JPH0410376A - Far infrared radiation heater - Google Patents

Far infrared radiation heater

Info

Publication number
JPH0410376A
JPH0410376A JP2111432A JP11143290A JPH0410376A JP H0410376 A JPH0410376 A JP H0410376A JP 2111432 A JP2111432 A JP 2111432A JP 11143290 A JP11143290 A JP 11143290A JP H0410376 A JPH0410376 A JP H0410376A
Authority
JP
Japan
Prior art keywords
far
layer
semiconductor ceramic
ceramic layer
infrared heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2111432A
Other languages
Japanese (ja)
Inventor
Haruo Taguchi
春男 田口
Hitoshi Masumura
均 増村
Shoichi Iwatani
昭一 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2111432A priority Critical patent/JPH0410376A/en
Publication of JPH0410376A publication Critical patent/JPH0410376A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/006Heaters using a particular layout for the resistive material or resistive elements using interdigitated electrodes

Abstract

PURPOSE:To improve the thermal characteristics of a far infrared radiation heater, and raise the efficiency and mechanical strength thereof by providing a semiconductor ceramic layer formed on one side of an insulator ceramic substrate, and an electrode layer on the semiconductor ceramic layer for power supply. CONSTITUTION:A far infrared radiation heater 1 has an inorganic insulation ceramic substrate 2, a semiconductor ceramic layer 3 laid on the entire surface of one side of the substrate 2 via a printing method, electrodes 4a and 4b formed on the upper surface of the semiconductor ceramic layer 3 via a printing method, and an insulation layer 5 of borosilicate glass paste covering the semiconductor layer 3 and the exposed portions of both electrodes 4a and 4b. A far infrared radiation is efficiently emitted outside from the semiconductor ceramic layer 9, due to the use of the aforesaid insulation ceramic substrate 2 and the supply of electric power to the electrode layers 4a and 4b. According to the aforesaid construction, it is possible to obtain a far infrared radiation heater having high mechanical strength and excellent thermal characteristics such as heat and shock resistance, heat conductivity and heat radiation characteristics, while ensuring high efficiency and easy manufacture at low cost.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、家庭用暖房器具やサウナ風呂の熱源として、
さらには、各種産業における熱源として用いられる自己
加熱型の遠赤外線ヒータに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides a heat source for home heating appliances and sauna baths.
Furthermore, the present invention relates to a self-heating far-infrared heater used as a heat source in various industries.

(従来の技術) 従来のこの種の遠赤外線ヒータとして第7図。(Conventional technology) FIG. 7 shows a conventional far-infrared heater of this type.

第8図に示すものが知られている。The one shown in FIG. 8 is known.

第7図に示す遠赤外線ヒータ30は、遠赤外線放射材料
製の二層の板状の放射部31a、31bの間に絶縁材3
2を介在させつつ電極34a。
The far-infrared heater 30 shown in FIG.
2 interposed between the electrodes 34a.

34b及び発熱源であるニクロム線33を配置し、ニク
ロム線33に所定の電流を流すことでこのニクロム線3
3の熱エネルギーを放射部31a。
34b and a nichrome wire 33 which is a heat generation source, and by passing a predetermined current through the nichrome wire 33, the nichrome wire 3
The thermal energy of 3 is radiated by the radiating part 31a.

31bを介して外部に遠赤外線として放射するようにし
たものである。
The far infrared rays are emitted to the outside through the infrared rays 31b.

しかし、上述した遠赤外線ヒータ30の場合、ニクロム
線33と放射部31a、31bとの間で熱損失が必ず生
じ、熱効率が良くな(1と(1う問題があった。
However, in the case of the far-infrared heater 30 described above, heat loss inevitably occurs between the nichrome wire 33 and the radiating parts 31a and 31b, resulting in poor thermal efficiency (1) and (1).

また、前記遠赤外線ヒータ30は、板状の放射部31a
、31bの間にニクロム線33を埋込む構成であるため
、製造技術が非常に難しく製造コストが高(なるという
問題もあった。
Further, the far-infrared heater 30 has a plate-shaped radiation section 31a.
, 31b, the manufacturing technology is very difficult and the manufacturing cost is high.

第8図に示す遠赤外線ヒータ40は、電極41a、41
b間に遠赤外線放射用の半導体セラミックス42を配置
し、電極41a、41b間(こ所定の電圧を印加するこ
とで半導体セラミ・ソクス42から遠赤外線を放射する
ようにしたものである。
The far infrared heater 40 shown in FIG.
A semiconductor ceramic material 42 for far infrared radiation is placed between electrodes 41a and 41b (by applying a predetermined voltage thereto, far infrared rays are emitted from the semiconductor ceramic material 42).

しかし、この遠赤外線ヒータ40の場合、半導体セラミ
ックス42の焼成、成型加工が難しく形状の多様化が図
れないとともに、機械的強度、耐熱衝撃性及び熱伝導性
が悪いという問題があった。
However, in the case of this far-infrared heater 40, there are problems in that it is difficult to fire and mold the semiconductor ceramic 42, and it is not possible to diversify the shapes, and the mechanical strength, thermal shock resistance, and thermal conductivity are poor.

(発明が解決しようとうする課題) 上述したように、従来例においては熱的緒特性が悪く、
機械的強度も低く、さらに製造コストが高いという問題
があった。
(Problems to be Solved by the Invention) As mentioned above, the conventional examples have poor thermal characteristics;
There were also problems in that the mechanical strength was low and the manufacturing cost was high.

そこで、本発明は、熱源としての熱的緒特性に優れ、高
効率で機械的強度も大きく、製造コストの低減化をも可
能な遠赤外線ヒータを提供することを目的とするもので
ある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a far-infrared heater that has excellent thermal properties as a heat source, is highly efficient, has high mechanical strength, and can reduce manufacturing costs.

[発明の構成コ (課題を解決するための手段) 請求項1記載の発明は、絶縁体セラミ・ソクス基体と、
この絶縁体セラミックス基体の少なくとも一方の面に形
成された半導体セラミックス層と、この半導体セラミッ
クス層上の通電用の電極層とを有するものである。
[Configuration of the Invention (Means for Solving the Problem) The invention according to claim 1 comprises: an insulating ceramic substrate;
It has a semiconductor ceramic layer formed on at least one surface of this insulating ceramic base, and an electrode layer for conducting electricity on this semiconductor ceramic layer.

前記絶縁体セラミックス基体は、A j! 203若し
くはAiN又はアルミナケイ酸塩系セラミ・ソクス等の
無機質系材料から形成される。
The insulating ceramic substrate has A j! It is formed from an inorganic material such as 203, AiN, or alumina silicate ceramics.

前記半導体セラミックス層は、C,SiC。The semiconductor ceramic layer is C, SiC.

TiC等の導電性炭化物又はTiN等の窒化物添加によ
り半導体性を付与されたものである。
Semiconductor properties are imparted by adding a conductive carbide such as TiC or a nitride such as TiN.

前記電極層はくし形状に形成されている。The electrode layer is formed in a comb shape.

請求項5記載の発明は、絶縁体セラミ・ソクス基体と、
この絶縁体セラミックス基体の一方の面に形成された半
導体セラミックス層と、前記基体の他方の面に形成され
た遠赤外線放射層と、前記半導体セラミックス層上の通
電用の電極層とを有するものである。
The invention according to claim 5 provides an insulating ceramic substrate;
It has a semiconductor ceramic layer formed on one surface of the insulating ceramic base, a far-infrared emitting layer formed on the other surface of the base, and an electrode layer for conducting electricity on the semiconductor ceramic layer. be.

請求項6記載の発明は、請求項1又は5記載の発明に絶
縁層を付加したものである。
The invention as set forth in claim 6 is the invention as set forth in claim 1 or 5 in which an insulating layer is added.

(作 用) 請求項1記載の発明によれば、絶縁体セラミックス基体
を用いたことから、機械的強度が強く、耐熱衝撃性及び
熱伝導性が良好である。また、電極層に通電することで
半導体セラミックス層から遠赤外線が熱効率良く外部に
放射される。
(Function) According to the invention described in claim 1, since the insulating ceramic substrate is used, mechanical strength is strong, and thermal shock resistance and thermal conductivity are good. Further, by energizing the electrode layer, far infrared rays are radiated to the outside from the semiconductor ceramic layer with high thermal efficiency.

また、絶縁体セラミックス基体と半導体セラミックス層
、電極層は、印刷法により容易に積層し遠赤外線ヒータ
とすることができる。
Further, the insulating ceramic base, the semiconductor ceramic layer, and the electrode layer can be easily laminated by a printing method to form a far-infrared heater.

請求項5記載の発明によれば、上述した請求項1記載の
発明の作用に加え、絶縁体セラミックス基体の他方の面
に形成された遠赤外線放射層からも半導体セラミックス
層からの熱エネルギーに基く遠赤外線が放射される。
According to the invention set forth in claim 5, in addition to the effect of the invention set forth in claim 1 described above, the far-infrared radiation layer formed on the other surface of the insulating ceramic base also generates heat energy from the semiconductor ceramic layer. Far infrared rays are emitted.

請求項6記載の発明によれば、絶縁層により感電防止が
図れる。
According to the invention set forth in claim 6, electric shock can be prevented by the insulating layer.

(実施例) 以下に本発明の実施例を詳細に説明する。(Example) Examples of the present invention will be described in detail below.

第1図に示す遠赤外線ヒータ1は、A1□03もしくは
AlN又はアルミナケイ酸塩系セラミックス等で、無機
質系の絶縁体セラミックス基体(以下「基体」という)
  (50mmX 50.mmX 1mm)2と、この
基体2の一方の面全体に印刷法により形成された半導体
セラミックス層3と、この半導体セラミックス層3の上
面に印刷法により形成されたAg’PNi又はAi製で
第4図(a)に示す如く、くし形状の電極4a、4bと
、前記半導体セラミックス層3及び画電極4a、4bの
露出部分を被覆する硼ケイ酸系ガラスペースト製の絶縁
層5とを有している。
The far-infrared heater 1 shown in FIG. 1 has an inorganic insulating ceramic base (hereinafter referred to as "base") made of A1□03, AlN, alumina silicate ceramic, etc.
(50 mm x 50. mm As shown in FIG. 4(a), comb-shaped electrodes 4a and 4b, and an insulating layer 5 made of borosilicate glass paste that covers the exposed portions of the semiconductor ceramic layer 3 and the picture electrodes 4a and 4b. have.

次に、前記遠赤外線ヒータ1の製造方法を第2図乃至第
4図(a)、(b)を参照して説明する。
Next, a method for manufacturing the far-infrared heater 1 will be explained with reference to FIGS. 2 to 4 (a) and (b).

まず、第2図に示すように、50mmX50順×1mm
の寸法を有する無機質で絶縁性を有する絶縁体セラミッ
クスとしてのAJ2Chの基体2を用意する。A1□0
3の基体2は、ICパ・ソケージ等の絶縁性基体(基板
)として種々の形状のものが大量に生産されており、安
価、かつ、高性能である。
First, as shown in Figure 2, 50mm x 50 order x 1mm
An AJ2Ch base body 2 made of an inorganic insulating ceramic having dimensions of 1 is prepared. A1□0
The substrate 2 of No. 3 is mass-produced in various shapes as an insulating substrate (substrate) for IC packages, etc., and is inexpensive and has high performance.

この基体2の一方の面に第3図に示すように半導体セラ
ミックス層3を形成する。
A semiconductor ceramic layer 3 is formed on one surface of this base body 2 as shown in FIG.

即ち、ゼオライト粉末に炭素(C)粉末を20重畳%混
合し、バインダーを混ぜてペースト化したものを、前記
基体2の一方の面に数十μmの厚さに塗布し、温度12
00℃の窒素(N2)ガス中で熱処理して第3図に示す
状態とする。
That is, a paste obtained by mixing zeolite powder with 20% carbon (C) powder and a binder is applied to one surface of the substrate 2 to a thickness of several tens of μm, and heated at a temperature of 12 μm.
Heat treatment is performed in nitrogen (N2) gas at 00° C. to obtain the state shown in FIG.

次に、半導体セラミックス層3の上面に第4図(a)、
  (b)に示すように印刷法を用(1、銀(Ag)製
で、(し形状の一対の電極層4a。
Next, on the upper surface of the semiconductor ceramic layer 3, as shown in FIG. 4(a),
As shown in (b), using the printing method (1), a pair of electrode layers 4a made of silver (Ag) and having a square shape are formed.

4bを600’Cの温度条件で焼付けする。4b is baked at a temperature of 600'C.

画電極層4a、4bは、第4図(a)に示すように、各
々くし形状で、互いに隣り合う電極部4c、4d間の間
隔d=2mmとなっている。
As shown in FIG. 4(a), the picture electrode layers 4a and 4b are each shaped like a comb, and the distance d between the adjacent electrode portions 4c and 4d is 2 mm.

前記電極部4c、4dは、各々対向する電極層4b又は
電極層4aの隣り合う電極部4d、4d間又は電極部4
c、4c間に侵入した状態に形成され、これにより、半
導体セラミックス層3の上面は、クランク状に露出する
ようになっている。
The electrode portions 4c and 4d are arranged between adjacent electrode portions 4d and 4d of the opposing electrode layer 4b or electrode layer 4a, or between the electrode portions 4a.
The semiconductor ceramic layer 3 is formed so as to be inserted between the holes 4c and 4c, so that the upper surface of the semiconductor ceramic layer 3 is exposed in a crank shape.

次に、前記画電極層4a、4bの各端部に、通電用のリ
ード線6a、6bを接続し製品とする。
Next, electrical lead wires 6a and 6b are connected to each end of the picture electrode layers 4a and 4b to produce a product.

次に、リード線6a、6bの接続領域を除く電極層4a
、4bの上部及び半導体セラミ・ソクス層3の上面に、
硼ケイ酸系ガラスペーストを塗布し、600°Cで焼付
けして第1図に示す如き絶縁層5を形成する。次に前記
画電極層4a、4bの各端部に、通電用のリード線5a
、6bを接続し製品とする。
Next, the electrode layer 4a excluding the connection area of the lead wires 6a and 6b
, 4b and the top surface of the semiconductor ceramic layer 3,
A borosilicate glass paste is applied and baked at 600°C to form an insulating layer 5 as shown in FIG. Next, conductive lead wires 5a are connected to each end of the picture electrode layers 4a and 4b.
, 6b are connected to form a product.

上述した基体2としては、A1□03のもののほか、A
1N基板、アルミナケイ酸塩系セラミックス基板、他の
絶縁性、低熱膨張性を有する基板を用いることができる
The above-mentioned base 2 includes A1□03 as well as A1□03.
A 1N substrate, an alumina silicate ceramic substrate, and other insulating and low thermal expansion substrates can be used.

また、半導体製セラミックス層3の材料としては、ゼオ
ライトのほか、コージェライト、ムライト等のアルミナ
シリカ系の鉱物や、TiO2゜Fe2O3,MnO,Z
rO2等の単一酸化物又はその混合物等を用いることも
できる。
In addition to zeolite, materials for the semiconductor ceramic layer 3 include alumina-silica minerals such as cordierite and mullite, TiO2゜Fe2O3, MnO, Z
A single oxide such as rO2 or a mixture thereof can also be used.

さらに、半導体性付与のための添加物としては、炭素(
C)以外にSiCやTiN等の導電性の炭化物、窒化物
等を用いてもよい。
Furthermore, carbon (
In addition to C), conductive carbides and nitrides such as SiC and TiN may also be used.

さらに、半導体性付与のための添加物は、目的の抵抗値
に調整するため0. 1%から数十%の添加範囲があり
、熱処理温度も不活性ガスや空気中で1000’C前後
から1500℃以上まで目的に応じて可変するものであ
る。
Furthermore, additives for imparting semiconducting properties are added in order to adjust the resistance to the desired value. The addition range is from 1% to several tens of percent, and the heat treatment temperature can be varied depending on the purpose from around 1000'C to over 1500°C in an inert gas or air.

次に、前記遠赤外線ヒータ1の作用を第5図をも参照し
て説明する。
Next, the operation of the far-infrared heater 1 will be explained with reference to FIG. 5 as well.

この遠赤外線ヒータ1の半導体セラミ・ソクス層3の抵
抗値を測定したところ30Ωであった。
The resistance value of the semiconductor ceramic layer 3 of this far-infrared heater 1 was measured and found to be 30Ω.

前記リード線6a、6bを介して50Vの電圧を半導体
セラミックス層3に印加し一定時間後表面温度計により
温度測定したところ、400℃であった。
A voltage of 50V was applied to the semiconductor ceramic layer 3 via the lead wires 6a and 6b, and after a certain period of time, the temperature was measured with a surface thermometer and found to be 400°C.

また、熱の立上り特性は従来のニクロム線を用いたもの
よりも早く、50Vの電圧印加後、30秒で370°C
に達することが確認された。
In addition, the heat rise characteristics are faster than those using conventional nichrome wire, reaching 370°C in 30 seconds after applying a voltage of 50V.
It was confirmed that it reached

さらに、遠赤外線ヒータ1の表面における温度差は、全
体として±10%以内て略均−発熱状態であった。
Furthermore, the temperature difference on the surface of the far-infrared heater 1 was within ±10% as a whole, and was in a substantially uniform heat generation state.

遠赤外線ヒータ1の半導体セラミックス層2から放射さ
れる遠赤外線の黒体炉に対する放射率を第5図に示す。
FIG. 5 shows the emissivity of far-infrared rays emitted from the semiconductor ceramic layer 2 of the far-infrared heater 1 to a blackbody furnace.

同図から明らかなように、波長5乃至9μmの範囲では
、放射率は0.9程度となり、非常に良好な放射特性で
あることが確認された。
As is clear from the figure, the emissivity was approximately 0.9 in the wavelength range of 5 to 9 μm, and it was confirmed that the radiation characteristics were very good.

また、前記遠赤外線放射ヒータ1における基体2は、A
1□03製で、機械的強度が大きく、耐熱衝撃性、熱伝
導性等の熱的特性も良好で、長期間使用しても亀裂等が
生じることは全くないことが確認された。
Further, the base body 2 in the far-infrared radiant heater 1 is A
1□03, it has high mechanical strength, good thermal properties such as thermal shock resistance and thermal conductivity, and it was confirmed that no cracks would occur even after long-term use.

さらに、基体2自体は各種形状の基板で安価に生産可能
であり、形状の多様化が図れるとともに、半導体セラミ
ックス層3は印刷法による数十μmの厚さに形成される
ため、その材料がごく微量で済み、材料コストの低減ひ
いては遠赤外線ヒータ1の製造コストの低減をも図れる
Furthermore, the base body 2 itself can be produced at low cost with substrates of various shapes, allowing for diversification of shapes, and since the semiconductor ceramic layer 3 is formed to a thickness of several tens of micrometers by a printing method, the material used is very small. Only a small amount is required, and it is possible to reduce the material cost and, by extension, the manufacturing cost of the far-infrared heater 1.

第6図は本発明の他の実施例を示すものであり、同図に
示す遠赤外線ヒータIAは、前記遠赤外線ヒータ1の構
成に加えて、基体2の他方の面にゼオライト粉末や単一
酸化物又はその混合物をペースト化したものを塗布し熱
処理することにより遠赤外線放射層7を形成したことが
特徴である。
FIG. 6 shows another embodiment of the present invention, and the far-infrared heater IA shown in the figure has, in addition to the structure of the far-infrared heater 1, zeolite powder or a single layer on the other surface of the base 2. A feature is that the far-infrared emitting layer 7 is formed by applying a paste of an oxide or a mixture thereof and heat-treating it.

前記遠赤外線放射層7の材料としては、ゼオライト粉末
のほか、既述したコージェライトやムライト、TiO2
、Fe203.Mn○、ZrO2等及びその混合物を用
いてもよいことはもちろんである。
Materials for the far-infrared emitting layer 7 include zeolite powder, cordierite, mullite, TiO2, etc.
, Fe203. Of course, Mn○, ZrO2, etc. and mixtures thereof may also be used.

前記遠赤外線ヒータIAによれば、前記遠赤外線ヒータ
1の場合と同様な作用を発揮するとともに、半導体セラ
ミックス層3の熱エネルギーが基体2を介して効率良く
遠赤外線放射層7に伝達され、この遠赤外線放射層7か
らも遠赤外線を放射する両面型とすることができる。
According to the far-infrared heater IA, the same effect as that of the far-infrared heater 1 is exhibited, and the thermal energy of the semiconductor ceramic layer 3 is efficiently transmitted to the far-infrared radiation layer 7 via the base body 2. It can be of a double-sided type in which the far-infrared rays are also emitted from the far-infrared rays emitting layer 7.

本発明は上述した実施例のほか、その要旨の範囲内で種
々の変形が可能である。
In addition to the embodiments described above, the present invention can be modified in various ways within the scope of its gist.

例えば、前記基体2の形状は、上述した正方形状のほか
、長方形状9円形状等各種の形状として実施可能である
For example, the shape of the base body 2 can be implemented as various shapes such as a rectangular shape, a 9-circular shape, etc., in addition to the above-mentioned square shape.

また、電極層4a、4bの各電極部4c、4d間の間隔
dを変えることにより、半導体セラミックス層3の抵抗
値調整も簡単に行うことができる。
Further, by changing the distance d between the electrode portions 4c and 4d of the electrode layers 4a and 4b, the resistance value of the semiconductor ceramic layer 3 can be easily adjusted.

[発明の効果コ 以上詳述した請求項1記載の発明によれば、上記構成と
したことにより、機械的強度が大きく、耐熱衝撃性、熱
伝導性、熱放射特性等の熱特性に優れ、高効率でしかも
製造容易で製造コストの低減も図れる遠赤外線ヒータを
提供することができる。
[Effects of the Invention] According to the invention described in claim 1, the above-mentioned structure provides high mechanical strength, excellent thermal properties such as thermal shock resistance, thermal conductivity, and heat radiation properties, It is possible to provide a far-infrared heater that is highly efficient, easy to manufacture, and can reduce manufacturing costs.

また、請求項5記載の発明によれば、上記効果に加え、
両面放射型として利用できる遠赤外線ヒータを提供する
ことができる。
Furthermore, according to the invention as claimed in claim 5, in addition to the above effects,
It is possible to provide a far-infrared heater that can be used as a double-sided radiation type.

さらに請求項6記載の発明によれば、感電防止をも図れ
る遠赤外線ヒータを提供することかできる。
Furthermore, according to the invention set forth in claim 6, it is possible to provide a far-infrared heater that can also prevent electric shock.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の遠赤外線ヒータの実施例を示す断面図
、第2図、第3図は各々第1図に示す遠赤外線ヒータの
製造工程を示す断面図、第4図(a)は同上の斜視図、
第4図(b)は第4図(a)のr−■線断面図、第5図
は本実施例の遠赤外線ヒータの黒体炉に対する放射率を
示すグラフ、第6図は本発明の他の実施例の断面図、第
7図は従来の遠赤外線ヒータの一例を示す断面図、第8
図は従来の遠赤外線ヒータの他側の断面図である。 ■、IA・・・遠赤外線ヒータ、2・・・基体、3・・
・半導体セラミックス層、 4a、4b・・・導電層、 7・・・遠赤外線放射層。 5・・・絶縁層、 j長(μm) 第 図 1b
FIG. 1 is a sectional view showing an embodiment of the far-infrared heater of the present invention, FIGS. 2 and 3 are sectional views showing the manufacturing process of the far-infrared heater shown in FIG. 1, and FIG. 4(a) is Perspective view of the same as above,
FIG. 4(b) is a cross-sectional view taken along the line r-■ of FIG. 4(a), FIG. 5 is a graph showing the emissivity of the far-infrared heater of this embodiment with respect to a blackbody furnace, and FIG. 7 is a cross-sectional view of another embodiment, and FIG. 8 is a cross-sectional view showing an example of a conventional far-infrared heater.
The figure is a sectional view of the other side of a conventional far-infrared heater. ■, IA... far infrared heater, 2... base, 3...
- Semiconductor ceramic layer, 4a, 4b... conductive layer, 7... far-infrared radiation layer. 5... Insulating layer, j length (μm) Figure 1b

Claims (5)

【特許請求の範囲】[Claims] (1)絶縁体セラミックス基体と、この絶縁体セラミッ
クス基体の少なくとも一方の面に形成された半導体セラ
ミックス層と、この半導体セラミックス層上の通電用の
電極層とを有することを特徴とする遠赤外線ヒータ。
(1) A far-infrared heater comprising an insulating ceramic base, a semiconductor ceramic layer formed on at least one surface of the insulating ceramic base, and an electrode layer for conducting electricity on the semiconductor ceramic layer. .
(2)前記絶縁体セラミックス基体は、Al_2O_3
若しくはAlN又はアルミナケイ酸塩系セラミックスで
ある請求項1記載の遠赤外線ヒータ。
(2) The insulating ceramic substrate is Al_2O_3
The far-infrared heater according to claim 1, which is AlN or alumina silicate ceramic.
(3)前記半導体セラミックス層は、C、SiC、Ti
C等の導電性炭化物又はTiN等の窒化物添加により半
導体性を付与されたものである請求項1又は2記載の遠
赤外線ヒータ。
(3) The semiconductor ceramic layer is made of C, SiC, Ti.
The far-infrared heater according to claim 1 or 2, wherein the far-infrared heater is imparted with semiconducting properties by adding a conductive carbide such as C or a nitride such as TiN.
(4)前記電極層はくし形状に形成されたものである請
求項1乃至3のいずれかに記載の遠赤外線ヒータ。
(4) The far-infrared heater according to any one of claims 1 to 3, wherein the electrode layer is formed in a comb shape.
(5)絶縁体セラミックス基体と、この絶縁体セラミッ
クス基体の一方の面に形成された半導体セラミックス層
と、前記基体の他方の面に形成された遠赤外線放射層と
、前記半導体セラミックス層に対する通電用の電極層と
を有することを特徴とする遠赤外線ヒータ。(6)前記
半導体セラミックス層と電極層とを絶縁層で被覆したも
のである請求項1又は5記載の遠赤外線ヒータ。
(5) An insulating ceramic substrate, a semiconductor ceramic layer formed on one surface of the insulating ceramic substrate, a far-infrared emitting layer formed on the other surface of the substrate, and a device for energizing the semiconductor ceramic layer. A far-infrared heater characterized by having an electrode layer. (6) The far-infrared heater according to claim 1 or 5, wherein the semiconductor ceramic layer and the electrode layer are coated with an insulating layer.
JP2111432A 1990-04-26 1990-04-26 Far infrared radiation heater Pending JPH0410376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2111432A JPH0410376A (en) 1990-04-26 1990-04-26 Far infrared radiation heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2111432A JPH0410376A (en) 1990-04-26 1990-04-26 Far infrared radiation heater

Publications (1)

Publication Number Publication Date
JPH0410376A true JPH0410376A (en) 1992-01-14

Family

ID=14561043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2111432A Pending JPH0410376A (en) 1990-04-26 1990-04-26 Far infrared radiation heater

Country Status (1)

Country Link
JP (1) JPH0410376A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714668A (en) * 1993-06-17 1995-01-17 Yasuzo Imoto Fog-proof mirror
JPH07240272A (en) * 1994-02-25 1995-09-12 Uijin:Kk Electric heating element and preventing and removing device
US5618580A (en) * 1992-12-28 1997-04-08 Kao Corporation Method for producing ceramic fine particles and apparatus used therefor
US7758276B2 (en) 2006-09-11 2010-07-20 Nec Infrontia Corporation Adjoining expansion structure
ITRM20110108A1 (en) * 2011-03-07 2012-09-08 Sergio Stacchiotti SEAT WITH LOW ENERGY CONSUMPTION HEATING AND / OR COOLING FUNCTION
CN113248237A (en) * 2021-06-15 2021-08-13 江苏天宝陶瓷股份有限公司 Method for manufacturing far infrared ceramic heater

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618580A (en) * 1992-12-28 1997-04-08 Kao Corporation Method for producing ceramic fine particles and apparatus used therefor
JPH0714668A (en) * 1993-06-17 1995-01-17 Yasuzo Imoto Fog-proof mirror
JPH07240272A (en) * 1994-02-25 1995-09-12 Uijin:Kk Electric heating element and preventing and removing device
JP2714602B2 (en) * 1994-02-25 1998-02-16 株式会社ウイジン Icing control device
US7758276B2 (en) 2006-09-11 2010-07-20 Nec Infrontia Corporation Adjoining expansion structure
ITRM20110108A1 (en) * 2011-03-07 2012-09-08 Sergio Stacchiotti SEAT WITH LOW ENERGY CONSUMPTION HEATING AND / OR COOLING FUNCTION
CN113248237A (en) * 2021-06-15 2021-08-13 江苏天宝陶瓷股份有限公司 Method for manufacturing far infrared ceramic heater

Similar Documents

Publication Publication Date Title
US4973826A (en) Glass-ceramic heating element
CN109600867A (en) A kind of ceramic heating element and the device including the ceramic heating element
JPH0410376A (en) Far infrared radiation heater
JPH07282961A (en) Heater
WO2017117873A1 (en) Double-sided thick film heating element having high thermal conductivity
US11828490B2 (en) Ceramic heater for heating water in an appliance
JPS6325465B2 (en)
JP2000200675A (en) Continuous electric current heater and its manufacture
CN107135558B (en) Novel PTC ceramic heating element suitable for curved surface heating
JP3056522U (en) Flexible planar infrared heater
KR20050112597A (en) Heater for instant boiling system and manufacturing method thereof
JPH0420868B2 (en)
JP3108590U (en) Electrothermal film heating device
JP2001326060A (en) Flat heater
JPS6217976A (en) Far infrared radiating body
JP2713794B2 (en) Ceramic heater
KR950009661Y1 (en) Infrared rays seramic eouission
KR100740923B1 (en) Round-type ceramic heater and manufacture method thereof
JPH0613164A (en) Heater structure
CN211557513U (en) Ceramic heating plate with temperature control function
KR200372468Y1 (en) Heating device having electrothermal film
KR20080097698A (en) Manufacture method of surface heater using for ceramic glass
JPS6441188A (en) Manufacture of heating element
JPS6325466B2 (en)
KR200372467Y1 (en) Film heating element having automatic temperature control function