JPH0410319B2 - - Google Patents

Info

Publication number
JPH0410319B2
JPH0410319B2 JP59209736A JP20973684A JPH0410319B2 JP H0410319 B2 JPH0410319 B2 JP H0410319B2 JP 59209736 A JP59209736 A JP 59209736A JP 20973684 A JP20973684 A JP 20973684A JP H0410319 B2 JPH0410319 B2 JP H0410319B2
Authority
JP
Japan
Prior art keywords
speed
electric motor
torque
rotational speed
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209736A
Other languages
Japanese (ja)
Other versions
JPS6188780A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59209736A priority Critical patent/JPS6188780A/en
Publication of JPS6188780A publication Critical patent/JPS6188780A/en
Publication of JPH0410319B2 publication Critical patent/JPH0410319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電動機の速度制御装置の制御定数設
定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control constant setting method for a speed control device for an electric motor.

〔発明の背景〕[Background of the invention]

電動機の速度制御装置におけるオートチユーニ
ングの方法としては、例えば特開昭58−192486号
公報に示されるものが知られている。この方法は
回転速度の2階微分と電機子電流の1階微分の比
を演算して、負荷トルクの影響を受けることな
く、電動機磁束と機械系の起動時定数(慣性モー
モント)の比を求め、速度調節部のゲインをダイ
レクトに自動設定する。しかし、この方法におい
ては微分演算が行われるため、回転速度及び電機
子電流の検出信号に含まれるパルス状ノイズの影
響を受け易く、その結果、電機子電流にリプルが
多く含まれるようになることが難点である。
As an autotuning method in a speed control device for an electric motor, the method disclosed in, for example, Japanese Patent Laid-Open No. 192486/1986 is known. This method calculates the ratio of the second derivative of the rotation speed and the first derivative of the armature current to find the ratio between the motor magnetic flux and the starting time constant (moment of inertia) of the mechanical system without being affected by the load torque. , directly and automatically sets the gain of the speed adjustment section. However, since differential calculations are performed in this method, it is easily affected by pulse-like noise contained in the rotational speed and armature current detection signals, and as a result, the armature current contains many ripples. is the difficult point.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電動機の速度制御装置におけ
る速度調節の制御定数設定を高精度にかつ自動的
に行う方法を提供することにある。
An object of the present invention is to provide a method for automatically and highly accurately setting control constants for speed adjustment in a speed control device for an electric motor.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、トルクに比例した信号の積分
及び回転速度の変化幅に基づいて機械系の慣性モ
ーメントを演算し、これに基づいて速度調節部の
制御定数を実運転前に自動設定するようにしたこ
とにある。
A feature of the present invention is that the moment of inertia of the mechanical system is calculated based on the integral of a signal proportional to torque and the range of change in rotational speed, and the control constant of the speed adjustment section is automatically set based on this before actual operation. It's because I did it.

〔発明の実施例〕[Embodiments of the invention]

以下、図面により本発明の実施例を説明する。
第1図はベクトル制御インバータ装置で誘導電動
機を駆動する回路構成図である。1及び2はトラ
ンジスタ等で構成されるインバータとそのドライ
バ回路、3は誘導電動機、4は負荷装置、5は回
転速度検出器である。A部はベクトル制御の一般
的な回路で、わかり易くする為アナログ的にブロ
ツク図で示している。ここで6は電流調節器
(ACR)、7はベクトル演算器、8は周波数指令
信号ω1 *に比例した周波数の2相正弦波信号を出
力する発振器、9はトルク電流指令信号it *を励
磁電流指令信号in *及び2次定数T2で割算してす
べり周波数指令値ωa *を求める演算器、10は速
度調節器(ASR)、11は回転速度指令器、12
は励磁電流指令器である。B部は本発明における
誘導電動機3の回転子とこれに連結する負荷装置
4等の慣性モーメントJの演算部である。これは
励磁電流−磁束変換器13、トルク電流指令信号
it *を積分する積分器14、回転速度ωrの変化幅
検出器15、トルク演算器16、及び慣性モーメ
ント演算器17より構成され、この出力により
ASR10の制御定数を調整する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit configuration diagram for driving an induction motor with a vector control inverter device. 1 and 2 are inverters and their driver circuits composed of transistors, etc.; 3 is an induction motor; 4 is a load device; and 5 is a rotational speed detector. Part A is a general circuit for vector control, and is shown in an analog block diagram for ease of understanding. Here, 6 is a current regulator (ACR), 7 is a vector calculator, 8 is an oscillator that outputs a two-phase sine wave signal with a frequency proportional to the frequency command signal ω 1 * , and 9 is a torque current command signal i t * . an arithmetic unit that calculates the slip frequency command value ω a * by dividing by the excitation current command signal i n * and the quadratic constant T 2 ; 10 is a speed regulator (ASR); 11 is a rotational speed command; 12
is the excitation current command device. Section B is a section for calculating the moment of inertia J of the rotor of the induction motor 3 and the load device 4 connected thereto in the present invention. This is the exciting current-magnetic flux converter 13, torque current command signal
It is composed of an integrator 14 that integrates i t * , a change width detector 15 of rotational speed ω r , a torque calculator 16, and a moment of inertia calculator 17.
Adjust the control constants of ASR10.

前述したベクトル制御の原理は、電動機電流の
励磁成分とトルク発生成分の指令信号in *とit *
それぞれに応じて磁束とトルクを独立に制御する
ことにより、誘導電動機を高速応答、高精度に速
度制御するようにしたものであるが、その詳細は
周知であるので、ここでは詳しい動作説明は省略
する。本発明は、このような速度制御装置の速度
調節器の制御定数を自動設定する方法に関する。
以下、本発明の内容について述べる。
The principle of vector control described above is to control the magnetic flux and torque independently according to the command signals i n * and i t * of the excitation component and torque generation component of the motor current, respectively, so that the induction motor can achieve high-speed response and high performance. The speed is controlled with precision, but since the details are well known, a detailed explanation of the operation will be omitted here. The present invention relates to a method for automatically setting control constants of a speed regulator of such a speed control device.
The content of the present invention will be described below.

速度制御系の制御ループは第2図のように表わ
せ、その一巡伝達関数Gは次式となる。
The control loop of the speed control system is expressed as shown in FIG. 2, and its round transfer function G is expressed by the following equation.

G=〔K11+T2S/T1S〕〔K2/1+TaS〕φ〔1/JS
〕 ……(1) ここで、磁束φは一定としても、慣性モーメン
トJが電動機及び負荷装置の変更により変化する
と制御系のゲインが変動し、最適応答の制御が行
えない。そこで本発明においては、Jを実運転前
に正確に測定し、速度調節器の制御定数K1をJ
に比例して自動的に設定する。
G = [K 1 1 + T 2 S / T 1 S] [K 2 / 1 + T a S] φ [1 / JS
] ... (1) Here, even if the magnetic flux φ is constant, if the moment of inertia J changes due to changes in the motor and load device, the gain of the control system will vary, making it impossible to control the optimal response. Therefore, in the present invention, J is accurately measured before actual operation, and the control constant K1 of the speed regulator is set to J.
Automatically set in proportion to.

慣性モーメントJは、次式より求めることがで
きる。
The moment of inertia J can be calculated from the following equation.

J=加速トルクの積分量/回転速度の変化幅…
…(2) すなわち、第1図の演算部Bにin *、it *及びωr
を入力し、第3図に示すように回転速度を一定レ
ートで加速する。このとき磁束φが一定(ベクト
ル制御においてはトルク変化に対してφは一定に
保たれる)の条件においては、電動機発生トルク
Teは、it *に比例し(Te=kφit *)、また、電動機
が無負荷に近い場合は、発生トルクをそのまま加
速トルクとみなせるので、加速期間中のit *の積
分量(トルクの積分量に比例)を、その積分期間
における回転速度変化幅で割算することによりJ
が求められる。
J = integral amount of acceleration torque/change width of rotational speed...
...(2) That is, i n * , i t * and ω r in the calculation section B of FIG.
is input, and the rotational speed is accelerated at a constant rate as shown in FIG. At this time, under the condition that the magnetic flux φ is constant (in vector control, φ is kept constant against torque changes), the motor generated torque
T e is proportional to i t * (T e = kφi t * ), and if the motor is close to no load, the generated torque can be directly regarded as acceleration torque, so the integral amount of i t * during the acceleration period (proportional to the integral amount of torque) by the rotational speed change width during that integral period.
is required.

しかし実際においては、負荷トルクTLを考慮
する必要がある。加速トルクは発生トルクTe
らTLを差し引いたものでありJは次式で与えら
れる。
However, in reality, it is necessary to consider the load torque T L. The acceleration torque is obtained by subtracting T L from the generated torque T e , and J is given by the following formula.

J=∫(Tea−TLa)dt/Δωra ……(3) 但し、Tea>0、4ωra>0 ここで、Teは前述のようにit *より推定できる
が、TLは回転速度及び負荷条件に応じて変動す
る。そこで、次に回転速度を一定レートで減速し
た場合においてJを求める。減速トルクは発生ト
ルクTeよりTLを差し引いたものであるから前述
と同様にしてJは次式で与えられる。
J=∫(T ea −T La )dt/Δω ra ...(3) However, T ea > 0, 4ω ra > 0 Here, T e can be estimated from i t * as mentioned above, but T L varies depending on the rotation speed and load conditions. Therefore, next time, J is determined when the rotational speed is decelerated at a constant rate. Since the deceleration torque is obtained by subtracting T L from the generated torque T e , J is given by the following equation in the same manner as described above.

J=∫(Ted−TLd)dt/Δωrd ……(4) 但し、Ted>0、4ωrd<0 ここで、加減速レート及び加減速の回転速度変
化幅が同一の場合を考えると、負荷トルクと回転
速度の関係が一定の条件においては次式が成立す
る。
J=∫(T ed −T Ld ) dt/Δω rd ...(4) However, T ed > 0, 4ω rd < 0 Here, consider the case where the acceleration/deceleration rate and the rotational speed change range of acceleration/deceleration are the same. Under the condition that the relationship between load torque and rotational speed is constant, the following equation holds true.

Δωra=Δωrd=Δωr ∫Teadt/Δωra=∫Teddt/Δωrd ……(5) ∫TLadt/Δωra=−∫TLddt/Δωrd したがつて、(3)、(4)式の和より J=1/2|Δωr|〔∫Teadt−∫Teddt〕 ……(6) すなわち、Jは加速時及び減速時におけるit *
の積分量の差から、負荷トルクの影響を受けるこ
となく求めることができる。
Δω ra = Δω rd = Δω r ∫T ea dt/Δω ra = ∫T ed dt/Δω rd ……(5) ∫T La dt/Δω ra = −∫T Ld dt/Δω rd Therefore, (3 ), from the sum of equations (4), J = 1/2 | Δω r | [∫T ea dt−∫T ed dt] ...(6) That is, J is i t * during acceleration and deceleration.
It can be determined from the difference in the integral amount without being affected by the load torque.

以上述べた演算は、マイクロコンピユータを用
いた制御装置であればソフト処理だけで対応する
ことができる。第4図にその演算のフローチヤー
トを示す。
The above-mentioned calculations can be handled by only software processing if the control device uses a microcomputer. FIG. 4 shows a flowchart of the calculation.

先ずin *を取り込み電動機の相互インダクタン
スMよりφを演算する。次にωr *を一定レートで
変化させ加速を行う。この間it *をΔt秒毎にt秒
間メモリに取り込み、そしてそのt秒間における
回転速度の初期値ωr1と終期値ωr2をメモリに取込
む。これよりt秒間におけるit *の累積加算 (t0 it *Δt)と回転速度変化幅Δωr を求め∫Teadtを演算する。次にωr *を一定レート
で減速させ、前述と同様にして∫Teddtを求める。
以上の結果を基に(6)式に基づきJを演算する。そ
して、このJに基づき速度調節器ASRの制御定
数K1を設定する。
First, i n * is taken in and φ is calculated from the mutual inductance M of the motor. Next, acceleration is performed by changing ω r * at a constant rate. During this time, i t * is loaded into the memory for t seconds every Δt seconds, and the initial value ω r1 and final value ω r2 of the rotational speed for that t seconds are loaded into the memory. From this, the cumulative addition of i t * for t seconds ( t0 i t * Δt) and the rotational speed change width Δω r are determined, and ∫T ea dt is calculated. Next, ω r * is decelerated at a constant rate, and ∫T ed dt is obtained in the same manner as above.
Based on the above results, J is calculated based on equation (6). Then, the control constant K1 of the speed regulator ASR is set based on this J.

以上、本発明によれば負荷トルクの影響を受け
ずに慣性モーメントJの正確な値を求めることが
でき、速度制御性能を向上できる効果がある。な
お、前記実施例においては、Jの演算において負
荷トルクの影響を除くため電動機を加減速した
が、回転速度の変化幅が小さい範囲で測定するな
らば、負荷トルクは回転速度によらずほぼ一定と
みなせるので、予め一定速度における負荷トルク
の積分量∫t 0TLdtを求めておき、次に電動機を加
速して、その時のトルク積分量∫t 0Tedtより、前
述負荷トルク積分量を差し引いて慣性モーメント
Jを演算しても同様の結果が得られる。この関係
は(3)式から明らかである。このときのフローチヤ
ートを第5図に示す。
As described above, according to the present invention, an accurate value of the moment of inertia J can be obtained without being affected by load torque, and the speed control performance can be improved. In the above embodiment, the electric motor was accelerated or decelerated in order to eliminate the influence of load torque in calculating J, but if the measurement is performed in a range where the rotational speed changes within a small range, the load torque is almost constant regardless of the rotational speed. Therefore, first find the integral amount of load torque at a constant speed ∫ t 0 T L dt, then accelerate the electric motor, and from the integral amount of torque at that time ∫ t 0 T e dt, the aforementioned integral amount of load torque A similar result can be obtained by subtracting the moment of inertia J. This relationship is clear from equation (3). A flowchart at this time is shown in FIG.

以上述べた実施例は周知のベクトル制御装置に
本発明を適用した例であるが、他の制御装置であ
つてもトルク及び回転速度に比例した信号が得ら
れる場合は同様に本発明を適用できる。これらの
信号は演算推定された信号であつてよい。周知の
ベクトル制御装置はインバータ出力周波数ω1
制御するために、また速度制御のためのフイード
バツク信号に速度検出信号が用いられ電動機取付
の速度検出器が必要でシステム構成が複雑であ
る。この解決のため、速度検出器を用いないベク
トル制御方式が開発された。第6図にこの制御装
置への本発明の適用例を示す。この方式の原理及
び動作については特願昭58−29143号に述べられ
ているので、ここでは詳しい説明は省略するが、
電動機の誘導起電力を検出し、この起動力ベクト
ルを座標基準に、起動力に対し90度位相差の電動
機電流成分(励磁電流)を調節して磁束を、ま
た、起電力に対して同位相の電流成分(トルク電
流)を調節してトルクを制御するものである。こ
のものにおいても、速度調節器10より前期実施
例と同様にトルク電流指令it *が得られ、励磁電
流指令器12より励磁電流指令in *が得られる
(ここで起電力調節器18の出力信号Δin *は、磁
束の基準値からの変化を防止するように起電力検
出器19からの起電力検出信号に応じてin *に付
加されるもので、磁束はin *に比例して制御され
る)。また、回転速度の推定値ωrは、起電力検出
信号eq(起電力調節器18の作用により定常的に
はeqはω1 *に一致する。)よりすべり周波数ω5 *
差し引き演算される。上述のように、磁束、トル
ク及び回転速度のそれぞれに比例するin *、it *
びωrが得られるため、前記実施例と同様にこれ
らを用いて本発明を実施でき、同様の効果が得ら
れる。
Although the embodiment described above is an example in which the present invention is applied to a well-known vector control device, the present invention can be similarly applied to other control devices if signals proportional to torque and rotational speed can be obtained. . These signals may be computationally estimated signals. In the known vector control device, a speed detection signal is used as a feedback signal for speed control in order to control the inverter output frequency ω 1 , and a speed detector attached to the motor is required, resulting in a complicated system configuration. To solve this problem, a vector control method that does not use a speed detector was developed. FIG. 6 shows an example of application of the present invention to this control device. The principle and operation of this system are described in Japanese Patent Application No. 58-29143, so a detailed explanation will be omitted here.
The induced electromotive force of the motor is detected, and with this starting force vector as a coordinate reference, the motor current component (excitation current) with a 90 degree phase difference with respect to the starting force is adjusted to adjust the magnetic flux and the same phase with the electromotive force. The torque is controlled by adjusting the current component (torque current) of the motor. In this case as well, the torque current command i t * is obtained from the speed regulator 10 as in the previous embodiment, and the exciting current command i n * is obtained from the exciting current command device 12 (here, the electromotive force regulator 18 The output signal Δi n * is added to i n * according to the electromotive force detection signal from the electromotive force detector 19 to prevent the magnetic flux from changing from the reference value, and the magnetic flux is proportional to i n * . control). Furthermore, the estimated value ω r of the rotational speed is calculated by subtracting the slip frequency ω 5 * from the electromotive force detection signal e q (e q steadily matches ω 1 * due to the action of the electromotive force regulator 18). be done. As mentioned above, since i n * , i t * , and ω r are obtained which are proportional to each of the magnetic flux, torque, and rotational speed, the present invention can be carried out using these in the same manner as in the above embodiment, and the same effect can be obtained. is obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微分演算によらず、ノイズの
影響を受け難い積分演算を行つており、また、負
荷トルクの影響を排除して高精度に慣性モーメン
トJを推定でき、これにより制御定数を最適に設
定できるという効果がある。
According to the present invention, an integral calculation that is not easily affected by noise is performed instead of a differential calculation, and the moment of inertia J can be estimated with high precision by eliminating the influence of load torque. This has the effect of allowing optimal settings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明をベクトル制御装置に適用した
際のブロツク図、第2図、第3図はそれぞれ第1
図の方法の原理説明図、第4図は第1図における
本発明に関係の演算フローチヤート、第5図は本
発明の他の実施例における演算フローチヤート、
第6図は本発明を速度センサなしベクトル制御装
置に適用するときのブロツク図である。 3……交流電動機、A……ベクトル制御装置、
10……速度調節器。
Fig. 1 is a block diagram when the present invention is applied to a vector control device, and Figs.
4 is a calculation flowchart related to the present invention in FIG. 1; FIG. 5 is a calculation flowchart in another embodiment of the present invention;
FIG. 6 is a block diagram when the present invention is applied to a vector control device without a speed sensor. 3...AC motor, A...vector control device,
10...Speed regulator.

Claims (1)

【特許請求の範囲】 1 トルクと磁束を独立に制御して電動機を可変
速制御する速度制御装置であつて、前記電動機の
回転速度の検出値あるいは推定値と回転速度指令
値との偏差よりトルク比例信号を出力する速度調
節器を備えた速度制御装置の制御定数設定方法に
おいて、前記電動機の発生トルクを変え回転速度
を変化させた際に、前記トルク比例信号を積分
し、該積分量と回転速度の変化幅との比より、前
記電動機及び前記電動機に機械的に結合する負荷
装置の慣性モーメントを計算し、該慣性モーメン
トの値に比例させて前記速度調節器の制御定数を
設定するようにしたことを特徴とする速度制御装
置の制御定数設定方法。 2 トルクと磁束を独立に制御して電動機を可変
速制御する速度制御装置であつて、前記電動機の
回転速度の検出値あるいは推定値と回転速度指令
値との偏差よりトルク比例信号を出力する速度調
節器を備えた速度制御装置の制御定数設定方法に
おいて、前記電動機の発生トルクを変えた回転速
度を加速及び減速させたそれぞれの際に、前記ト
ルク比例信号の積分量と回転速度の変化幅との比
をそれぞれ求め、それぞれの比の値の差から、前
記電動機及び前記電動機に機械的に結合する負荷
装置の慣性モーメントを計算し、該慣性モーメン
トの値に比例させて前記速度調節器の制御定数を
設定するようにしたことを特徴とする速度制御装
置の制御定数設定方法。
[Scope of Claims] 1. A speed control device that controls an electric motor at variable speed by independently controlling torque and magnetic flux, wherein the torque is determined based on the deviation between a detected value or an estimated value of the rotational speed of the electric motor and a rotational speed command value. In a control constant setting method for a speed control device equipped with a speed regulator that outputs a proportional signal, when the generated torque of the electric motor is changed to change the rotational speed, the torque proportional signal is integrated, and the integral amount and rotation are A moment of inertia of the electric motor and a load device mechanically coupled to the electric motor is calculated from a ratio with a speed change width, and a control constant of the speed regulator is set in proportion to the value of the inertia moment. A method for setting control constants for a speed control device, characterized in that: 2. A speed control device that controls the electric motor at variable speed by independently controlling torque and magnetic flux, which outputs a torque proportional signal based on the deviation between a detected value or estimated value of the rotational speed of the electric motor and a rotational speed command value. In the control constant setting method for a speed control device equipped with an adjuster, when the rotational speed of the electric motor is accelerated or decelerated by changing the generated torque, the integrated amount of the torque proportional signal and the variation width of the rotational speed are determined. The moment of inertia of the electric motor and the load device mechanically coupled to the electric motor is calculated from the difference between the values of the respective ratios, and the speed regulator is controlled in proportion to the value of the inertia moment. A method for setting a control constant for a speed control device, characterized in that a constant is set.
JP59209736A 1984-10-08 1984-10-08 Control constant setting method for speed controller Granted JPS6188780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209736A JPS6188780A (en) 1984-10-08 1984-10-08 Control constant setting method for speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209736A JPS6188780A (en) 1984-10-08 1984-10-08 Control constant setting method for speed controller

Publications (2)

Publication Number Publication Date
JPS6188780A JPS6188780A (en) 1986-05-07
JPH0410319B2 true JPH0410319B2 (en) 1992-02-24

Family

ID=16577784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209736A Granted JPS6188780A (en) 1984-10-08 1984-10-08 Control constant setting method for speed controller

Country Status (1)

Country Link
JP (1) JPS6188780A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015913A (en) * 2004-07-02 2006-01-19 Favess Co Ltd Control constant designing/adapting device for motor-driven power steering device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3820125C2 (en) * 1987-06-12 1994-04-07 Hitachi Ltd Method for controlling an inverter-fed asynchronous motor
JP2892802B2 (en) * 1990-09-21 1999-05-17 株式会社日立製作所 Motor speed control device
JP2847092B2 (en) * 1993-08-10 1999-01-13 株式会社日立製作所 Automatic adjustment method of vector control device
DE69620597T2 (en) * 1995-05-17 2002-08-01 Yaskawa Denki Kitakyushu Kk DEVICE FOR DETERMINING CONTROL CONSTANTS
JP2002304219A (en) 2001-04-04 2002-10-18 Yaskawa Electric Corp Motor controller and mechanism characteristic measuring method
JP5210621B2 (en) * 2007-12-20 2013-06-12 株式会社日立産機システム Power converter
JP5192925B2 (en) * 2008-06-30 2013-05-08 ヤマハ発動機株式会社 Load identification method and robot control system
EP2565465B1 (en) * 2011-08-29 2014-12-10 ABB Oy Method and apparatus for determining change in mass of fan impeller
CN109660169B (en) * 2018-11-26 2020-09-01 浙江浙能技术研究院有限公司 Transient identification method for rotational inertia of induction motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836180A (en) * 1981-08-28 1983-03-03 Hitachi Ltd Controlling method and device for position of motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836180A (en) * 1981-08-28 1983-03-03 Hitachi Ltd Controlling method and device for position of motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015913A (en) * 2004-07-02 2006-01-19 Favess Co Ltd Control constant designing/adapting device for motor-driven power steering device
JP4655522B2 (en) * 2004-07-02 2011-03-23 株式会社ジェイテクト Control constant design adapting device for electric power steering system

Also Published As

Publication number Publication date
JPS6188780A (en) 1986-05-07

Similar Documents

Publication Publication Date Title
JP2892802B2 (en) Motor speed control device
EP0490024B1 (en) Induction motor vector control
JPH0410319B2 (en)
EP0526915B1 (en) Control system for controlling revolution speed of electric motor
JPS6356187A (en) Speed control unit of induction motor
JP2788360B2 (en) Motor speed control device
JPH06121570A (en) Ac motor control system
JP3053121B2 (en) Control method of induction motor
JPH06225576A (en) Method and equipment for compensating slip of induction machine
JPH0744862B2 (en) Electric motor speed controller
JP2847092B2 (en) Automatic adjustment method of vector control device
JPS6248284A (en) Control for motor
JP3124019B2 (en) Induction motor control device
JPS63316687A (en) Vector controlling arithmetic device for induction motor
JP3206611B2 (en) Position Tracking Control Method for Position Synchronous Speed Control System
JPH0755006B2 (en) Electric vehicle constant speed device
JPH0530792A (en) Equipment for controlling induction motor
SU788325A1 (en) Device for control of induction electric drive
JPH06189576A (en) Control device for induction motor
JPH0531388B2 (en)
JPH0937416A (en) Drive motor controller for electric vehicle
JPS6332032B2 (en)
JP2540203B2 (en) Control system of generator excitation system
JP2881957B2 (en) Induction motor control device
JPS6255396B2 (en)