JPH04103328A - Conical biaxial extruder - Google Patents

Conical biaxial extruder

Info

Publication number
JPH04103328A
JPH04103328A JP2222260A JP22226090A JPH04103328A JP H04103328 A JPH04103328 A JP H04103328A JP 2222260 A JP2222260 A JP 2222260A JP 22226090 A JP22226090 A JP 22226090A JP H04103328 A JPH04103328 A JP H04103328A
Authority
JP
Japan
Prior art keywords
rotor
conical
tip
shaft
screw extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2222260A
Other languages
Japanese (ja)
Inventor
Masao Moriyama
森山 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2222260A priority Critical patent/JPH04103328A/en
Priority to CA002049256A priority patent/CA2049256A1/en
Priority to US07/747,644 priority patent/US5232280A/en
Priority to EP19910307743 priority patent/EP0472431A3/en
Publication of JPH04103328A publication Critical patent/JPH04103328A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/484Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with two shafts provided with screws, e.g. one screw being shorter than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/402Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders the screws having intermeshing parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • B29C48/525Conical screws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To increase the upper limit of extruding forces by restraining resistance of forces for extruding materials regardless of the elastic deformation of a rotor to prevent the pressure at an extrusion port from becoming dull or saturated by providing a no-load pressurizing means to cause the forward ends of two rotors to press against each other at a predetermined force when cone-shaped rotors are in no-load state. CONSTITUTION:When rotor shafts 1A, 1B are rotated, both the shafts come into contact only at a point of contact between pressurizing members 11A, 11B to provide a gap between ridges and valleys of screws. When materials are fed into a vessel and the pressure in the vessel increases, forces are exerted on the ends of the shafts so as to move said ends outwardly and hence pressing forces between the members 11A, 11B decreases, however, even when the internal pressure reaches a maximum value, the pressing forces between said members is slightly positive, so that the ends of the shafts are prevented from being displaced outwardly.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はプラスチック、ゴム等の高粘性材料を押し出す
ために用いられる円錐形二軸押出機に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a conical twin-screw extruder used for extruding highly viscous materials such as plastics and rubber.

〈従来の技術〉 一般に、円錐形二軸押出機は、ロータの先端に至るほど
容器断面積が減少するため、それに反比例して内圧が増
大し、従ってロータ長さの割に強力な押出力か得られる
という長所かある。
<Prior art> In general, in a conical twin-screw extruder, the cross-sectional area of the container decreases as it approaches the tip of the rotor, so the internal pressure increases inversely to this, and therefore the extrusion force is strong despite the rotor length. There is an advantage to being able to get it.

従来の円錐形二軸押出機は、ロータの根元部を支持する
軸受けの軸心と、ロータを収納する円錐形二軸容器の中
心軸とが、当然のことながら一致しており、従って、軸
受けの軸心の交角αと円錐形二軸容器の中心軸の交角α
は相等しい。また、容器内に被押出材料か投入されない
無負荷状態のとき、ロータ軸は真直てあって、スクリュ
ーの山が互にかみ合っていながら、両ロータがかじり合
わないために、その間にいくらかの間隙か設けられてい
た。
In a conventional conical twin-screw extruder, the axis of the bearing that supports the base of the rotor naturally coincides with the central axis of the conical twin-screw container that houses the rotor, so the bearing The intersecting angle α between the axes of and the intersecting angle α between the central axes of the conical biaxial container
are equal. In addition, when there is no load on the container with no material to be extruded, the rotor shaft is straight and the threads of the screws are engaged with each other, but because the two rotors do not engage with each other, there is some gap between them. It was set up.

〈発明か解決しようとする課題〉 二軸ロータのスクリューが互にかみ合って回転するとき
、スクリューかかみ合う点、すなわち両ロータ軸心の間
のその細心を結ぶ平面近傍において、材料の内圧が最も
高くなり、しかも、ロータの先端に至るほど内圧が増大
するから、二軸ロータの先端部が外側へ押しひろげられ
、負荷時においてロータ軸は弾性変形するという現象か
みられる。
<Invention or Problem to be Solved> When the screws of a two-shaft rotor engage with each other and rotate, the internal pressure of the material is highest near the point where the screws engage, that is, the plane connecting the fine points between the two rotor axes. Moreover, since the internal pressure increases as it approaches the tip of the rotor, the tip of the biaxial rotor is pushed outward and the rotor shaft is elastically deformed under load.

このようなロータの弾性変形を考慮して、ロータ山径の
回転軌跡面と容器内壁面の間隙が決められていたので、
当然、その間隙が大きくなり、また、ロータの弾性変形
によりスクリューかみ合い部の間隙か増大するため、ス
クリューの谷を埋めている材料かロータの回転とともに
回転することを阻止するというスクリューかみ合い部の
機能か退化する。そのため、材料押出口における圧力が
、ロータ駆動力に比例して増大せずに鈍化ないし飽和す
る現象がみられる。この現象は材料の粘度か高くなるほ
ど顕著になる。
Considering such elastic deformation of the rotor, the gap between the rotation trajectory plane of the rotor mountain diameter and the inner wall surface of the container was determined.
Naturally, the gap becomes larger, and the gap at the screw engagement part also increases due to the elastic deformation of the rotor, so the function of the screw engagement part is to prevent the material filling the screw valley from rotating with the rotation of the rotor. Or degenerate. Therefore, a phenomenon is observed in which the pressure at the material extrusion port does not increase in proportion to the rotor driving force, but slows down or becomes saturated. This phenomenon becomes more pronounced as the viscosity of the material increases.

そこで本発明は、ロータの弾性変形にもかかわらず材料
押出力の抵抗分を抑さえて押出口における圧力の鈍化な
いし飽和を防ぎ、押圧力の上限を高める押出機の提供を
解決課題とする。
Accordingly, an object of the present invention is to provide an extruder that suppresses the resistance of the material extrusion force despite the elastic deformation of the rotor, prevents the pressure from slowing down or becoming saturated at the extrusion port, and increases the upper limit of the pressing force.

く課題を解決するための手段〉 本発明の円錐形二軸押出機は、円錐形ロータか無負荷状
態のとき、両ロータ先端部か所定の力で互に押圧し合う
無負荷予圧手段を備えていることを特徴としている。
Means for Solving the Problems> The conical twin-screw extruder of the present invention is equipped with a no-load preload means that presses the tips of both rotors against each other with a predetermined force when the conical rotor is in an unloaded state. It is characterized by

無負荷状態とは、押出機容器内に被押出材料かなく、材
料の内圧が零である状態をいう。
The no-load state refers to a state in which there is no material to be extruded in the extruder container and the internal pressure of the material is zero.

本発明の無負荷予圧手段は、円錐形ロータのロータ軸先
端に軸方向調節自在に嵌合する先端予圧部材と、それの
調節設定装置から構成されていることが好ましい。
Preferably, the no-load preloading means of the present invention includes a tip preloading member that is fitted to the tip of the rotor shaft of the conical rotor so as to be freely adjustable in the axial direction, and an adjustment and setting device for the tip preloading member.

また、本発明の無負荷予圧手段は、二軸ロータの両軸受
の軸心交角を調節する軸受は交角調節手段、すなわち、
二輪ロータ間に互に押圧力が作用しない状態に組立てた
のち、軸心交角を増大させて所定の押圧力が作用する状
態に調節する手段により構成することが好ましい。
Further, the no-load preloading means of the present invention includes a bearing for adjusting the axial center intersection angle of both bearings of a two-shaft rotor, which is an intersection angle adjustment means, that is,
Preferably, the two rotors are assembled in such a manner that no pressing force is applied to each other, and then the axial center intersection angle is increased to adjust to a state in which a predetermined pressing force is applied.

両ロータ相互間の押圧力を集中的に受ける部分として、
ロータ軸の、好ましくは先端部に、円錐形環状部を設け
ることが好ましい。
As a part that receives intensive pressure between both rotors,
Preferably, the rotor shaft is provided with a conical ring, preferably at the tip.

さらに、この円錐形環状部をロータの最先端に設けて、
これを着脱自在とすることが好ましい。
Furthermore, by providing this conical annular portion at the leading edge of the rotor,
It is preferable that this is detachable.

第2項記載の先端予圧部材は、第6項記載の円錐形環状
部材を含む。
The tip preload member described in item 2 includes the conical annular member described in item 6.

く作用〉 第2項記載の先端予圧部材は、組立作業のはじめにこれ
をロータ軸根元側に設けておき、両ロータが両軸受に支
持されたのち、先端の方へ移動させることにより両ロー
タの相互押圧力を増大させ、所定値に設定される。
Function> The tip preloading member described in item 2 is provided at the root side of the rotor shaft at the beginning of the assembly work, and after both rotors are supported by both bearings, by moving it toward the tips, the preloading member of both rotors is The mutual pressing force is increased and set to a predetermined value.

第3項記載の軸受は交角調節手段は、組立作業のはじめ
に、両ロータの軸心の交角α1と、その両ロータを支持
する軸受けの軸心の交角α2か等しいαl=α2の状態
に組み立てておき、その後α1くα2の状態になる向き
に調節し、相互押圧力を所定値に設定する。
In the bearing described in item 3, the intersection angle adjusting means is assembled so that, at the beginning of the assembly work, the intersection angle α1 of the axes of both rotors is equal to the intersection angle α2 of the axes of the bearing supporting both rotors, so that αl=α2. Then, the mutual pressing force is set to a predetermined value.

無負荷時において、第6図に実線で示すように、ロータ
先端部が互に押圧し合い、ロータ軸心は弾性変形してい
る。材料が投入されて内圧か増大してゆく程に、ロータ
先端部を外側へ押し拡げようとする力も増大するので、
ロータ先端部を互に押圧し合う力が減少し、ロータ軸心
の弾性変形による「たわみ量」は減少するが、先端の接
触は依然として保たれ、ロータ先端部か外側へ拡がるこ
とはない。
When no load is applied, the rotor tips are pressed against each other and the rotor axis is elastically deformed, as shown by the solid line in FIG. As more material is introduced and the internal pressure increases, the force that tries to push the rotor tip outwards also increases.
Although the force pressing the rotor tips together is reduced and the amount of deflection due to elastic deformation of the rotor axis is reduced, the tips still remain in contact and do not spread outward.

二軸ロータの有効径が相等しい互に対応する位置におい
ても、スクリューの山は半径が大きいので周速度も大き
く、スクリューの谷は半径が小さいので周速度も小さい
。従って、スクリューの山と谷か接触し合えば、周速度
の差により、「かじり」現象か生じて好ましくない。し
かし、円錐形環状部は周速度が相等しいので、そこに強
い押圧力か作用しても、「かじり」現象か生じない。ま
た、円錐形環状部か押圧力を集中的に受けるので、スク
リュー相互間に押圧力か作用せず、スクリューの摩耗と
「かじり」現象か防止される。
Even at mutually corresponding positions where the effective diameters of the two-shaft rotor are equal, the crests of the screws have a large radius, so the circumferential speed is high, and the troughs of the screw have a small radius, so the circumferential speed is low. Therefore, if the crests and troughs of the screw come into contact with each other, a "galling" phenomenon may occur due to the difference in circumferential speed, which is undesirable. However, since the circumferential speeds of the conical annular portions are equal, even if a strong pressing force is applied thereto, no "galling" phenomenon occurs. Further, since the conical annular portion receives the pressing force intensively, no pressing force acts between the screws, thereby preventing screw wear and "galling" phenomenon.

円錐形環状部または円錐形環状部材の外周面が樽形であ
る(クラウニング加工されている)場合は、これを軸方
向に調節することにより押圧点の有効径が変化して予圧
を調節できるばかりでなく、外周面の弾性変形により接
触部分が点から面に拡がり、外周面に作用する圧力が分
散されて耐久性が向上する。
If the outer peripheral surface of the conical annular part or conical annular member is barrel-shaped (crowned), adjusting this in the axial direction changes the effective diameter of the pressing point and adjusts the preload. Rather, due to the elastic deformation of the outer circumferential surface, the contact area spreads from a point to a surface, and the pressure acting on the outer circumferential surface is dispersed, improving durability.

円錐形環状部材(先端予圧部材を含む)を着脱自在とす
る場合は、この部材を交換するだけで組立当初の状態に
更新することができ、容器またはスクリューの摩耗を皆
無にすることかできる。
When the conical annular member (including the tip preloading member) is made removable, it is possible to update the container to its original state by simply replacing this member, thereby completely eliminating wear on the container or screw.

〈実施例〉 第1図に本発明か実施された円錐形二軸押出機の全体平
面図を部分切欠図により示し、第2図に、その要部の縦
断面図を示す。
<Example> FIG. 1 shows an overall plan view, partially cut away, of a conical twin-screw extruder according to the present invention, and FIG. 2 shows a vertical cross-sectional view of the main parts thereof.

スクリューか互にかみ合づて回転する二軸の円錐形ロー
タIA、IBは、その根元部が軸受け2A 、2Bおよ
び3A 、3Bにより支持され、その先端は自由端をな
し、両ロータ軸は歯車4A 、4Bにより係合し、異方
向に回転駆動される。容器5は、ロータIA、IBのス
クリューの山の回転軌跡となる二軸円錐面に近接した内
側面と、この二軸円錐面の根元上部に設けられた方形の
材料投入口6と、先端の材料押出ロアを育し、材料押出
ロアか斜下方を向く姿勢で基台8上に固定されている。
The two-shaft conical rotors IA and IB, which rotate with screws meshing with each other, have their bases supported by bearings 2A, 2B and 3A, 3B, their tips forming free ends, and both rotor shafts connected to gears. 4A and 4B, and are driven to rotate in different directions. The container 5 has an inner surface close to a biaxial conical surface that is the rotation trajectory of the screw peaks of the rotors IA and IB, a rectangular material input port 6 provided at the upper part of the root of the biaxial conical surface, and a rectangular material input port 6 at the tip. The material extrusion lower is raised and fixed on the base 8 with the material extrusion lower facing obliquely downward.

ロータ軸の先端部には第2図に示すように、円柱形部1
0A、IOBが形成され、それに嵌合して軸方向に変化
しうる先端予圧部材11A 、11Bが設けられている
。この予圧部材11A、IIBの外側面は全体として円
錐面をしているが、両端に対し中央部が膨らんだ樽形を
している。ロータ軸IA、IBの先端面には軸心に沿っ
てめねじ12A 、12Bが刻設され、そのめねじにフ
ランジ付ボルト13A、13Bか係合している。そして
、予圧部材11A、IIBの先端部にはこのボルト13
A、13Bのフランジ部14A、14Bの前面に掛るフ
ランジ受は部15A、15Bか一体形成されている。ボ
ルト13A、13Bは予圧部材11A、IIBの先端面
よりも突出しており、その突出部にボルトを回転駆動さ
せるための貫通孔16A、16Bか穿たれ、そのボルト
先端のおねじに円錐形のロータキャップ17A、17B
が取付けられている。
As shown in Fig. 2, there is a cylindrical part 1 at the tip of the rotor shaft.
0A and IOB are formed, and tip preload members 11A and 11B that fit therein and can change in the axial direction are provided. The outer surfaces of the preload members 11A and IIB have a conical shape as a whole, but are barrel-shaped with a bulge in the center relative to both ends. Female threads 12A, 12B are carved along the axis on the tip surfaces of the rotor shafts IA, IB, and flanged bolts 13A, 13B are engaged with the female threads. This bolt 13 is attached to the tip of the preload members 11A and IIB.
The flange receivers hanging on the front surfaces of the flange parts 14A and 14B of A and 13B are integrally formed with the parts 15A and 15B. The bolts 13A and 13B protrude beyond the tip surfaces of the preload members 11A and IIB, and through holes 16A and 16B are bored in the protrusions to rotate the bolts, and a conical rotor is attached to the male thread at the tip of the bolt. Cap 17A, 17B
is installed.

この装置の組立に際しては、はじめボルト13A、13
Bと予圧部材11A 、11Bを根元側へ仮固定してお
き、貫通孔16A、16Bに駆動棒を通してボルト13
A、13Bを先端側へ変位させると、ロータ先端部が外
側へ拡大され、ロータ軸が弾性変形するとともに、ロー
タ軸相互の押圧力が次第に増大する。この押圧力が所定
値に達すると、ロータキャップ17A、17Bを取付け
て調節作業は完了する。
When assembling this device, first bolts 13A, 13
B and the preload members 11A and 11B are temporarily fixed to the base side, and the bolt 13 is passed through the through holes 16A and 16B through the drive rod.
When A and 13B are displaced toward the tip side, the rotor tip portion expands outward, the rotor shaft is elastically deformed, and the mutual pressing force between the rotor shafts gradually increases. When this pressing force reaches a predetermined value, the rotor caps 17A, 17B are attached and the adjustment work is completed.

ロータ軸IA、IBが回転駆動されるとき、両ロータ軸
は予圧部材11A、IIBの接点のみて接し、スクリュ
ーの山と谷の間には間隙が確保されている。材料が投入
されて容器内の内圧が増大するにつれて、ロータ軸先端
部を外側へ拡げようとする力が増大し、予圧部材間の押
圧力が減少するが、内圧が最大値に達したときでもなお
予圧部材間の押圧力は僅かに正の値であり、従って、ロ
ータ軸先端部が外側へ拡がることがない。
When the rotor shafts IA and IB are rotationally driven, both rotor shafts come into contact only at the contact points of the preload members 11A and IIB, and a gap is ensured between the peaks and valleys of the screws. As the internal pressure inside the container increases as material is introduced, the force that tries to spread the tip of the rotor shaft outward increases, and the pressing force between the preload members decreases, but even when the internal pressure reaches its maximum value, Note that the pressing force between the preload members is a slightly positive value, so that the tip of the rotor shaft does not expand outward.

第3図に本発明の他の実施例の全体平面図を部分切欠図
により示し、第4図に、第3図のA−A断面図を示す。
FIG. 3 shows an overall plan view of another embodiment of the present invention in a partially cutaway view, and FIG. 4 shows a sectional view taken along the line AA in FIG. 3.

この実施例が、前記のものと相違する点は、ロータ軸I
A、IBにそれぞれウオーム減速機構18゛Aが設けら
れつオーム軸に係合する受動プーリ19A、19Bはタ
イミングベルト2oを介して1個のモータ21により駆
動され、軸受け2A 、3Aを収容する軸受は箱22A
と、軸受け2B 、3Bを収容する軸受は箱22Bは互
に独立し、押出機の容器5に対して微小角ながら回動調
節しつるように構成されていることである。そのため、
容器8B 5と軸受は箱22A、22Bを接合するフランジ間には
弾力性に富むパツキン25A、25Bが介在し、ボルト
26A、26Bを締めつけることにより、軸受けの軸心
の交角か増大・し、ロータ軸の先端を互に押圧し合う押
圧力が増大する。軸受は箱22A 、22Bは基台8に
対し弾力的に支持されており、例えば受動プーリ19A
、19Bの軸心を支点として微小角回動することかてき
るよう構成されている。
This embodiment differs from the previous one in that the rotor shaft I
A and IB are each provided with a worm reduction mechanism 18'A, and passive pulleys 19A and 19B that engage with the ohm shaft are driven by one motor 21 via a timing belt 2o, and bearings that accommodate bearings 2A and 3A are driven by a single motor 21 via a timing belt 2o. is box 22A
The bearing box 22B housing the bearings 2B and 3B is independent of each other and is configured to be able to rotate at a small angle with respect to the container 5 of the extruder. Therefore,
Highly elastic gaskets 25A and 25B are interposed between the flanges that connect the boxes 22A and 22B to the container 8B5 and the bearing, and by tightening the bolts 26A and 26B, the intersection angle of the axes of the bearing increases, and the rotor The pressing force that presses the tips of the shafts together increases. The bearing boxes 22A and 22B are elastically supported on the base 8, and are mounted on a passive pulley 19A, for example.
, 19B as a fulcrum and can be rotated by a minute angle.

ロータ軸IA 、IBの先端は、スクリューの有効径と
同一またはやや大きい径の円錐形環状部材23A、23
Bが設けられている。この円錐形環状部材23A 、2
3Bを着脱自在とし、摩耗したときに新品と交換しつる
ように構成してもよ(、その場合、第7図に示すように
、外周部に嵌合させるスリーブ状部材24のみを交換し
つるように構成してもよい。
The tips of the rotor shafts IA and IB are shaped like conical annular members 23A and 23 having a diameter that is the same as or slightly larger than the effective diameter of the screw.
B is provided. This conical annular member 23A, 2
3B may be made detachable so that it can be replaced with a new one when it wears out (in that case, as shown in FIG. It may be configured as follows.

この装置を組立てるときは、まず両ロータIA、IBの
軸心が真直であって、その先端相互間に押圧力が作用し
ない状態に組み立て、その後、ボルト23A 、23B
を締めることにより軸受は箱22A、22Bを矢印の向
きに微小角回動させる。この状態において、両ロータI
A 、IBは弾性変形により第6図に実線で示すように
たわみ、先端部相互間に強い押圧力を生ずる。換言すれ
ば、第5図に示すように、容器7の円錐内面の中心軸P
A、Paと軸受けの中心軸QA、Q、とは一致しておら
ず、二軸PA交角α、と二軸QA、QllO交角α2の
間にα1くα2の関係がある。
When assembling this device, first make sure that the axes of both rotors IA and IB are straight and no pressing force is applied between their tips, and then bolts 23A and 23B are assembled.
By tightening, the bearing rotates the boxes 22A, 22B by a small angle in the direction of the arrow. In this state, both rotors I
A and IB bend due to elastic deformation as shown by the solid line in FIG. 6, and a strong pressing force is generated between the tips. In other words, as shown in FIG. 5, the central axis P of the conical inner surface of the container 7
A and Pa do not coincide with the central axes QA and Q of the bearings, and there is a relationship of α1 and α2 between the biaxial PA intersecting angle α and the biaxial QA and QllO intersecting angle α2.

次に、円錐形環状部の機能について説明する。Next, the function of the conical annular portion will be explained.

第8図に示すように、両スクリューかかみ合う、両ロー
タ軸心を結ぶ平面上において、常にスクリューの山と谷
が当接している。山径R1は谷径R2より大きいので、
当然用の周速度は谷の周速度よりも大きく、周速度の異
る金属か接触すると、そこに「かじり」現象が生ずる。
As shown in FIG. 8, the peaks and valleys of the screws are always in contact with each other on a plane connecting both rotor axes where both screws engage. Since the peak diameter R1 is larger than the valley diameter R2,
Naturally, the circumferential speed at the bottom is higher than the circumferential speed at the valley, and when metals with different circumferential speeds come into contact, a "galling" phenomenon occurs.

そこで、両ロータとも径R0が等しい部分を設けると、
そこでは周速度が等しく「かじり」現象か生じない。そ
の径が有効径またはそれよりもやや大きい径である。
Therefore, if both rotors are provided with a portion with the same diameter R0,
There, the circumferential speed is equal and no "galling" phenomenon occurs. Its diameter is the effective diameter or a diameter slightly larger than the effective diameter.

円錐形環状部の径を有効径よりもやや大きくするP。P: The diameter of the conical annular portion is made slightly larger than the effective diameter.

ことにより、その環状部に押圧力か集中してスクリュー
相互間の間隙が確保される。
As a result, the pressing force is concentrated on the annular portion, and a gap between the screws is secured.

本発明の円錐形環状部は、ロータ先端に設けるほが、ス
クリュ一部分の中間に設けることもできる。
The conical annular portion of the present invention is preferably provided at the tip of the rotor, but can also be provided in the middle of a portion of the screw.

本発明における軸受けの交角調節手段は、ロータの一方
を容器とともに基台に固定し、ロータの他方のみを調節
しうるちのでもよい。また、両ロータ間の動力伝達機構
が傘歯車である場合は、その歯車のかみ合い点を支点と
してロータ軸根元部を回動させてもよく、さらに第3図
に示したように互に独立的に変位させうる軸受は箱を備
えた場合において、軸受けに自動調心ころがり軸受けを
使用してその軸受けを中心に回動させてもよい。
The bearing intersection angle adjustment means in the present invention may be such that one of the rotors is fixed to the base together with the container, and only the other rotor is adjusted. In addition, if the power transmission mechanism between both rotors is a bevel gear, the rotor shaft root may be rotated using the engagement point of the gear as a fulcrum, and furthermore, as shown in FIG. In the case where the bearing that can be displaced is provided with a box, a self-aligning rolling bearing may be used as the bearing and the bearing may be rotated around the bearing.

〈発明の効果〉 本発明によれば、内圧か増大してもロータ軸が外側に開
かずロータ軸先端部分のスクリューのかみ合いが正しく
保たれるので、押出力の上限が伸長された。また、ロー
タ軸の先端部分が容器内壁に接触するおそれが解消した
<Effects of the Invention> According to the present invention, the rotor shaft does not open outward even if the internal pressure increases, and the screw engagement at the tip of the rotor shaft is maintained correctly, so that the upper limit of the extrusion force is extended. Furthermore, the fear that the tip of the rotor shaft would come into contact with the inner wall of the container was eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す平面図の部分切欠図
、第2図は、第1図のロータ軸先端部の拡大断面図、第
3図は、本発明の他の実施例を示す平面図の部分切欠図
、第4図は、第3図のA−A断面図、第5図は、第3図
に示す実施例の説明図、第6図は、本発明の作用説明図
、第7図は、本発明の円錐形環状部の一実施例を示す断
面図、第8図は、本発明の円錐形環状部の作用説明図で
ある。 A 、IB・・・・・・円錐形ロータ A 、2B・・・・・・軸受け A 、3B・・・・・・軸受け ・・・・・・容器 ・・・・・・材料投入口 ・・・・・・材料押出口 IA 、11B・・・・・・先端予圧部材3A、23B
・・・・・・円錐形環状部材4・・・・・・円錐形環状
部材 第2図
FIG. 1 is a partially cutaway plan view showing one embodiment of the present invention, FIG. 2 is an enlarged sectional view of the tip of the rotor shaft in FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a cross-sectional view taken along line A-A in FIG. 3, FIG. 5 is an explanatory diagram of the embodiment shown in FIG. 3, and FIG. 7 are cross-sectional views showing one embodiment of the conical annular portion of the present invention, and FIG. 8 is an explanatory view of the operation of the conical annular portion of the present invention. A, IB...Conical rotor A, 2B...Bearing A, 3B...Bearing...Container...Material input port... ...Material extrusion port IA, 11B...Tip preload member 3A, 23B
...Conical annular member 4...Conical annular member Fig. 2

Claims (5)

【特許請求の範囲】[Claims] (1)スクリューが互にかみ合って回転する二軸の円錐
形ロータの先端が自由端をなし、そのロータの根元部が
軸受けにより支持され、そのスクリューの山の回転軌跡
となる二軸円錐面に近接した内壁面をもつ容器の根元部
上部に材料投入口を有し、その容器先端に材料押出口を
有する装置において、上記円錐形ロータが無負荷状態の
とき両ロータ先端部が所定の力で互に押圧し合う無負荷
予圧手段を備えていることを特徴とする円錐形二軸押出
機。
(1) The tip of the two-shaft conical rotor, in which the screws mesh with each other and rotate, forms a free end, and the root of the rotor is supported by a bearing, and the two-shaft conical surface forms the rotation locus of the screw mountain. In an apparatus having a material input port at the upper part of the base of a container having adjacent inner wall surfaces and a material extrusion port at the tip of the container, when the conical rotor is in an unloaded state, both rotor tips are applied with a predetermined force. A conical twin screw extruder characterized in that it is equipped with no-load preload means that press each other.
(2)上記無負荷予圧手段が、上記円錐形ロータのロー
タ軸先端に軸方向調節自在に嵌合する先端予圧部材と、
その調節設定装置である、第1項記載の円錐形二軸押出
機。
(2) a tip preload member in which the no-load preload means fits into the tip of the rotor shaft of the conical rotor in an axially adjustable manner;
A conical twin-screw extruder according to paragraph 1, the adjustment and setting device thereof.
(3)上記無負荷予圧手段が、上記二軸ロータの両軸受
の軸心交角を調節する軸受け交角調節手段である、第1
項記載の円錐形二軸押出機。
(3) The no-load preload means is a bearing intersection angle adjusting means for adjusting the axis intersection angle of both bearings of the two-shaft rotor.
Conical twin-screw extruder as described in Section 1.
(4)上記二軸の円錐形ロータの相対応する部分に、上
記スクリューの略有効径の円錐形環状部を有し、その円
錐形環状部で両ロータの押圧力を受けるよう構成された
、第1項または第3項記載の円錐形二軸押出機。
(4) A conical annular portion having an approximate effective diameter of the screw is provided at corresponding portions of the two-shaft conical rotor, and the conical annular portion is configured to receive the pressing force of both rotors. The conical twin-screw extruder according to item 1 or 3.
(5)上記円錐形環状部が、その両端よりも中央部が丸
く膨んだ樽形である、第4項記載の円錐形二軸押出機。
(5) The conical twin-screw extruder according to item 4, wherein the conical annular portion has a barrel shape whose central portion is more rounded than both ends thereof.
JP2222260A 1990-08-22 1990-08-22 Conical biaxial extruder Pending JPH04103328A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2222260A JPH04103328A (en) 1990-08-22 1990-08-22 Conical biaxial extruder
CA002049256A CA2049256A1 (en) 1990-08-22 1991-08-15 Twin conical screw extruder
US07/747,644 US5232280A (en) 1990-08-22 1991-08-20 Twin conical screw extruder provided with pressurizing members
EP19910307743 EP0472431A3 (en) 1990-08-22 1991-08-22 Twin conical screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2222260A JPH04103328A (en) 1990-08-22 1990-08-22 Conical biaxial extruder

Publications (1)

Publication Number Publication Date
JPH04103328A true JPH04103328A (en) 1992-04-06

Family

ID=16779604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2222260A Pending JPH04103328A (en) 1990-08-22 1990-08-22 Conical biaxial extruder

Country Status (1)

Country Link
JP (1) JPH04103328A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144313A (en) * 2000-08-30 2002-05-21 Denso Corp Extrusion molding machine for ceramic molding
JP2015136907A (en) * 2014-01-24 2015-07-30 日本スピンドル製造株式会社 Material molding and putting-out device
WO2016002333A1 (en) * 2014-06-30 2016-01-07 日本スピンドル製造株式会社 Biaxial extruder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942619A (en) * 1982-08-31 1984-03-09 Matsushita Electric Ind Co Ltd Waveform shaping device for data
JPS60124231A (en) * 1983-12-09 1985-07-03 Masao Moriyama Cone type extruder
JPS60154030A (en) * 1984-01-23 1985-08-13 Masao Moriyama Cone-type extruder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942619A (en) * 1982-08-31 1984-03-09 Matsushita Electric Ind Co Ltd Waveform shaping device for data
JPS60124231A (en) * 1983-12-09 1985-07-03 Masao Moriyama Cone type extruder
JPS60154030A (en) * 1984-01-23 1985-08-13 Masao Moriyama Cone-type extruder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144313A (en) * 2000-08-30 2002-05-21 Denso Corp Extrusion molding machine for ceramic molding
JP2015136907A (en) * 2014-01-24 2015-07-30 日本スピンドル製造株式会社 Material molding and putting-out device
WO2016002333A1 (en) * 2014-06-30 2016-01-07 日本スピンドル製造株式会社 Biaxial extruder

Similar Documents

Publication Publication Date Title
US5232280A (en) Twin conical screw extruder provided with pressurizing members
US4576503A (en) Torque transmission assembly
US6004239A (en) Friction type continuously variable speed changing mechanism
CA1195068A (en) Screw extruders
US4781656A (en) Variable speed power transmission pulley and system
US3998563A (en) Detachable coupling device
JPH0621624B2 (en) Driving force transmission device
US4445838A (en) Apparatus for extruding a comestible
JP2000161462A (en) Sealing structure for ball screw
GB2027846A (en) Torque transmitting element
JPS602545B2 (en) friction transmission
JPH04103328A (en) Conical biaxial extruder
DE3938346C1 (en)
US5213010A (en) Driver power transmitting apparatus of twin shaft extruders
US5324183A (en) Apparatus for producing a controllable, uniform conveying pressure for processing highly viscous rubber or thermoplastics
DE2614151C3 (en) Friction clutch
JP4083183B2 (en) Screw for kneading extruder
CN110091203B (en) Fast-assembling type lead screw prestretches structure
US5046996A (en) Planetary friction drive
WO2013171567A1 (en) Device for the rotatable coupling of two assemblies
CN113531004A (en) Overload protection mechanism and speed reducing motor with same
DE102009024163B4 (en) Power transmission device
CN110131399B (en) Combined precision planetary gear reducer
US4022562A (en) Press having torque responsive drive
JPS582422Y2 (en) Granulator