JPH0410302A - Light and heat co-generation device - Google Patents

Light and heat co-generation device

Info

Publication number
JPH0410302A
JPH0410302A JP2110135A JP11013590A JPH0410302A JP H0410302 A JPH0410302 A JP H0410302A JP 2110135 A JP2110135 A JP 2110135A JP 11013590 A JP11013590 A JP 11013590A JP H0410302 A JPH0410302 A JP H0410302A
Authority
JP
Japan
Prior art keywords
light
heat
section
heat ray
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2110135A
Other languages
Japanese (ja)
Inventor
Nobuo Oyama
宣夫 大山
Toshinori Ariura
有浦 俊典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2110135A priority Critical patent/JPH0410302A/en
Publication of JPH0410302A publication Critical patent/JPH0410302A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve energy utilization efficiency by using the heat ray component of sunlight or artificial light as thermal energy, and constituting a device as the light source of visible and ultraviolet rays with the combination of natural lighting, converging, heat ray processing, heat utilization and light utilization sections. CONSTITUTION:Sunlight or artificial light permeating the fixed type natural lighting panel 1 of a diffraction grating, holographic diffraction grating or the like is kept incidental to a converging section 12 at an approximately constant angle, regardless of the incidental angle of a beam by means of the function of the aforesaid panel 1. Then, the converged beam is separated into a heat ray component, a visible light component and an ultraviolet component. The separated heat ray is used for a hot water supply, humidification or power generation device through a heat recovery device 4 in a heat ray processing section. The visible light is used as a light source for photosynthetic bioreactor 5 or the like, and the ultraviolet used as an ultraviolet irradiation source for disinfection or the like. According to the aforesaid construction, energy utilization efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、光源からの光と熱エネルギーを利用するこ
とが8来る、光熱併給装置に関するものである。そして
詳しくは、太陽光または人工光を用いる光照射装置にお
いて、熱線を回収して利用する省エネルギー装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a combined light and heat generation device that utilizes light and thermal energy from a light source. More specifically, the present invention relates to an energy-saving device that collects and utilizes heat rays in a light irradiation device that uses sunlight or artificial light.

(従来の技術) 従来の光照射装置においては、不必要な熱線域は、■そ
のまま対象物に照射して対象物の温度を上げたり、■熱
吸収フィルターにより除去されたり、■コールドミラー
により分離されたりして利用されていないのが現状であ
る。
(Conventional technology) In conventional light irradiation equipment, unnecessary heat rays are either: ■ directly irradiated onto the object to raise the temperature of the object, ■ removed by a heat absorption filter, or ■ separated by a cold mirror. The current situation is that it is not being used.

(発明が解決しようとする課題) 従来の技術では、太陽光を用いる場合では、その約50
%が熱線として利用されず、また人工光例えばメタルハ
ライドランプにおいてもその約50%が熱線として利用
されていない。そして場合によっては、照射物あるいは
環境の温度を、利用意図に反して高めるという不都合を
もたらしていた。
(Problem to be solved by the invention) With conventional technology, when using sunlight, about 50
% are not used as heat rays, and even in artificial light such as metal halide lamps, about 50% are not used as heat rays. In some cases, the temperature of the irradiated object or the environment may be increased contrary to the intended use.

この発明は上記の問題に鑑みてなされたものであり、そ
の目的は熱線を積極的に利用することにより、これを光
熱併給装置として提供し、エネルギーの利用効率を高め
ることにある。
This invention has been made in view of the above-mentioned problems, and its purpose is to provide this as a combined light and heat supply device by actively utilizing heat rays, thereby increasing the efficiency of energy use.

(課題を解決するための手段および作用)発明者は、光
源から集光された光束を熱線処理部によって熱線と可視
光部に分離することに着目してこの発明を着想すること
が出来た。
(Means and Effects for Solving the Problems) The inventor was able to conceive of this invention by focusing on separating the luminous flux collected from the light source into a heat ray and a visible light part by a heat ray processing section.

即ち、この発明の要旨は「太陽光または人工光の熱線部
を熱エネルギーとして利用し、可視光部および紫外部は
光源として利用する装置において。
That is, the gist of this invention is ``A device that uses the hot rays of sunlight or artificial light as thermal energy, and uses the visible light and ultraviolet light as a light source.

採光部、集光部、熱線処理部、熱利用部、光利用部の組
合せからなることを特徴とする光熱併給装置」である。
A combined light and heat supply device characterized by comprising a combination of a lighting section, a light collecting section, a heat ray processing section, a heat utilization section, and a light utilization section.

この発明においては、太陽光または人工光を回折格子ま
たはホログラフィック回折格子等の固定式採光パネルに
より、光束のパネルへの入射角しこ拘らず、パネルを透
過する光を常にほぼ一定の角度で集光部へ入射させる。
In this invention, sunlight or artificial light is transmitted through a fixed lighting panel such as a diffraction grating or a holographic diffraction grating, so that the light that passes through the panel is always kept at a substantially constant angle, regardless of the angle of incidence of the light beam on the panel. Make it incident on the light condensing section.

この場合、採光ノくネルと集光レンズは一体物でもよい
。また、太陽光の採光には固定式ではなく、太陽光追尾
式採光装置を用いてもよい。また集光レンズのほかに集
光鏡を用いることもできる。
In this case, the lighting channel and the condensing lens may be integrated. Furthermore, instead of a fixed type, a sunlight tracking type lighting device may be used for daylight lighting. In addition to the condenser lens, a condenser mirror can also be used.

つぎに集光された光束は、熱線処理部において熱線と可
視光並びに紫外部に分離されるが、この分離にはコール
ドミラーを用いるか、または炭酸ガスなどの熱媒体を用
いてその中を光を通過させることにより熱を回収する手
段でもよい。
Next, the focused light beam is separated into heat rays, visible light, and ultraviolet light in a heat ray processing section, but for this separation, a cold mirror is used or a heat medium such as carbon dioxide gas is used to pass light through it. It may also be a means for recovering heat by passing it through.

そして分離された熱線は、熱線処理部においてそれぞれ
熱回収装置により給湯、調湿または発電装置において利
用される。また可視光は光合成バイオリアクター、組織
培養光照射装置などの光源として用いたり、紫外線は紫
外線照射用光源として殺菌などのいずれかに用いる装置
とする。
The separated hot wires are then utilized in hot water supply, humidity control, or power generation equipment by respective heat recovery devices in the heat wire treatment section. Further, visible light is used as a light source in a photosynthetic bioreactor, tissue culture light irradiation device, etc., and ultraviolet light is used as a light source for ultraviolet irradiation in devices such as sterilization.

さらに、上記のコールドミラーまたは熱媒体を用いる物
の設置位置は、固定式採光パネルと集光レンズまたは集
光鏡の間でも差し支えない。
Furthermore, the installation position of the cold mirror or the object using a heat medium may be between the fixed daylighting panel and the condensing lens or condensing mirror.

以下実施例に基づいて説明する。The following will be explained based on examples.

(実施例) 直径400mのフレンネルレンズ1.300 X 20
0mm角の平面鏡2.120 X 190mm角のコー
ルドミラー3.100 X 100 X 120mnの
水槽4、線径ll1lI11長さ1000mのポリマー
光フアイバー661本の一端を最密結束したライトガイ
ド、積分球(開口径19.9mm、補正係数K = 0
.005788975)、STI光合成リアクター(S
Tニオブトリアクタ−MP−1)5を第1図の如く設置
し、1990年3月11日午前11時より午後1時まで
、東京部内において実施した。そこで採集した光量(第
1表)と水槽中の水で回収された熱エネルギー量および
利用された可視光量として光合成リアクターにより増殖
した藻類の量を測定した。
(Example) Fresnel lens with a diameter of 400 m 1.300 x 20
0 mm square plane mirror 2. 120 x 190 mm square cold mirror 3. 100 x 100 x 120 mm water tank 4, a light guide in which one end of 661 polymer optical fibers with a wire diameter of 1,000 m and 661 polymer optical fibers with a wire diameter of 1,000 m are bundled tightly, an integrating sphere (open Diameter 19.9mm, correction coefficient K = 0
.. 005788975), STI photosynthesis reactor (S
A T niobium reactor MP-1) 5 was installed as shown in Figure 1, and the experiment was conducted in the Tokyo area from 11:00 a.m. to 1:00 p.m. on March 11, 1990. The amount of algae grown in the photosynthetic reactor was measured as the amount of light collected there (Table 1), the amount of thermal energy recovered from the water in the tank, and the amount of visible light utilized.

この場合、太陽光のフレンネルレンズへの入射角ができ
るだけ小さくなるよう5分毎に手動によりその向きを調
節した。また同時にこのフレンネルレンズの向きの変化
に応じ、コールドミラーによる反射光ができるだけ多く
光合成バイオリアクターに入るよう、またミラーを透過
した熱線が水槽の熱吸収帯にできるだけ多く当るよう平
面鏡およびコールドミラーの向きを手動により調節した
In this case, the direction of the Fresnel lens was manually adjusted every 5 minutes so that the angle of incidence of sunlight on the Fresnel lens was as small as possible. At the same time, depending on the direction of this Fresnel lens, the plane mirror and cold mirror are adjusted so that as much light reflected by the cold mirror as possible enters the photosynthetic bioreactor, and as much of the heat rays that have passed through the mirror hit the heat absorption band of the aquarium. The orientation was adjusted manually.

(1)可視光の利用 同装置において集光した可視光量の測定には、線径1m
+のポリマー光フアイバー661本と結束し、第2図の
ようなライトガイド6を作成した。測定にはバイオリア
クターを移動し、その受光端の位置にライトガイドの受
光端を置き、第3図の如く中心線上の14本のファイバ
ー7の出光端を積分球に入れ、照度を読み取り、入光量
を換算した。
(1) Use of visible light To measure the amount of visible light collected by this device, a wire with a diameter of 1 m is used.
A light guide 6 as shown in FIG. 2 was created by bundling it with 661 + polymer optical fibers. For measurement, move the bioreactor, place the light receiving end of the light guide at the position of the light receiving end, put the light emitting ends of the 14 fibers 7 on the center line into the integrating sphere as shown in Figure 3, read the illuminance, and measure the input. The amount of light was converted.

また照度計によりフレンネルレンズが受ける照度を測定
し、同レンズの面積1,256cjが受ける光量を算出
した。
In addition, the illuminance received by the Fresnel lens was measured using an illuminance meter, and the amount of light received by an area of 1,256 cj of the lens was calculated.

上記の入光量の測定に要した時間は約4〜5秒であり、
それ以外の時間は光束の測定個所と同じ光束の最収束点
に後述の光合成バイオリアクターの受光端を設置し、微
細藻類(クロレラ・ピレノイドサ)の培養を行った。
The time required to measure the above amount of incident light was approximately 4 to 5 seconds,
At other times, the light-receiving end of the photosynthetic bioreactor (described below) was installed at the same point where the light flux was most converged as the point where the light flux was measured, and microalgae (Chlorella pyrenoidosa) were cultured.

実験時間:11時〜13時、 培地量:約1.2Q培養
温度:40℃ クロレラ量:実験開始時15g(乾物)
、実験終了時16.5 g (乾物)、クロレラ増加量
:1.5g/l、2Q/2hr即ち15g/12/d。
Experiment time: 11:00 to 13:00, Medium amount: Approximately 1.2Q, Culture temperature: 40℃, Chlorella amount: 15g (dry matter) at the start of the experiment.
, 16.5 g (dry matter) at the end of the experiment, Chlorella increase: 1.5 g/l, 2Q/2hr or 15 g/12/d.

バイオリアクター仕様 ライトクラスター二線状側面出光体(LRL)の集合体
、LRL本数=661、全長: 1,012mm、 L
RL径:1m、出光部長さ:600mm、出光面積:1
1.500cd、 クラスターハウジング、ライトクラスターが収納される
培養槽、出光部の径:内67mm外75m+、最大径:
190mm、全長:872m++、液容量:約1.2Q
Bioreactor specification light cluster Assembly of two-line side light emitting bodies (LRL), number of LRLs = 661, total length: 1,012mm, L
RL diameter: 1m, Idemitsu length: 600mm, Idemitsu area: 1
1.500 cd, cluster housing, culture tank in which the light cluster is stored, diameter of light emitting part: inner 67 mm, outer 75 m+, maximum diameter:
190mm, total length: 872m++, liquid capacity: approximately 1.2Q
.

第1表 注)(1)入光量の測定に用いられたファイバー数は、
測定値14本、換算値14本、計算値661本 (2)計算値の平均値は8,970、入光率の平均値は
71.28(2)熱エネルギーの回収 水槽は、厚さ1mの銅板で内のりが100 X 100
 X120mmの箱8を作り、その−面の内側に第4図
のような放熱ひれ9を取付けた。そしてその外側には0
点10を中心とする径50nnの円内を黒色の耐熱塗料
で塗り、熱線吸収帯とした。また、その外壁には熱線吸
収帯の部分を除き断熱材としてグラスウールを厚さ約1
0+m+に巻き付け、その外側にアルミ箔を張り付けた
。この箱にIQの水を入れ、第1図4のごとく水槽の熱
吸収帯に熱線が当るように設置した。これにより水に吸
収された熱量を算出した。
Table 1 Note) (1) The number of fibers used to measure the amount of incident light is
14 measured values, 14 converted values, 661 calculated values (2) The average value of the calculated values is 8,970, the average value of the light incidence rate is 71.28 (2) The thermal energy recovery water tank is 1 m thick. copper plate with inner thickness of 100 x 100
A box 8 of 120 mm in diameter was made, and a heat dissipation fin 9 as shown in Fig. 4 was attached to the inner side of the box. and 0 outside of it
The inside of a circle with a diameter of 50 nn centered on point 10 was painted with black heat-resistant paint to form a heat ray absorption band. In addition, the outer wall is covered with glass wool with a thickness of about 1 inch as a heat insulating material, except for the heat ray absorption zone.
0+m+, and aluminum foil was pasted on the outside. This box was filled with IQ water and placed so that the heat rays hit the heat absorption zone of the tank as shown in Figure 1-4. From this, the amount of heat absorbed by water was calculated.

実験時間: 11:00〜13:00  室温:25℃
水温:実験開始時25℃ 実験終了時49℃水量:実験
開始時1 、0OOcc実験終了時960ccそして水
による熱線の回収量は、以下のごとく算出する。
Experiment time: 11:00-13:00 Room temperature: 25°C
Water temperature: 25°C at the start of the experiment, 49°C at the end of the experiment Water amount: 1 at the start of the experiment, 0OOcc at the end of the experiment, and 960cc at the end of the experiment.The amount of heat rays recovered by water is calculated as follows.

(49−25) X 960440 X 583=23
,040+23,320=46,360cal即ち約4
6.36Kcalの熱が回収されたことになる。
(49-25) X 960440 X 583=23
,040+23,320=46,360cal or about 4
This means that 6.36 Kcal of heat was recovered.

また受光面が受は得る熱エネルギー量は可視光量これを
熱エネルギー量とする。
The amount of heat energy received by the light receiving surface is the amount of visible light, which is defined as the amount of heat energy.

平均可視光照度A=100,200 Lux、ILux
=6 X 1061yを採用すると、 A=100,200X6X10 ’1y=lO0,20
0X 6 X 10″g−cal/cj/win=10
0,200 X 6 X 4.185ti・sec X
 10 ’/a7/win=100,200 X 6 
X 4.185 X 60/3,600 X 10〜・
h/cd/h=io、ozox4.tasxto 6w
/aJ故に、 1,256fflの受光面が2時間に受
は得るエネルギー量は。
Average visible light illuminance A=100,200 Lux, ILux
If = 6 X 1061y is adopted, A=100,200
0X 6 X 10″g-cal/cj/win=10
0,200 x 6 x 4.185ti・sec
10'/a7/win=100,200 X 6
X 4.185 X 60/3,600 X 10~・
h/cd/h=io, ozox4. tasxto 6w
/aJ Therefore, the amount of energy that a light receiving surface of 1,256 ffl receives in 2 hours is.

10.020 X4.185 X 10 ’v X 1
,256 X 2hΦ105誓h105 X 103X
 860.4(kcal)沖0.3Kcal故にm:の
装置による熱エネルギーの回収率は43.36÷90.
3 X 100=48% となる。
10.020 X4.185 X 10'v X 1
,256 x 2hΦ105 h105 x 103X
860.4 (kcal) Oki 0.3 Kcal Therefore, the recovery rate of thermal energy by the device m: is 43.36 ÷ 90.
3 x 100 = 48%.

上記の結果から、水槽の位置により高熱の水蒸気が得ら
れるので、在来の技術を使用して発電をしたり、冷暖房
をしたりすることが出来ることは明らかである。
From the above results, it is clear that depending on the location of the water tank, high-temperature steam can be obtained, so that conventional technology can be used to generate electricity and provide heating and cooling.

(発明の効果) この発明によれば、従来技術では利用されないこの発明
によれば、従来技術では利用されないままであった熱線
を積極的に利用することができるので、エネルギーの利
用効率を高めることが出来る。従ってこの発明の装置は
省エネルギー装置ということができ、その実用上の価値
は大なるものがある。
(Effects of the Invention) According to the present invention, it is possible to actively utilize hot wires that were not utilized in the prior art, thereby increasing the efficiency of energy use. I can do it. Therefore, the device of this invention can be called an energy-saving device, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する装置の側面図、第2図はライ
トガイド、第3図は光ファイバーの配置を示す断面図5
第4図は水槽の一部を切り欠いた斜視図である。 1・・・フレンネルレンズ  2・・・鏡4.8・・・
水槽  5・・・バイオリアクター6・・・ライトガイ
ド  7−・・光ファイバー第2区 O 第A図
Fig. 1 is a side view of a device implementing the present invention, Fig. 2 is a light guide, and Fig. 3 is a cross-sectional view showing the arrangement of optical fibers.
FIG. 4 is a partially cutaway perspective view of the water tank. 1... Fresnel lens 2... Mirror 4.8...
Water tank 5...Bioreactor 6...Light guide 7-...Optical fiber 2nd section O Figure A

Claims (1)

【特許請求の範囲】 (1)太陽光または人工光の熱線部を熱エネルギーとし
て利用し、可視光部および紫外部は光源として利用する
装置において、採光部、集光部、熱線処理部、熱利用部
、光利用部の組合せからなることを特徴とする光熱併給
装置。 (2)採光部が固定式採光パネルまたは太陽光追尾式採
光装置である請求項(1)記載の光熱併給装置。 (3)集光部が集光レンズ、集光鏡のいずれかである請
求項(1)記載の光熱併給装置。(4)採光部における
固定式採光パネルと集光部における集光レンズが一体と
なった構造を持つ請求項(1)記載の光熱併給装置。 (5)熱線処理部がコールドミラーまたは熱媒体を用い
る物である請求項(1)記載の光熱併給装置。 (6)熱利用部が発電装置または空調装置である請求項
(1)記載の光熱併給装置。 (7)光利用部が光合成、照明、紫外線照射用光源のい
ずれかに用いる物である請求項(1)記載の光熱併給装
置。
[Scope of Claims] (1) A device that uses the hot rays of sunlight or artificial light as thermal energy, and uses visible light and ultraviolet light as a light source, including a lighting section, a light collecting section, a heat ray processing section, A combined light and heat supply device comprising a combination of a utilization section and a light utilization section. (2) The combined light and heat supply device according to claim (1), wherein the lighting section is a fixed daylighting panel or a sunlight tracking type daylighting device. (3) The combined light and heat supply device according to claim (1), wherein the condensing section is either a condensing lens or a condensing mirror. (4) The combined light and heat supply device according to claim 1, wherein the fixed daylighting panel in the daylighting section and the condensing lens in the light condensing section are integrated. (5) The combined light and heat supply device according to claim (1), wherein the heat ray treatment section uses a cold mirror or a heat medium. (6) The combined light and heat generating device according to claim (1), wherein the heat utilization section is a power generation device or an air conditioner. (7) The combined light and heat supply device according to claim (1), wherein the light utilization part is used for any one of photosynthesis, illumination, and a light source for ultraviolet irradiation.
JP2110135A 1990-04-27 1990-04-27 Light and heat co-generation device Pending JPH0410302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2110135A JPH0410302A (en) 1990-04-27 1990-04-27 Light and heat co-generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2110135A JPH0410302A (en) 1990-04-27 1990-04-27 Light and heat co-generation device

Publications (1)

Publication Number Publication Date
JPH0410302A true JPH0410302A (en) 1992-01-14

Family

ID=14527918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2110135A Pending JPH0410302A (en) 1990-04-27 1990-04-27 Light and heat co-generation device

Country Status (1)

Country Link
JP (1) JPH0410302A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045127A2 (en) 1999-04-14 2000-10-18 Honda Giken Kogyo Kabushiki Kaisha Cogeneration apparatus
US6913068B2 (en) * 2001-04-20 2005-07-05 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust heat recovering apparatus
US8767362B2 (en) 2009-08-07 2014-07-01 Shimizu Corporation Islanded power system with distributed power supply
JP2020058241A (en) * 2018-10-05 2020-04-16 三菱重工機械システム株式会社 Light radiation device and algae cultivation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045127A2 (en) 1999-04-14 2000-10-18 Honda Giken Kogyo Kabushiki Kaisha Cogeneration apparatus
US6913068B2 (en) * 2001-04-20 2005-07-05 Honda Giken Kogyo Kabushiki Kaisha Engine exhaust heat recovering apparatus
US8767362B2 (en) 2009-08-07 2014-07-01 Shimizu Corporation Islanded power system with distributed power supply
JP2020058241A (en) * 2018-10-05 2020-04-16 三菱重工機械システム株式会社 Light radiation device and algae cultivation device

Similar Documents

Publication Publication Date Title
US6895145B2 (en) Apparatus and method for collecting light
US4389085A (en) Lighting system utilizing the sunlight
US4529830A (en) Apparatus for collecting, distributing and utilizing solar radiation
US6666207B1 (en) Solar energy concentrator and converter
US4411490A (en) Apparatus for collecting, distributing and utilizing solar radiation
US7558452B2 (en) Apparatus and method for collecting energy
US8156685B2 (en) Greenhouse, greenhouse covering, filter system, lighting system, conducting system, use and feeder apparatus
KR101092418B1 (en) Multi-functional Solar Collector
US4512335A (en) Solar energy collecting apparatus
CN110800496A (en) Frequency-division lighting, illumination, power generation and heat supply integrated plant growth system
KR101671455B1 (en) Solar Concenstrator for photovoltaic lighting, sterilization and thermoelectric generator
JPH0410302A (en) Light and heat co-generation device
KR101093773B1 (en) Sun Light Condensing Equipment
CN100368831C (en) Mask sheet with solar energy collection and solar device therefor
KR20210041993A (en) Solar Energy Hybrid Generation System Using Thermoelectric Element
KR102358978B1 (en) Parabolic trough concentrator type solar thermal energy system having concentrated photovoltaic
KR850001560B1 (en) Device using both as collecting light and generating
JP2023542089A (en) Annular convex lens and highly efficient and lightweight solar water heater
JP2003322419A (en) Sunlight composite focusing machine of electric power generation system for house
KR960018397A (en) Collector consisting of condenser with parabolic and involute reflector
KR101842512B1 (en) Focusing induction diffusion system that use solar radiation as a heat source and a light source
JPH10318122A (en) Generator and lighting device using sunlight
KR100487076B1 (en) Solar energy concentrating system
WO2022169001A1 (en) Ptc-type solar heat system coupled with concentrated photovoltaic cell
TWI834069B (en) Solar energy storage system