウムの漏洩は、必ず温度差のあ
る流路壁から発生するので、その部分では温度ゆらぎが
発生するが、音波が温度ゆらぎ部分を通過すると、密度
差により屈折するため、反射波も温度ゆらぎに伴う形で
乱れる。
By the way, leakage of sodium coolant always occurs from the channel walls where there is a temperature difference, so temperature fluctuations occur at that part, but when a sound wave passes through a part of the temperature fluctuation, it is refracted due to the density difference, so the reflected wave is also disturbed due to temperature fluctuations.

反射波のビーム乱れと温度差との関係を第3図に示す。FIG. 3 shows the relationship between beam disturbance of reflected waves and temperature difference.

この図に示すように、反射波のビーム乱れ(ピーク値の
バラツキ範囲)は、温度差が10℃程度まではほぼ一定
であるが、それを越えると急激に増加する。なお、第3
図は媒体か水の例であるが、ナトリウムの場合は更に1
0倍程度感度か良くなるので、これらの関係を利用すれ
ば、温度ゆらぎと漏れ量との関係を、−層容品に具体化
できる訳である。
As shown in this figure, the beam disturbance of the reflected waves (range of variation in peak value) is almost constant up to a temperature difference of about 10° C., but increases rapidly when the temperature difference exceeds this. In addition, the third
The figure shows an example of medium or water, but in the case of sodium, 1 more
Since the sensitivity is improved by about 0 times, if these relationships are used, the relationship between temperature fluctuation and leakage amount can be realized in a -layer container.

本発明はこのような原理を利用したもので、各検出部2
1as 22a、23aからの受信信号に基づいて上述
の温度ゆらぎを検出し、評価判定することにより冷却材
ナトリウムの漏洩箇所を適確に検出することができる。
The present invention utilizes such a principle, and each detection unit 2
By detecting the above-mentioned temperature fluctuation based on the received signals from 1as 22a and 23a and making an evaluation judgment, it is possible to accurately detect the leakage location of the coolant sodium.

次に、本発明のもう一つの必須要件である振動検査装置
を、第4図および第5図を参照して説明する。なお、こ
れらの図において、第1図および第2図におけると同一
部分には同一符号を付しである。
Next, a vibration testing device, which is another essential requirement of the present invention, will be explained with reference to FIGS. 4 and 5. In these figures, the same parts as in FIGS. 1 and 2 are given the same reference numerals.

第4図において、炉心上部機構3には炉心7、炉心支持
構造物12および炉心支持板13を貫通して、振動特性
測定装置31が挿着自在に挿通されており、その側方に
は振動特性測定装置f32がルーフスラブ2を通して挿
着自在に挿通されている。また、第5図に示すように、
ポンプ4を引抜き、その後には、ポンプ出口付近の高圧
流路8を検査するための特別の振動特性測定装置33が
ルーフスラブ2を通して挿脱自在に挿入される。
In FIG. 4, a vibration characteristic measuring device 31 is inserted into the upper core mechanism 3 through the core 7, the core support structure 12, and the core support plate 13 in a freely insertable manner. A characteristic measuring device f32 is inserted through the roof slab 2 in a freely insertable manner. Also, as shown in Figure 5,
After the pump 4 is withdrawn, a special vibration characteristic measuring device 33 for inspecting the high-pressure channel 8 in the vicinity of the pump outlet is removably inserted through the roof slab 2.

これらの振動特性測定装置31.32.33はいずれも
フレキシブル構造の挿入部の先端に、振動数を0.1〜
・IKHz程度まで変化できる加振器と、この加振器に
よって振動せしめられる炉内機器の振動を受信する検出
器31a、32a、33aが取付けられている。
These vibration characteristic measuring devices 31, 32, and 33 all have a flexible structure at the tip of the insertion part, and measure the vibration frequency from 0.1 to
- A vibrator that can vary up to about IKHz and detectors 31a, 32a, and 33a that receive the vibrations of the equipment in the furnace that are vibrated by this vibrator are installed.

これらの検出器31a% 32a、33aは、炉内主要
機器の振動特性を毎回正確に採れるように設置された検
出圧(図中の指マーク)に押圧されて、分担する炉内機
器に所定の振動を与えると共に、その振動特性を検出す
る。これらの検出器31a、32g、33aへの信号駆
動部と、検出信号の評価判定部(図示せず)は炉外に設
置されており、リード線により接続されている。
These detectors 31a%, 32a, 33a are pressed by the detection pressure (finger mark in the figure) installed so that the vibration characteristics of the main equipment in the furnace can be accurately measured every time. As well as applying vibration, the vibration characteristics are detected. A signal drive unit for these detectors 31a, 32g, and 33a and a detection signal evaluation/judgment unit (not shown) are installed outside the furnace and connected by lead wires.

次に、機器の振動特性および固定あるいは支持端からの
反射波特性から機器の構造健全性情報を得る方法につい
て述べる。
Next, we will discuss how to obtain information on the structural health of equipment from its vibration characteristics and reflected wave characteristics from fixed or supported ends.

高速増殖炉の炉内機器は、その大半がルーフスラブ2ま
たは下部炉心支持構造6にボルトで固定されている。
Most of the internal equipment of the fast breeder reactor is fixed to the roof slab 2 or the lower core support structure 6 with bolts.

原子炉容器に溶接により直接固定されているのは、隔壁
12と下部炉心支持構造6である。また個々の機器もそ
れぞれ多数の部品から構成されている。
The bulkhead 12 and the lower core support structure 6 are directly fixed to the reactor vessel by welding. Furthermore, each piece of equipment is composed of a large number of parts.

従って、炉内機器は、それぞれの機器固有の振動特性と
、各付属部品の振動特性を合成した形の振動特性を示す
ことになる。
Therefore, the furnace equipment exhibits vibration characteristics that are a combination of the vibration characteristics unique to each device and the vibration characteristics of each attached component.

これらの振動特性は、炉内機器またはそれぞれの部品の
固定あるいは取付は方法によっても変化するし、また固
定条件が変化したり、一部破損することによっても変化
する。
These vibration characteristics change depending on the method of fixing or attaching the furnace equipment or each component, and also when the fixing conditions change or if some parts are damaged.

従って、炉内機器の振動特性を定期的あるいは継続的に
測定し、正常状態からの逸脱あるいは変化を判定するこ
とによって、機器の状況を把握することができる。
Therefore, by periodically or continuously measuring the vibration characteristics of the equipment in the furnace and determining deviations or changes from the normal state, the status of the equipment can be grasped.

本発明は、この原理を応用したもので、各検出器31a
、32a、33aに、所定の加振力を与え、それに対す
る各炉内機器の振動特性を測定して、それまでの測定デ
ータとの比較によって正常状態からの逸脱あるいは変化
を判定するものである。
The present invention applies this principle, and each detector 31a
, 32a, and 33a, and measure the vibration characteristics of each in-furnace equipment in response to it. Deviation or change from the normal state is determined by comparison with previously measured data. .

[発明の効果コ 本発明に係る高速増殖炉の検査装置によれば、超音波測
定装置によって、冷却材ナトリウム中の炉内主要機器か
らの冷却材漏洩が可能となり、それと共に炉内主要機器
の振動特性を測定し、それまでの測定データと比較する
ことによって、異状が発生した場合、これを迅速・適確
に検出することができ、原子カプラントの安定性を大幅
に向上させることができる。
[Effects of the Invention] According to the inspection device for a fast breeder reactor according to the present invention, the ultrasonic measuring device enables leakage of coolant from the main equipment in the reactor in sodium coolant, and at the same time, leakage of the coolant from the main equipment in the reactor. By measuring the vibration characteristics and comparing them with previously measured data, if an abnormality occurs, it can be detected quickly and accurately, and the stability of the atomic couplant can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図と第2図は本発明の実施例を示す高速増殖炉の縦
断説明図、第3図は超音波反射入力値の乱れと温度差と
の関係を示すグラフ、第4図と第5図は本発明の実施例
を示す高速増殖炉の縦断説明図である。 1・・・・・・高速増殖炉 2・・・・・・ルーフスラブ 3・・・・・・炉心上部機構 4・・・・・・ポンプ 5・・・・・・中間熱交換器 6・・・・・・下部炉心支持構造 7・・・・・・炉心 8・・・・・・高圧流路 9・・・・・・流量調節室 10・・・・・・炉上部プレナム 11・・・・下部プレナム 12・・・・・・隔壁 21.22.23・・・ナトリウム中超音波測定装置
1 and 2 are longitudinal cross-sectional explanatory diagrams of a fast breeder reactor showing an embodiment of the present invention, FIG. 3 is a graph showing the relationship between disturbances in ultrasonic reflection input values and temperature differences, and FIGS. 4 and 5 The figure is a longitudinal sectional view of a fast breeder reactor showing an embodiment of the present invention. 1... Fast breeder reactor 2... Roof slab 3... Core upper mechanism 4... Pump 5... Intermediate heat exchanger 6. ... Lower core support structure 7 ... Core 8 ... High pressure passage 9 ... Flow control chamber 10 ... Upper reactor plenum 11 ...・・Lower plenum 12・・・Partition wall 21.22.23・・Sodium ultrasonic measurement device

Claims (1)

【特許請求の範囲】[Claims] 高速増殖炉内に検出部を着脱自在に装着されて炉内機器
の検査を行う検査装置において、冷却材漏洩部の温度ゆ
らぎによる超音波伝搬の乱れを利用して冷却材の漏洩検
査を行う超音波漏洩検出装置と、前記高速増殖炉の炉内
機器に振動を印加し、前記炉内機器の検出座に押し当て
られた検出部からの信号により前記炉内機器の振動性状
を検出し、健全時の振動性状と比較して前記炉内機器ま
たはそれらの部品の検査を行う振動検査装置とを具備す
ることを特徴とする高速増殖炉の検査装置。
In an inspection device that has a detection unit removably installed inside a fast breeder reactor and inspects equipment inside the reactor, it is an ultra-high-speed breeder reactor that uses disturbances in ultrasonic propagation due to temperature fluctuations at the coolant leakage point to inspect for coolant leakage. A sonic leak detection device applies vibration to the in-reactor equipment of the fast breeder reactor, detects the vibration characteristics of the in-reactor equipment based on a signal from a detection unit pressed against a detection seat of the in-reactor equipment, and determines whether the equipment is healthy. An inspection device for a fast breeder reactor, comprising: a vibration inspection device that inspects the in-reactor equipment or its parts by comparing the vibration properties during operation.
JP2225643A 1990-08-27 1990-08-27 Inspection device for fast breeder reactor Pending JPH04106497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225643A JPH04106497A (en) 1990-08-27 1990-08-27 Inspection device for fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225643A JPH04106497A (en) 1990-08-27 1990-08-27 Inspection device for fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH04106497A true JPH04106497A (en) 1992-04-08

Family

ID=16832516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225643A Pending JPH04106497A (en) 1990-08-27 1990-08-27 Inspection device for fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH04106497A (en)

Similar Documents

Publication Publication Date Title
US4696191A (en) Apparatus and method for void/particulate detection
EP0607057B1 (en) Electrochemical monitoring of vessel penetrations
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
FI72004B (en) FOER REQUIREMENTS FOR THE DETECTION OF FELAKTIGA BRAENSLEELEMENT I EN BRAENSLEPATRON FOER KAERNREAKTORER
CA3083053A1 (en) Heat exchanger assemblies and methods
JP3431660B2 (en) Apparatus and method for detecting damaged nuclear fuel rods
Baqué et al. Non destructive examination of immersed structures within liquid sodium
JPH04106497A (en) Inspection device for fast breeder reactor
US5790617A (en) Method and apparatus for detection of failed fuel rods by use of acoustic energy frequency attenuation
EP0936630A1 (en) Detection of nuclear fuel rod failure
Gopal et al. Experiences with diagnostic instrumentation in nuclear power plants
US5118463A (en) Process and device for detecting unsealed fuel pencils in a fuel assembly by means of ultrasonics
Baqué et al. Generation IV nuclear reactors-R&D program to improve sodium-cooled systems inspection
Pettit et al. Fatigue flaw growth and NDI evaluation for preventing through cracks in spacecraft tankage structures
US3929005A (en) Ultrasonic inspection recess in heat exchanger and nuclear steam generator tubesheets
Fischer et al. Methods for leak detection for KWU pressurized and boiling water reactors
Bush Impact of inservice inspection on the reliability of pressure vessels and piping
Cattant Review of Non-destructive Testing Techniques Used in LWRs Inspections
Chatterjee et al. A Bayesian probabilistic approach to improved health management of steam generator tubes
RU2262757C1 (en) Method for detection of failed fuel elements
Krautkrämer et al. Nuclear Reactors
Kupperman et al. Acoustic leak detection and ultrasonic crack detection
WO2023156967A1 (en) Method of fuel rods internal pressure measurement
Doctor et al. Overview of NRC funded NDE research at US Pacific Northwest laboratory
Hull et al. Other Non-destructive Inspection Techniques